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Calculation of the entropy of an ideal Bose Einstein Condensate (BEC) in a three dimensional
trap reveals unusual, previously unrecognized, features of the Canonical Ensemble. It is found
that, for any temperature, the entropy of the Bose gas is equal to the entropy of the excited
particles although the entropy of the particles in the ground state is nonzero. We explain this by
considering the correlations between the ground state particles and particles in the excited states.
These correlations lead to a correlation entropy which is exactly equal to the contribution from
the ground state. The correlations themselves arise from the fact that we have a fixed number
of particles obeying quantum statistics. We present results for correlation functions between the
ground and excited states in Bose gas, so to clarify the role of fluctuations in the system. We also
report the sub-Poissonian nature of the ground state fluctuations.

PACS numbers: 03.75.Hh,05.30.–d,05.70.Ce

I. INTRODUCTION

The properties of a Bose condensate [1, 2] are usu-
ally studied using a grand canonical ensemble by making
a number of assumptions which can be justified in the
thermodynamic limit [3–5]. For a condensate consisting
of relatively small number of particles, it is better to use
a canonical ensemble. This ensemble is useful in under-
standing the particle number distribution, as well as the
fluctuations in the number of particles in ground states
and excited states, has been obtained [6–10]. Such calcu-
lations do not require thermodynamic limit. An impor-
tant result is the distribution of the number of particles
in the ground state. Recent work presents the entropy
of the ground state of an ideal N particle Bose-Einstein
condensate (BEC) from the condensate density matrix
[11, 12]

ρn0n0 =
HN−n0

(N − n0)!
e−H, (1)

whereH = N(T/Tc)
3 for a harmonic trap at temperature

T and critical temperature Tc and n0 is the number of
atoms in the condensate state.

This distribution has some novel features—it is like
the well known laser distribution for photons in a single
mode laser. This distribution can be used to calculate
the thermodynamic properties of the ground state; in
particular the approximate expression for entropy was
obtained. From the von Neumann entropy

S = −kB
∑
n

ρnn ln ρnn, (2)

with Boltzmann constant kB, one finds [12]

S = kB lnW +
kB
2
, (3)

where W =
√

2π(∆n0)2 =
√

2πH. Note that for T → 0,
we need to use the expression (1) or the full canonical
ensemble calculation.

In this paper we study the Bose gas in a three dimen-
sional trap. We use the canonical ensemble to obtain
exact results for the quantum statistical entropy. Our
exact results reveal new features of the Bose gas. We
consider the density matrix associated with the ground
state ρgnd and for the excited states ρex obtained from
the full canonical density matrix. The considerations of
exact canonical ensemble reveal that the total entropy of
the Bose gas at any temperature T is equal to the en-
tropy of the particles in the excited states; although the
entropy of the ground state particles is nonzero. This
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FIG. 1. Entropy of Ground state in an Ideal Bose Gas, which
is trapped in 3D Harmonic trap. The total number of parti-
cles is N = 200. The critical temperature for 3D harmonic
trap is Tc = ~Ω/kB(N/ζ(3))1/3, with harmonic trap oscilla-
tion frequency Ω, and Riemann’s zeta function ζ(s). This
exact result on entropy is calculated by Canonical Ensemble
Partition function, which is explained in Appendix A and B,
and it is drawn as a solid red line. From the approximate
density matrix, Eq. (1), the corresponding von Neumann’s
entropy is plotted as a dashed blue line.
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remarkable result implies the existence of the correlation
entropy in Bose gas and in fact the correlation entropy
must cancel the contribution from the ground state. We
trace this result to the fact that in the ensemble the num-
ber of particles is fixed and thus the total density matrix
does not factorize ρT 6= ρgnd ⊗ ρex. The nonfactorized
nature of the full density matrix is further clarified by
calculating the correlation functions between the ground
state and excited state particles.

In Sec. II, we derive reduced density matrices from
the total matrix in number occupation representation,
and consider the corresponding entropies. Explicit ex-
ample is shown in Table I. Furthermore, the equality of
the total entropy and entropy of the excited particles is
confirmed by comparing the forms of two density matri-

ces. In this procedure, the correlation entropy is defined,
also. In Sec. III, we derive the explicit relations among
the entropies of particles in Ideal BEC, which leads to
Joint entropy theorem for the total entropy. In Sec. IV,
the consideration of correlation functions has provided
more clear understanding on the correlation entropy in
BEC system. The correlations between the occupations
of ground state and that of excited states has shown a
similar tendency as the correlation entropy along tem-
perature, as shown in Fig. 3. In Sec. V, we conclude this
paper by asserting the equality between two entropies:
the total entropy and the entropy of the excites parti-
cles of BEC in Canonical Ensemble. Explicit procedures
to calculate the partition function and related thermody-
namic quantities in Canonical Ensemble have been shown
in Appendix A and B.

