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We present numerical simulations of the ratio between double and single ionization of He and Ne by
intense laser pulses at wavelengths of 390 nm and 400 nm, respectively. The yields of doubly charged
ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative
rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product
of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free
electron impact excitation and electron impact ionization of the parent ion. According to the QRS
theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization
(HATI) photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by
solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same
TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to
calibrate single ionization and the RWP obtained from the strong-field approximation, we further
simplify the calculation such that the nonuniform laser intensity distribution in the focused laser
beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross
sections are calculated using the state-of-the-art many-electron R-matrix theory. The simulation
results for double to single ionization ratios are found to compare well with experimental data and
support the validity of the nonsequential double ionization mechanism for the covered intensity
region.

PACS numbers: 32.80.Fb, 32.80.Rm,34.50.Rk, 34.80.Dp

I. INTRODUCTION

The classical three-step rescattering model [1, 2] has
been widely employed to qualitatively interpret laser-
induced rescattering processes in the past two and a half
decades. According to this model, an electron is first ion-
ized near the peak of the laser’s oscillating electric field.
In the second step, the electron is subsequently driven by
the laser field and has the chance to return back to the
parent ion when the field changes direction. Upon return
(third step) the electron may scatter from the ion core.
The elastic scattering can result in high-order above-
threshold ionization (HATI) [3] photoelectrons. The re-
turning electron can also recombine with the parent ion
with the emission of photons for high-order harmonics
generation (HHG) [4]. Both HATI and HHG are basically
one-electron processes and can approximately be treated
by using a single-electron model. For multielectron tar-
gets, the returning electron may ionize another electron
of the ion, or it may excite the electron to an excited
state, which is subsequently ionized by the laser. These
latter processes result in nonsequential double ionization
(NSDI) [5, 6]. While HATI and HHG may be calculated
accurately within a single-electron model by solving the

time-dependent Schrödinger equation (TDSE), NSDI is
intrinsically a two-electron process resulting in two con-
tinuum electrons in the final state. Accurate calculations
of NSDI, therefore, continue to present a great challenge,
for which sophisticated theoretical modeling beyond the
single-active electron (SAE) approximation is needed.

According to the three-step model, HATI, HHG, and
NSDI all result from electron recollisions with the parent
ion. Nevertheless, the three-step model was incapable of
making actual calculations before the quantitative rescat-
tering (QRS) model [7] was developed. According to the
QRS model, the yields for HATI, NSDI, and HHG can
be expressed as a product of the returning electron wave
packet (RWP) with various field-free electron-ion scat-
tering cross sections, namely elastic electron scattering,
electron impact ionization, and photo-recombination, re-
spectively.

While the QRS model developed by Lin and coworkers
has been widely used to simulate photoelectron energy
spectra and two-dimensional momentum distributions for
both HATI electrons [8–11] and HHG spectra [12, 13]
with great success, there have been fewer investigations
of NSDI. To study NSDI, field-free inelastic electron im-
pact excitation cross sections and electron impact ioniza-
tion cross sections are needed over a broad energy range.
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Thus, while a few NSDI studies have been carried out
with the QRS model, such as the laser-intensity depen-
dence of nonsequential double ionization [14, 15] as well
as the correlated electron momentum distributions and
their dependence on the carrier-envelope phase [16, 17],
the accuracy is always marred by the limited quality of
the field-free inelastic electron impact excitation and ion-
ization cross sections. Such limitations may not be too
severe for studying the laser-intensity dependence and
the CEP-dependence of the NSDI process, but this im-
plies that the role of target structure has not been clearly
explored in these experiments.

