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It is a common view that rotational motion in a superfluid can exist only in the presence of
topological defects, i.e., quantized vortices. However, in our numerical studies on the merging of
two concentric Bose-Einstein condensates with axial symmetry in two-dimensional space, we observe
the emergence of a spiral dark soliton when one condensate has a non-zero initial angular momentum.
This spiral dark soliton enables the transfer of angular momentum between the condensates and
allows the merged condensate to rotate even in the absence of quantized vortices. Our examination
of the flow field around the soliton strikingly reveals that its sharp endpoint can induce flow like a
vortex point but with a fraction of a quantized circulation. This interesting nontopological “phase
defect” may generate broad interest since rotational motion is essential in many quantum transport

processes.

PACS numbers: 03.75.Lm, 03.75.Kk, 03.65.Vf

The hydrodynamics of quantum fluids such as atomic
Bose-Einstein condensates (BECs) and superfluid helium
are strongly affected by quantum effects [1-3]. For in-
stance, it is well known that in a simply-connected quan-
tum fluid, rotational motion can arise only through the
formation of topological defects in the form of quantized
vortices, each of which carries a circulation of k = h/m,
where h is Planck’s constant and m is the mass of the
particles that form the condensate. In BECs, quantized
vortices have been nucleated by a variety of innovative
methods, such as direct phase imprint [4, 5], rotation of
the condensate traps [6-9], stirring the BECs with laser
beams [10] or moving optical obstacles [11, 12], decay of
dark solitons [13, 14], and merging isolated condensates
[15]. The last method is particularly interesting since
it provides a means to test the celebrated Kibble-Zurek
mechanism [16, 17]. This mechanism explains that the
formation of vortices following a rapid second-order phase
transition is due to the merging of isolated superfluid do-
mains with random relative phases [18, 19]. In addition,
understanding the processes involved in the merging of
isolated condensates is important for matter wave inter-
ferometry research [20-23].

So far, many studies on condensate merging have fo-
cused on condensates with uniform initial phases. How-
ever, the situation is less clear when some condensates
contain vortices and carry angular momentum before
merging occurs. Many interesting questions arise. For
instance, how is the angular momentum transferred from
a rotating condensate to an initially static condensate?
Is this transfer accompanied by the transfer of vortices?
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Can vortices emerge at the interface between two conden-
sates, as they can in classical shear flows? These ques-
tions have motivated us to study the intriguing merg-
ing process of a simple condensate configuration: a disc
condensate with a concentric ring condensate in two-
dimensional (2D) space, with one of them undergoing
rotation induced by a single vortex point at the center.
We shall report in this Letter the observation of a spiral
dark soliton during the merging, which enables angular
momentum transfer and rotation in the condensates even
in the absence of quantized vortices. The novel soliton
geometry leads to a sharp endpoint of the soliton stripe,
which was not reported in the literature. More strikingly,
an examination of the velocity field around the spiral soli-
ton reveals that its sharp endpoint can induce rotational
motion in the condensate just like a vortex point but with
a fraction of a quantized circulation. This induced flow
is the essential underlying mechanism for the observed
angular momentum transfer. We shall also discuss how
this mechanism may play a role in 3D condensates.

The merging process of 2D BECs at zero temperature
can be accurately described by the non-linear 2D Gross-
Pitaevskii equation (GPE) [24]:
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where 9 is the condensate wave function, V is the ex-
ternal potential, and ¢ is the coupling constant that
measures the strength of the interatomic interactions.
This GPE can be reduced to a dimensionless form by
rescaling the parameters as r = &7, t = (h/ng)t, and
v = (VN/&)ip, where ¢ = h/y/2mng is the healing
length, N = [dS|¢|? is the total number of particles,
and n = N/S is the particle number density averaged



over the system area S:
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In this dimensionless GPE, the coupling constant § =
N/(n€?) equals to the dimensionless system area S/&2
(i.e., about 2 x 10%), and the potential V = V/ng mea-
sures the ratio of the external potential V' to the inter-
atomic interaction strength (ng). In our simulation, we
set V = V}gmp + Vw, where V}gmp represents the cylindri-
cal hard-wall box potential of the trap and Vw denotes
the potential barrier that separates the disc and the ring
condensates as shown in Fig. 1 (a). The condensates
are confined by ﬁmp to have an outer radius of 25¢.
This condensate size is within the range of typical con-
densate sizes in real experiments (i.e., about 10 — 102%¢
[12, 15, 25, 26]). The value of V,, depends on the atomic
species, number density, and the frequency and power
flux of the laser beams for trapping or separating the
condensates, which is typically in the range of 1 — 102
[12, 15, 25-28]. Here we present our simulation results
with Vi, = 1. We have checked that further increasing
V. does not alter the essential physics.
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FIG. 1: (color online). (a) Schematic of the potential V (¥, 1)
used in the GPE simulation. (b) The initial configurations of
the Bose-Einstein condensates.