(a)
⊕ ⊕ ⊕ ⊕ ⊕

(b)
𝑝𝑝 20, 01, 02 200102 200102 + 𝑝𝑝 10, 11, 02 101102 101102

+ 𝑝𝑝 10, 01, 12 100112 100112 + 𝑝𝑝 00, 21, 02 002102 002102
+ 𝑝𝑝 00, 11, 12 001112 001112 + 𝑝𝑝 00, 01, 22 000122 000122

Total Density Matrix: 𝜌𝜌T = Entropy of total system: 𝑆𝑆 𝜌𝜌T =
𝑝𝑝 20, 01, 02 ln 𝑝𝑝 20, 01, 02 + 𝑝𝑝 10, 11, 02 ln 𝑝𝑝 10, 11, 02

+𝑝𝑝 10, 01, 12 ln 𝑝𝑝 10, 01, 12 + 𝑝𝑝 00, 21, 02 ln 𝑝𝑝 00, 21, 02
+𝑝𝑝 00, 11, 12 ln 𝑝𝑝 00, 11, 12 + 𝑝𝑝 00, 01, 22 ln 𝑝𝑝 00, 01, 22

(c)
𝑝𝑝 20, 01, 02 0102 0102 + 𝑝𝑝 10, 11, 02 1102 1102

+ 𝑝𝑝 10, 01, 12 0112 0112 + 𝑝𝑝 00, 21, 02 2102 2102
+ 𝑝𝑝 00, 11, 12 1112 1112 + 𝑝𝑝 00, 01, 22 0122 0122

Reduced Density Matrix: 𝜌𝜌ex = Entropy of excited states: 𝑆𝑆 𝜌𝜌ex =
𝑝𝑝 20, 01, 02 ln 𝑝𝑝 20, 01, 02 + 𝑝𝑝 10, 11, 02 ln 𝑝𝑝 10, 11, 02

+𝑝𝑝 10, 01, 12 ln 𝑝𝑝 10, 01, 12 + 𝑝𝑝 00, 21, 02 ln 𝑝𝑝 00, 21, 02
+𝑝𝑝 00, 11, 12 ln 𝑝𝑝 00, 11, 12 + 𝑝𝑝 00, 01, 22 ln 𝑝𝑝 00, 01, 22

(d)
Entropy of the ground state: 𝑆𝑆 𝜌𝜌gnd =

𝑝𝑝 20 ln 𝑝𝑝 20 + 𝑝𝑝 10 ln 𝑝𝑝 10 + 𝑝𝑝 00 ln 𝑝𝑝 00

Reduced Density Matrix: 𝜌𝜌gnd =

= 𝑝𝑝 20, 01, 02 20 20
+ 𝑝𝑝 10, 01, 12 + 𝑝𝑝 10, 01, 12 10 10
+ 𝑝𝑝 00, 11, 12 + 𝑝𝑝 00, 11, 12 + 𝑝𝑝 00, 11, 12 00 00

𝑝𝑝 20 20 20 + 𝑝𝑝 10 10 10 + 𝑝𝑝 00 00 00

TABLE I. (a) The system consists of two identical Bose particles (red dot), which are distributed among three different states
(blue lines). Due to the Bose statistics, the number of possible configurations is 6. (b) The total density matrix ρT and the
corresponding entropy S(ρT) and (c) the reduced density matrix ρex for excited states and the corresponding entropy S(ρex).
By comparing insets (b) and (c), we can easily confirm the equality of the two entropies. (d) The density matrix and entropy
for the ground state. The relation between the occupation probability for the ground state and the whole joint probability is
explicitly shown.