From the experimental point of view, the ratios of
double ionization versus single ionization by a strong
laser field vs. laser intensity are likely the most accurate
parameters that can be determined in the laboratory.
They can be determined by taking the ratio of doubly
to singly charged ions. While the actual experimental
intensity cannot be accurately determined in general, a
method based on the PPT (Perelomov-Popov-Terentév)
theory [18] was suggested recently to retrieve accurate
peak laser intensity from the measured ionization signals
efficiently [19]. The total single-ionization probability
can also be accurately calculated by solving the TDSE
within the SAE model for short pulses. If there is a reli-
able method to calculate the NSDI yields, then the theo-
retical ratios can be compared to the experimental ratios.
In such comparisons, both single- and double-ionization
calculations should account for the actual intensity dis-
tributions within a focused laser beam.

While single-ionization yields can be calculated for a
known laser field with reasonable accuracy, this is not
the case for double ionization, especially for the NSDI
process. A direct numerical solution of the TDSE for
the NSDI process for the two-electron helium atom in
an 800 nm field has still not yet been reported due to
the difficulties of achieving numerical convergence. How-
ever, the ratio for a 390 nm laser pulse was predicted by
Parker et al. [20]. Since NDSI is a rescattering process, it
is interesting to investigate whether accurate total NSDI
yields can be determined using the QRS theory. In the
present paper, this is carried out with two recent devel-
opments. First, the returning electron wave packet in the
QRS is properly normalized to the TDSE results. Sec-
ond, accurate electron impact excitation and ionization
cross sections for He+ and Ne+ in the low-energy region
are calculated using the many-electronB-spline R-matrix
(BSR) method [21, 22]. In order to compare with the ra-
tios obtained from actual experiments, the calculations
were carried out for He exposed to a 390 nm laser pulse
and Ne exposed to a 400 nm laser pulse.

The remainder of the present paper is arranged as fol-
lows. Section II summarizes the ingredients of the theo-
retical methods. The details of the numerical procedure
and the final simulated results are presented in Sec. III.
Finally, our conclusions are given in Sec. IV. Unless in-
dicated otherwise, atomic units (a.u.) (h̄ = |e| = m =
4πǫ0 = 1) are used throughout the manuscript.

II. THEORETICAL MODEL

A. The strong-field approximation

In the familiar strong-field approximation (SFA), the
first two terms of the perturbation series, called SFA1 and
SFA2, respectively, express the momentum-dependent
ionization amplitude as

fSFA(p) = fSFA1(p) + fSFA2(p), (1)

where p is the momentum of the detected photoelectron.
The SFA1 amplitude is given by

fSFA1(p) = −i

∫

∞

−∞

dt 〈χp(t) |r ·E(t)|β(t)Ψi(t)〉 , (2)

where E(t) = −∂A(t)/∂t is the electric field of the laser,
and Ψi is the initial ground-state wave function. The
decay factor β(t) introduced in Eq. (2) accounts for the
depletion of the initial state, which is given by

β(t) = exp

[

−
∫ t

∞

dt′W (t′)/2

]

, (3)

where W (t) is the time-dependent modified ADK
(Ammosov-Delone-Krainov) [23] rate proposed by Tong
and Lin [24]. The Volkov state χp in Eq. (2) is given by

〈r|χp(t)〉 =
1

(2π)3/2
ei[p+A(t)]·re−iS(p,t), (4)

where the action S is

S(p, t) =
1

2

∫ t

−∞

dt′ [p+A(t′)]
2
. (5)

The second term in Eq. (1) accounts for laser-induced
rescattering, i.e., elastic scattering of the returning elec-
tron from the parent ion. This term, called SFA2, is
expressed as

fSFA2(p) = −
∫

∞

−∞

dt

∫

∞

t

dt′
∫

dk 〈χp(t
′) |V |χk(t

′)〉

× 〈χk(t) |Hi(t)| β(t)Ψi(t)〉 , (6)

where V is the scattering potential. It takes the form

V (r) = −Zeff

r
e−αr, (7)

where α is a screening factor introduced to avoid the sin-
gularity in the integrand in Eq. (6). The SFA2 amplitude
(6) consists of a five-dimensional integration, which can
be reduced to two dimensions by using the saddle-point
approximation for the integration with respect to k, as
proposed by Lewenstein et al. [25].
With the momentum-dependent ionization amplitude,

the momentum distribution of an electron emitted with
energy E = p2/2 in the direction of p̂ is given by

d3P+
SFA

d3p
= |fSFA(p)|2. (8)
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From Eq. (8), we obtain the energy spectra

dP+
SFA

dE
= 2π

√
2E

∫ 1

−1

|fSFA(p)|2d(cos θ), (9)

and the total ionization probability for single ionization

P+
SFA =

∫

dP+
SFA1

dE
dE. (10)