Two specific initial configurations of the condensates
are considered in our numerical study. In Case-1, the
inner disc condensate contains a single vortex point at
its center while the outer ring condensate is static. In
Case-2, the outer ring condensate carries a supercurrent
with one quantum of circulation s while the inner disc
condensate is static. By evolving Eq. 2 in imaginary time
[29], the steady initial condensate profiles are achieved
and are shown in Fig. 1 (b). At time # = 0, we then
suddenly remove the energy barrier V,, and let the two
condensates merge. These condensate configurations are
different from those used in some early BEC interference
experiments [9, 30] but they can still be easily realized.
For instance, Corman et al. [26] and Eckel et al. [31] have
utilized the interference patterns of a ring condensate
and a disc condensate during free expansion to study
the Kibble-Zurek mechanism and superfluid weak links.
Their setup can be easily adapted to examine the results
of our simulation.
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FIG. 2: (color online). Case-1 representative snapshots show-
ing the time evolution of the BEC density, phase, and angular
momentum density L,. The “4+” and “” signs indicate the
locations of the positive and negative vortex points.

We carried out our simulation in a region r €
[—25, 25]x [—25, 25] with a mesh grid of 500x 500 nodes to
ensure spatial convergence. The time step d; is chosen to
be 1.0 x 10~*. The evolution of the condensate wavefunc-
tion during merging is obtained by numerically integrat-
ing Eq. 2 using an alternating direction implicit method
[32]. Representative snapshots of the dynamical evolu-
tion of the dimensionless condensate density p = |¢)|2
and phase ¢, following the removal of the potential bar-
rier V,,, are shown for Case-1 in Fig. 2 and for Case-2 in
Fig. 3. In both cases, we observe the emergence of a spi-
ral stripe with depleted condensate density and with an
abrupt phase step A¢ across the stripe boundary. This
stripe is indeed a dark soliton, similar in nature to the
ring dark solitons identified in the expansion of disc and
annular condensates in two dimensional space [33-35].
The boundary of the soliton moves at a speed that is de-
termined by the phase step. For A¢ = 7, the soliton has
zero velocity, zero density at its center, and has a width
on the order of £&. When A¢ decreases, the soliton be-
comes shallower and wider, and its speed increases [36].
The unique spiral shape of the dark soliton seen in our



simulation is due to the relative phases between the ini-
tial disc and ring condensates. For instance, in Case-1,
the ring condensate has a uniform phase while the inner
disc has a phase winding of 27. There is a point across
which the relative phase between the disc and the ring
condensates changes sign. The soliton then develops two
ends, with one end spiraling in and the other extending
out. The different chirality of the spiral solitons in Case-
1 and Case-2 indeed reflects the different relative phase
winding between the two condensates.
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FIG. 3: (color online). Case-2 representative snapshots show-
ing the time evolution of the BEC density, phase, and angular
momentum density L.. The “4” and “-” signs indicate the
locations of the positive and negative vortex points.

Interesting interactions between the spiral dark soli-
ton and quantized vortex points are also observed. We
first note that besides the physical vortices, the termi-
nal point of the phase branch-cut line is deemed as a
phase vortex in GPE simulation that does not induce ro-
tational flow, but has a phase winding of 27 around it.
In both cases, the dark soliton stripe quickly develops
a sharp inner end that spirals towards the center of the
condensate. In Case-1, at about £ = 5.8, the negative
vortex point initially located at the center merges into
the dark soliton. Subsequently, this vortex point moves
along the soliton stripe and annihilates with the positive

phase vortex, rendering the condensate completely vor-
tex free, as depicted in Fig. 2 at £ = 9.0. In Case-2, as
the sharp inner end spirals in, the local curvature radius
of the soliton stripe becomes comparable to . Snake in-
stability then occurs [37-39] and a pair of positive and
negative vortex points are nucleated at £ = 7.2. The
negative vortex point peels off from the soliton while the
positive one sits inside the stripe (see Fig. 3 at £ = 8.3).
This positive vortex point then moves along the soliton
stripe and annihilates with the phase vortex, leaving the
condensate with one single negative vortex point at the
center. In long time evolution, the solitons in both cases
eventually decay into vortices via snake instability (see
the movies in the Supplementary Materials).

We have also studied the time evolution of the dimen-
sionless angular momentum density L., defined as
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As shown in Fig. 2 and Fig. 3, the angular momentum
initially is confined to the rotating condensate. During
the merging, the angular momentum spreads to the ini-
tially static condensate region along the spiral channel
formed by the soliton stripe. The time evolution of the
integrated dimensionless angular momentum, for Case-2
as an example, is shown in Fig. 4 (a). We see clearly that
the angular momentum is transferred from the outer ring
region (12.5 < 7 < 25) to the inner disc region (7 < 12.5)
while the total angular momentum is conserved. One
may think that this transfer occurs naturally as the con-
densate flows from the rotating region through the spiral
channel to the initially static region. However, this is not
true. In Case-2, the flow in the initially rotating conden-
sate is counterclockwise, so it cannot enter the outward
spiral channel formed by the soliton. The situation is
similar for Case-1. Therefore, the rotation in the ini-
tially static condensate must be induced by a different
mechanism that is effective even without vortices.