II. BEC JOINT GROUND STATE ENTROPY

We first prove that the total entropy of the ideal Bose
Gas at a temperature T is same as the entropy of excited
states of that system. At equilibrium, the total density
matrix for an Ideal Bose gas with fixed total number of
particles N is given by

ρT =
∑

n0,{ni}

p(n0, {ni})|n0, {ni}〉〈n0, {ni}| δN−n0,
∑
ni ,

(4)

with the occupation distribution {ni} on the excited
states constrained by the condition

∑
i ni = N−n0. The

reduced density matrixes for the ground state and for the
excited states are

ρgnd = Tr{ni}n0
(ρT) (5a)

=
∑
n0

p(n0)|n0〉〈n0|, (5b)
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and

ρex = Trn0(ρT) (6a)

=
∑
{ni}

p
(
n0 =

∑
i

ni, {ni}
)
|{ni}〉〈{ni}|. (6b)

The occupation probability for the ground state is

p(n0) =
∑
{ni}

p(n0, {ni}). (7)

Note that the probabilities for the states |{ni}〉 in ρex are
the same joint probabilities as for the states |n0, {ni}〉 in
ρT. The explicit example for calculating the correspond-
ing probability is explained in Table I.

From the von Neumann entropy, Eq. (2), the corre-
sponding entropies are

S(ρT) = − kBTrn0,{ni}(ρ ln ρ) (8a)

= − kB
∑

n0,{ni}

p(n0, {ni}) ln p(n0, {ni}), (8b)

and

S(ρex) = − kBTr{ni}(ρex ln ρex) (9a)

= − kB
∑

n0,{ni}

p
(
n0, {ni}

)
ln p
(
n0, {ni}

)
. (9b)

Showing that the entropy of the total system, Eq. (8b),
is equal to that for the excited states, Eq. (9b), since the
accessible states and corresponding probabilities are the
same. Table I shows this property explicitly for a system
of two Bose particles in three non-degenerate levels.

Similarly, we can write the entropy of ground state.

S(ρgnd) = − kBTrn0
(ρgnd ln ρgnd) (10a)

= − kB
∑
n0

p(n0) ln p(n0). (10b)

Furthermore, the above result is applicable for any
quantum system of identical particles including an ideal
Fermi atoms in a trap with a fixed total number of par-
ticles. Hence, we can say that the removal of any single
state in canonical ensemble preserves the entropy, since
the total number of particles is fixed by the constraint.

Since the total entropy of the system is same as that
of the excited states, what is learned from this result?
In a system of N ideal Bose particles, we can divide the
system into two parts: one is the ground state and the
other is the excited states [Eqs. (5a) and (6a)]. It is also
possible to define the entropy of each part [Eqs. (10a)
and (9a)]. Since the total density matrix, Eq. (4), does
not factorize as, ρT 6= ρex ⊗ ρgnd, we expect that the

entropy of the total system is not the summation of en-
tropy of each part, S(ρT) 6= S(ρgnd) + S(ρex), and we
thus introduce the correlation entropy [13] as

Scor(ρgnd, ρex) ≡ S(ρgnd) + S(ρex)− S(ρT). (11)

Remarkably, since S(ρT) = S(ρex), we see that

Scor(ρgnd, ρex) = S(ρgnd). (12)

Therefore, the entropy of ground state can be interpreted
as the correlation entropy between the ground state and
excited states. According to information theory [14], the
correlation entropy Sc(ρgnd, ρex) is called as the mutual
information. Hence, according to the information the-
ory we can say that the status of the excited states can
provide total information about the ground state.
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FIG. 2. Entropy for ideal Bose Gas which is trapped in a three
dimensional harmonic trap. The detailed parameters are as
in Fig. 1. The total entropy is drawn with a dashed blue line,
using procedure in Appendix A and B, and the entropy of
the ground state is in the solid red line. In this picture, the
entropy for the ground state is multiplied by 100. From the
behavior of the occupation number in the ground state, we can
see the entropy contribution of the ground state is important
below the critical temperature. In a similar way, in terms
of correlation entropy the relevant range of the correlation
is also below the critical temperature. The inset shows that
both entropies below T/Tc = 0.2.

III. BEC CONDITIONAL GROUND STATE
ENTROPY

In statistics and Shannon’s information theory [15],
conditional distributions and the conditional entropy are
useful concepts. Using the conditional probability, we
can identify the amount of contribution of the ground
state in entropy to the excited states. The conditional
probability for the excited states with a given number of
particles in the ground state is

p
(
{ni}

∣∣n0) =
p
(
n0, {ni}

)
p(n0)

(13)

where the ground state occupation probability is given
by Eq. (7). The entropy of ρex can be further evaluated.
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S(ρex) = − kB
∑
{ni}

∑
n0

[
p(n0)p

(
{ni}n0

∣∣n0)] log [p(n0)]− kB
∑
{ni}

∑
n0

[
p(n0)p

(
{ni}n0

∣∣n0)] log
[
p
(
{ni}n0

∣∣n0)] (14)

= − kB
∑
n0

p(n0) log p(n0)− kB
∑
n0

p(n0)
∑
{ni}

p
(
{ni}n0

∣∣n0) log p
(
{ni}n0

∣∣n0) (15)

=S(ρgnd) +
∑
n0

p(n0)S(ρN−n0
ex ). (16)

where ρN−n0
ex is the reduced density matrix of excited

states with N − n0 particles, and S(ρN−n0
ex ) is the corre-

sponding entropy. Hence, the excited states S(ρex) con-
tain information about the ground state.