In Eq. (10), the contribution from SFA2 is neglected since
it is much smaller than the SFA1.

B. The time dependent Schrödinger equation

The numerical solution of the Schrödinger equation in
a time-dependent laser field provides a reliable quantum
description of both direct ionization and HATI due to
elastic rescattering. Within the SAE approximation, the
TDSE for an atom in the presence of a linearly polarized
laser field, in the length gauge, can be written as

i
∂

∂t
Ψ(r, t) =

[

−1

2
∇2 + VSAE(r) + r ·E(t)

]

Ψ(r, t),

(11)
where the model potential VSAE for atoms is parameter-
ized in the form

VSAE(r) = −1 + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
. (12)

The parameters in Eq. (12) are obtained by fitting the
calculated binding energies from this potential to the ex-
perimental binding energies of the ground state and the
first few excited states of the target atom [26].
The time-dependent equation is solved by using a

second-order split operator method [27, 28], and the wave
function is expanded into direct products of discrete-
variable-representation basis sets [29–31] associated with
Legendre polynomials.
The momentum-dependent ionization amplitude is ob-

tained by projecting the total final wave function at the
end of the laser pulse onto eigenstates of a continuum
electron with momentum p,

fTDSE(p) = 〈Φ−

p |Ψ(t = ∞)〉, (13)

where the continuum state Φ−

p is obtained by solving the
differential equation

[

−1

2
∇2 + VSAE(r)

]

Φ−

p =
p2

2
Φ−

p . (14)

C. The QRS model for HATI

According to the QRS model, the momentum distri-
bution for HATI photoelectrons can be expressed as a
product of the returning electron wave packet and the

elastic differential cross section (DCS) for free electrons
scattering from the target ion. In the SFA model, the di-
rect ionization and the ionization due to rescattering are
calculated by SFA1 and SFA2 separately, and only SFA2
accounts for rescattering. Therefore, for a photoelectron
with momentum p detected at an angle θ with respect to
the polarization vector of the laser field, we have

|fSFA2(p)|2 = WSFA2(kr)
dσB(kr, θr)

dΩr
, (15)

where WSFA2(kr) is the RWP describing the momen-
tum distribution of the returning electron. Further-
more, dσB(kr, θr)/dΩr is the DCS obtained in the first-
order Coulomb-Born or plane-wave Born approximation
(PWBA) for elastic scattering of the returning electron
from the parent ion with momentum kr at an angle θr
with respect to the direction of the returning electron. In
the PWBA, where the continuum electron wave functions
are represented by plane waves, the elastic scattering am-
plitude is given by

f(q) = − 1

2π

∫

exp(iq · r)V (r)dr = − 2Zeff

q2 + α2
, (16)

where q is the momentum transfer. The latter is related
to the rescattering angle θr and the returning electron
momentum kr by

q = 2kr sin(θr/2). (17)

Consequently, the elastic scattering DCS in Eq. (15) can
be expressed as

dσB(kr, θr)

dΩr
= |f(q)|2. (18)

The photoelectron momentum p and the momentum kr

of the returning electron after scattering are related by

p = kr −Ar, (19)

where Ar is the instantaneous vector potential at the
time when the electron returns to the origin. Further-
more, to establish a one-to-one relation between p and
kr, one may use, approximately,

kr ≈ 1.26|Ar| (20)

for returning electrons near the cutoff. This may be cal-
culated from the one-dimensional classical theory of a
free electron in an oscillating laser field [8]. Similarly, for
the TDSE calculations, the momentum distribution for
HATI photoelectron can be expressed as

|fTDSE(p)|2 = WTDSE(kr)
dσ(kr , θr)

dΩr
. (21)