Observing the abrupt phase step A¢ across the dark
soliton boundary, we realize that for a soliton stripe with
a sharp endpoint, there must also be a phase winding
of A¢ around this endpoint, as illustrated in Fig. 4 (b).
Such a phase winding actually leads to a rotational mo-
tion in the condensate, making the sharp endpoint ef-
fectively a “vortex point” that carries a fraction of a
quantized circulation given by (%)/@. Note that math-
ematically the circulation (i.e., integral of the velocity
around the endpoint) is still zero due to the opposite
phase velocity inside the soliton density depleted region.
When the soliton is nearly black (i.e., A¢ — 7), mass
flow through the soliton boundary is prohibited. In this
case, the flow induced by the sharp endpoint transports
condensate mass from one side of the soliton stripe to
the other side, which leads to spontaneous curving of the
sharp end of the soliton stripe. Now the mechanism for
the observed angular momentum transfer can be identi-
fied. Let us again consider Case-2. As shown in Fig. 4
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FIG. 4: (color online). (a) The time evolution of the in-
tegrated angular momentum for Case-2. (b) Schematic dia-
grams showing how the sharp endpoint of a dark soliton stripe
can induce rotational motion in a condensate and how such
motion bends the soliton stripe. c¢) Schematics illustrating
the mass and angular momentum transfer in Case-2.

(¢), the inner sharp end of the spiral soliton moves toward
the center and induces a counterclockwise flow in the in-
ner region, allowing the inner condensate to rotate. This
induced flow carries the condensate mass from the inner
region to the outer region, guided by the spiral channel.
Meanwhile, this outward flow leads to a phase increment
along the soliton boundary, which consequently causes a
phase gradient along the radial direction that drives an
inward mass flow (see the phase plot at £ = 6.4 in Fig. 3).
In the shallow tail part of the soliton stripe, the con-
densate density in the soliton is not depleted and mass
flow from the outer region through the soliton bound-
ary towards the inner region becomes significant. As a
consequence, a mass circulation between the inner and
the outer regions is formed in the condensate, which ef-
fectively mixes the condensate and transports angular
momentum between these two regions.

To support our model, we have examined quantita-
tively the flow field around the spiral dark soliton. Let
us take the snapshot in Case-2 at ¢t = 6.4 as an example,
since in this case the flow induced by the sharp inner
endpoint of the soliton is not affected by any nearby
physical vortices and there is a clear phase winding
around the endpoint. To focus on the rotational mo-
tion, we introduce a vortex charge parameter Z, defined
as Z = F|rxv(r)| = Frvg, where vy is the velocity along
the azimuthal angle direction. For a flow field induced
by a vortex point at the origin, Z is constant everywhere
and equals the winding number of the vortex. We have
calculated the Z values in the condensate along the solid
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FIG. 5: (color online). Variation of the calculated vortex
charge number Z in the condensate along the solid yellow
lines that are shown in the inset.

lines as shown in Fig. 5. The error bars represent the vari-
ations of Z along these solid lines. The small variation
of Z suggests that vg scales as 1/r along these lines. We
see that near the sharp inner endpoint, the Z values are
about 0.4, which indeed matches well with the measured
phase step across the soliton boundary near the endpoint
(i.e., A¢ ~ 0.87). The flow induced by the endpoint in
this region is protected. This is because the soliton has
fairly depleted density close to the inner endpoint, and
consequently mass flow from the outer region is strongly
prohibited. In areas where there are appreciable mass
flows across the soliton boundary from the outer region,
7 starts to increase and approaches one, a value that is
expected for the flow in the initial outer ring condensate.

We have also studied the merging of the two conden-
sates with various other initial conditions. For instance,
when the outer ring condensate initially carries a super-
current with a winding number greater than one, multi-
ple spiral solitons are created, and the number of solitons
matches the winding number. For the case that there is
no rotation in the two condensates, ring-shaped solitons,
instead of spiral solitons, are observed.

In 3D condensates, similar flows around soliton edges
should also exist. For instance, a disc-shaped soliton with
a sharp edge should have a phase winding around its
edge that induces flows in the condensate, which is effec-
tively like a vortex ring but with a fractional quantum
circulation that matches the phase step across the soli-
ton disc. Shomroni et al. have reported the creation of
disc dark solitons in 3D cigar-shaped condensates [40].
However, in those experiments the soliton edge is on the
BEC surface, which renders no visible rotational motion
in the condensate. Nevertheless, in our recent study on
the merging of a 3D rotating cylindrical condensate with
a static cylindrical condensate, a helical soliton sheet is
observed whose sharp leading edge is seen to induce flows



like a vortex line, which confirms that the mechanism we
identified in 2D condensates also exists in 3D systems.
More details of this study will be reported in a later pub-
lication.

In summary, our study has revealed that sharp end-
points or edges of dark solitons in BECs are nontopolog-
ical phase defects that can induce rotational motion in
the condensates like vortices. The flows induced by these
nontopological defects carry a fraction of a quantized cir-
culation that matches the phase step across the soliton
boundary. This mechanism is critical in transferring an-
gular momentum and condensate mass in the merging of
rotating condensates. It may also play important roles
in other quantum transport processes and in quantum

turbulence [41] where rotational motion is essential.
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