Similarly, we can rewrite the above relation for the
total entropy as

S(ρT) = S(ρgnd) +
∑
n0

p(n0)S(ρN−n0
ex ). (17)

This relation is known as Joint entropy theorem [14, 16,
17]. The entropy contribution of ground state is in the
total entropy. We can interpret that S(ρgnd) as the en-
tropy of the ground state and as the correlation entropy.

The explicit procedure how to calculate the entropy
for the S(ρT) and S(ρN−n0

exc ) is explained in Appendix B.
Fig. 2 shows the entropy of ground state, or the correla-
tion entropy for the Ideal Bose Gas with 200 particles in
3D harmonic trap.

IV. CORRELATION FUNCTION

In order to better appreciate the nature of correlations
in the Bose gas at low temperatures, we examine the va-
riety of correlations of the occupation numbers between
the ground state and the excited states. The entropy is
defined by the distribution of occupation numbers, that
is the density matrix, and the correlation function is de-
fined by the corresponding random variables, that is the
occupation numbers. For the ground state distribution
the occupation number n0 for ground state is the corre-
sponding variable, and for the excited states the occupa-
tion number is

∑
i ni = N − n0.

As in statistical description of correlation between two
random variables, we can introduce the correlation be-
tween the numbers of particles in the ground state and
in excited states as

C1(n0,
∑
i

ni) ≡
〈n0

∑
i ni〉√

〈n02〉 〈(
∑
i ni)

2〉

=
〈n0(N − n0)〉√
〈(n0)2〉 〈(N − n0)2〉

. (18)

Note that the Schwarz inequality implies that C1 ≤ 1.
We note that over the temeprature range T/Tc ∼ [0.2−

0.8], C1 ' 1 implying very high degree of correlation.
Beyond this temperature the correlation starts falling.
Next we introduce the correlation defined as the fluctua-
tion around the mean

C2(n0,
∑
i

ni) ≡
[
〈n0〉〈

∑
i

ni〉 − 〈n0
∑
i

ni〉
]1/2

(19)

=
√
〈(n0)2〉 − 〈n0〉2. (20)

It is interesting that the conservation of total number
N of particles makes C2 identical to the (variance)1/2 of
the ground state number. The C2 shows a behavior which
has similarities to the behavior of the correlation entropy.
However, the correlation entropy shows a much slower de-
pendence on T . This can be understood as the ground
state entropy is the mean value of p(n0) and is related in
principle to all order of moments of n0. If p(n0) were to
be approximated by a Gaussian, then ln p(n0) is directly
related to lnC2 and because of logarithmic dependence,
entropy shows much slower dependence on T than C2.
In this figure we also show a very interesting character of
the statistics of the fluctuations in the ground state: the
fluctuations in the region close to T/Tc � 1 are predom-

inantly sub-Poissonian as ∆n0/
√
〈n0〉 < 1. The result

from the approximate expression, Eq. (1), are close to
the exact result.

Although the fluctuations of the ground state popu-
lations have not been yet studied experimentally, this is
possible in principle from the snapshots of the images of
the distribution of particles in the trap. The peak and
tail of the snapshots should yield the ground state and
the excited state distributions. Such images have been
used for studying the particle number fluctuations in a
trap when interparticle interactions are important [18].

We next consider the correlation between two specific
states defined by

C̃1(ni, nj) ≡
〈ninj〉√

〈(ni)2〉〈(nj)2〉
(21)

where

〈ninj〉 =

N∑
ni=1

N−ni∑
nj=1

e−βniεi−βnjεj
ZN−ni−nj (β)

ZN (β)
, (22)

which is derived in the supplementary information.
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FIG. 3. The system is an Ideal Bose Gas trapped in 3D
harmonic trap with 200 particles. The parameters are the
same as in Fig. 1. The normalized correlation function C1,
Eq. (18), between ground state occupation number and that of
excited states is plotted as a dashed blue line. C2, Eq. (20),
is plotted as a dotted green line. The correlation entropy,
Eq. (12), or the entropy of the ground state is also drawn as
a solid red line. In the figure we also show the sub-Poissonian
nature of fluctuations by plotting the parameter ∆n0/

√
〈n0〉

(dashed brown line [×5]). The strong sub-Poissonian region

corresponds to ∆n0/
√
〈n0〉 � 1.