It has been carefully verified that, in the above equation,
if WTDSE(kr) is replaced by WSFA2(kr) obtained from
Eq. (15) and dσ(kr , θr)/dΩr is evaluated using standard
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potential scattering theory, the shapes of the TDSE mo-
mentum distributions for HATI electrons are well repro-
duced [8], while the absolute magnitudes are different
by a constant factor. On the other hand, with the TDSE
momentum distributions and accurate DCSs, WTDSE(kr)
obtained from Eq. (21) is also in good agreement with
WSFA2(kr), except for a normalization factor owing to
the error of ionization rate in the SFA model.

D. The QRS model for NSDI

The QRS model can be applied to all laser-induced
rescattering processes. Unlike for HATI electrons, where
the returning electrons are elastically scattered by the
ion, in NSDI the returning electrons are inelastically scat-
tered by impact ionization and excitation processes. The
total NSDI yield can be calculated from [14, 15]

P2+ =

∫

dEr [WL(Er) +WR(Er)]

×[σexc(Er) + σe2e(Er)], (22)

where σexc(Er) and σe2e(Er) are the total cross sections
(TCSs) for electron impact excitation and ionization from
the ground state of the target ion at incident energy Er.
This is related to the momentum of the returning elec-
tron by Er = k2r/2, and WL(Er) and WR(Er) are the
RWP extracted from the “left” (pz < 0) and the “right”
(pz > 0) sides of the momentum distributions for HATI
photoelectrons, respectively. For long pulses considered
here, WL(Er) = WR(Er). As mentioned above, it has
been demonstrated that the RWP obtained from SFA2
and the TDSE agree well with each other [8], except for
an overall normalization factor.
Clearly, it is much more convenient to employ SFA2

rather than TDSE to calculate the RWP, especially in
the case of long laser pulses at high intensities, for which
the TDSE calculations are extremely challenging. Con-
sequently, all the RWP in Eq. (22) are taken from the
SFA2 calculations after the normalization factor was de-
termined by comparing the RWPs with those from a few
representative TDSE calculations.
It should be noted that, in Eq. (22), we assumed that

all excited electrons are tunnel-ionized. The integration
should be performed over all energies higher than the
threshold energy of the returning electron.

E. Lowering of the threshold potential

According to the rescattering model, the maximum ki-
netic energy that a returning electron can gain from the
field is 3.17Up, where Up is the electron ponderomotive
energy, which is proportional to the intensity. Since a
minimum kinetic energy is required for the returning elec-
tron to ionize an electron of the residual ion or to pro-
mote this electron to an excited state, a single threshold

energy of the ion is always predicted by the QRS model.
This model, however, as pointed out by van der Hart and
Burnett [32], does not account for the effect of the laser
field on the target ion. In particular, one expects that the
laser field will lower the threshold energy of the return-
ing electron for excitation and ionization, as depicted in
Fig. 1 in the static limit. The amount of lowering can be
calculated from the saddle point of

V (z) = zFr − Z/z. (23)

Here the reduction of the potential at the saddle is given
by

Vb = −2
√

Z|Fr|, (24)

where Fr is the electric field at the instant of scattering,
and Z = 2 for electron impact ionization and Z = 1 for
electron impact excitation of a singly charged ion, respec-
tively. Thus, for electron impact ionization and excita-
tion taking place in an electric field, the required mini-
mum kinetic energies of the laser-induced returning elec-
tron are lowered by |Vb| compared to the field-free case.
In order to account for this effect, therefore, Eq. (22)
should be modified as

P2+ =

∫

dEr[WL(Er) +WR(Er)]