The correlation between the ground state and the first
excited state is shown in Fig. 4. Though the occupation
number of the first excited states is considerable around
T/Tc ∼ 1, the correlation between two states are negli-
gible except at low temperatures T/Tc . 0.1, where it is
of order 1/N .

V. SUMMARY

The most important result of our exact calculation
based on the canonical ensemble is that the entropy of a
Bose gas confined to a three dimensional harmonic trap
is equal to the entropy associated with the atoms in the
excited states. This is so even though, at any temper-
ature, the entropy of the particles in the ground state
is nonzero. We bring out the reasons for this surpris-
ing result by showing that the total entropy associated
with the full system consists of three contributions—the
entropy of the ground state, the entropy associated with
the particles in the excited state and a contribution which
we refer to as the correlation entropy [analog of the mu-

tual information from information theory]. We show on
a very general ground that the correlation entropy can-
cels the ground state contribution. This appears due
to the fixed number of particles distributed among the
quantum states [19]. The explicit nature of correlations
among the particles in ground state and excited states is
brought about by studying different types of correlation
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FIG. 4. The correlation function C̃1, Eq. (21), is drawn among

the three lowest states. C̃1(n0, n1) is drawn as a solid red line,

C̃1(n0, n2) as a blue dashed line, and C̃1(n1, n2) as a green
dashed-dotted line. Since the occupation of the ground state
is macroscopic in low temperature, the correlation function
is noticeable below T/Tc ∼ 0.2. The correlation between
the first and the second excited states is negligible, since the
occupation number in each state is small compared to the
total number of particles. The system is an ideal Bose Gas
trapped in 3D Harmonic trap, and the parameters are the
same as in Fig. 1.

functions involving the numbers in ground state and ex-
cited states. Because of the number conservation, these
correlations become related to the ground state fluctua-
tions. Since the entropy of the ground state is the mean
value of the log p(n0), the fluctuations of n0 determine
the value of the entropy of particles in the ground state.

This paper is supported by the Office of Naval Research
(Award No. N00014-16-1-3054) and by the Robert A.
Welch Foundation (Grant No. A-1261).

Appendix A: Exact Partition Function and
Occupation Probability in Canonical Ensemble

The partition function ZN in canonical ensemble (CE)
can be written in terms of occupation number in each
accessible state as
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ZN (β) =

∞∑
n0=0

∞∑
n1=0

· · ·
∞∑

nν=0

· · · e−βn0ε0e−βn1ε1 · · · e−βnνεν · · · δ

(
N −

∑
ν

nν

)
(A1)

=
∑

n0,{ni}n0

e−β
∑
ν nνεν δ

(
N −

∑
ν

nν

)
, (A2)

where β = (kBT )−1 is the inverse temperature with the
Boltzmann constant kB.

Let’s consider the probability that ν-state has more
than n particles. Then, the corresponding summation is
restricted to nν ≥ n.

P (nν ≥ n) =
1

ZN

∞∑
n0=0

∞∑
n1=0

· · ·
∞∑

nν=n

· · · e−βn0ε0e−βn1ε1 · · · e−βnνεν · · · δ

(
N −

∑
ν

nν

)
(A3)

= e−βnεν
ZN−n(β)

ZN (β)
(A4)

The probability for ν state to have n particles is

P (nν = n) =P (nν ≥ n)− P (nν ≥ n+ 1) (A5)

=
e−βnενZN−n(β)− e−β(n+1)ενZN−n−1(β)

ZN (β)
.

(A6)

The average occupation number in the state ν is

〈nν〉 =

N∑
nν=1

nνP (nν) =

N∑
nν=1

e−βnνεν
ZN−nν (β)

ZN (β)
. (A7)

And, the total number of particles is given by sum of the
average occupation number of all states

N =
∑
ν

〈nν〉. (A8)

By a simple manipulation, we will get the following re-
currence relation [6, 20].

ZN (β) =
1

N

N∑
m=1

Z1(mβ)ZN−m(β). (A9)

Similar to Eq. (A5), we can write the occupation prob-
ability for two states

P (nν ≥ n, nµ ≥ m) = e−βnεν−βmεµ
ZN−n−m(β)

ZN (β)
(A10)

So, the probability to find nν = n and nµ = m is

P (nν = n, nµ = m) (A11)

=P (nν ≥ n, nµ ≥ m)− P (nν ≥ n, nµ ≥ m+ 1)

− P (nν ≥ n+ 1, nµ ≥ m) + P (nν ≥ n+ 1, nµ ≥ m+ 1)
(A12)

The correlation function between the two states can be
easily obtained. Explicitly, it is

〈nνnµ〉 =

N∑
n=1

N−n∑
m=1

e−βnεν−βmεµ
ZN−n−m(β)

ZN (β)
. (A13)

Appendix B: Thermodynamic Quantities in
Canonical Ensemble

Partition function ZN (T, V ) in canonical ensemble is
related to the Helmholtz free energy A(T, V ) [3, 4]

ZN (T, V ) = e−βA(T,V ) (B1)

or

A(T, V ) = − kBT lnZN (T, V ) (B2)

Thermodynamic quantities can be calculated from the
Helmholtz free energy through the Maxwell relations.
For example, pressure P and entropy S are

P = −
(
∂A

∂V

)
T

(B3)

S = −
(
∂A

∂T

)
V

(B4)

U = 〈H〉 = A+ TS (B5)

CV =

(
∂U

∂T

)
V

(B6)

with isochoric heat capacity CV .
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In terms of partition function,

A

kB
= − T lnZN (B7)

P

kBT
=

(
∂ lnZN
∂V

)
T

(B8)

S = kB lnZN + kBT

(
∂ lnZN
∂T

)
V

(B9)

U = kBT
2

(
∂ lnZN
∂T

)
V

(B10)

CV = 2kBT

(
∂ lnZN
∂T

)
V

+ kBT
2

(
∂2 lnZN
∂T 2

)
V

(B11)

Derivatives of the partition function lnZN with respect
to the temperature T or to the volume V give to the
corresponding thermodynamic quantities in canonical en-
semble.
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K. Rza̧żewski, “Fluctuations of the weakly interacting
Bose-Einstein condensate”, Phys. Rev. Let. 82, 4376
(1999).

[9] V.V. Kocharovsky, Vl. V. Kocharovsky, and M.O. Scully,
“Condensate statistics in interacting and ideal dilute
Bose gases”, Phys. Rev. Let. 84, 2306 (2000).

[10] M. Holthaus and E. Kalinowski, “Condensate Fluctua-
tions in Trapped Bose Gases: Canonical vs. Microcanon-
ical Ensemble”, Ann. Phys. (New York) 270, 198 (1998).

[11] M. O. Scully, “Condensation of N Bosons and the Laser
Phase Transition Analogy”, Phy. Rev. Lett. 82, 3927
(1999); V.V. Kocharovsky, M. O. Scully, S.-Y. Zhu, and
M. S. Zubairy, “Condensation of N bosons. II. Nonequi-

librium analysis of an ideal Bose gas and the laser phase-
transition analogy”, Phy. Rev. A 61, 023609 (2000).

[12] M. O. Scully, “Entropy of Photon and Atom Lasers,” (To
be published).

[13] The correlation entropy has been introduced in the same
way as in this article. For example, M. H. Partovi, “Quan-
tum Thermodynamics”, Phys. Lett. A 137, 440 (1989),
and H. Huang and Girish S. Agarwal, “General linear
transformations and entangled states”, Phys. Rev. A 49,
52 (1994).

[14] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (10th Anniversary Ed.)
(Cambridge University Press, Cambridge, 2010).

[15] M. M. Wilde, Quantum Information Theory, (Cambridge
University Press, Cambridge, 2013).

[16] M. Ohya and D. Petz, Quantum Entropy and its use,
(2nd) (Springer-Verlag, Berlin, 2004).

[17] A. Wehrl, “General properties of entropy”,
Rev. Mod. Phys. 50, 221 (1978).

[18] C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen,
G. N. Price, and M. G. Raizen, “Direct Observation of
Sub-Poissonian Number Statistics in a Degenerate Bose
Gas”, Phys. Rev. Lett. 95, 260403 (2005).

[19] This is also applicable to particles obeying Fermi-Dirac
statistics. Consequences of this would be the subject of
future study.

[20] P. T. Landsberg, Thermodynamics with quantum statis-
tical illustrations, Vol. 2 in Monographs in Statistical
Physics and Thermodynamics, Ed. I. Prigogine (Inter-
science Publishers Inc., New York, 1961).