×[σexc(Er + 2
√

|Fr|) + σe2e(Er + 2
√

2|Fr|)]. (25)
Since the lowering of the potential saddle changes with
time, an effective average lowered potential at the re-
turn time of t = 290◦/ω was used in this correction, see
Ref. [15]. Note that the lowered potential depends on the
laser intensity.
In Ref. [32] it is suggested that for electron impact

ionization, the minimum energy with which the ejected
electron can escape is also lowered in the presence of the
electric field, therefore another term corresponding to the
barrier height should be added to the scattering energy.
Like Eremina et al. [33] we do not follow their sugges-
tion. In our R-matrix calculation, the modification of
the potential cannot be separated into before and after
the collision since energy is conserved in the (e, 2e) col-
lision.

F. Focal averaging

The procedures outlined above only apply to a single
intensity. In an actual experiment, on the other hand, the
intensity distribution of a focused laser beam is not uni-
form in space. Since the electrons collected experimen-
tally originate from atoms located somewhere in the in-
teraction volume, focal-volume averaging has to be taken
into account in the numerical simulations when compar-
ing to experiment. To achieve this, the total single ion-
ization rate at a peak intensity I0 is expressed as

P̄+(I0) =

∫ I0

0

P+(I)
∂V

∂I
dI. (26)
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FIG. 1: Barrier in the combined atomic and electric field
potential along the polarization axis z of the laser field (red
solid curve). The atomic potential is chosen as Coulombic
with Z = 1 (black dashed curve) and the (static) electric field
is chosen as 0.07. The latter corresponds to the returning
time for ωt = 290◦ in a laser field with a peak intensity of
15× 1014 W/cm2.

For a laser beam with a Lorentzian distribution in the
propagation direction and a Gaussian distribution in the
transverse direction, the focal volume in Eq. (26) is given
by [28]

∂V

∂I
∝ 1

I

(

I0
I

+ 2

)

√

I0
I

− 1. (27)

To obtain total NSDI yield to compare with experi-
ment, volume integration over Eq. (25) has to be car-
ried out. Since the wave packet is a smooth function
of returning electron energy, we can simplify the volume
integration to

P̄2+ =

∫

dEr [W̄L(Er) + W̄R(Er)]

×[σexc(Er + 2
√

|Fr|) + σe2e(Er + 2
√

2|Fr|)], (28)

where W̄L and W̄R are the focal-volume-averaged RWPs.
It has been tested that the difference between the dou-
ble ionization yield obtained from Eq. (28) and that by
performing focal volume integration on Eq. (25) directly
is less 8%.

III. RESULTS AND DISCUSSION

We aim to simulate the experimentally measured
double-to-single ionization ratios for He in 120 fs linearly
polarized laser pulses at 390 nm [34], and Ne in 40 fs lin-
early polarized pulses at 400 nm [35]. For this purpose,
we first evaluated the total single ionization rate using
the SFA1. Figure 2 shows the simulated yields of Ne+
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FIG. 2: Single-ionization yields for Ne exposed to linearly
polarized laser pulses at 400 nm. The experimental data are
taken from Ekanayake et al. [35], and the simulated results
from the SFA model are normalized for good visual agreement
with experiment. The calculations include the integration
over the focal volume of the laser.

ions as a function of peak intensity together with the cor-
responding experimental data of Ekanayake et al. [35]. It
can be seen that the normalized SFA1 results for Ne are
in very good agreement with experiment over the entire
intensity range considered here. Note that the integra-
tion over the focal volume of the laser was performed in
the numerical simulations.

In order to obtain the double ionization yields for
NSDI, we need to evaluate the RWP and the TCS for
electron impact excitation and ionization of the target
ions. The RWPs calculated using Eq. (15) with the
focal volume effect considered are shown in Fig. 3 for
He and Ne exposed to linearly polarized laser pulses at
390 nm and 400 nm, respectively. It has been shown that
the RWP depends on the screening factor introduced in
Eq. (7). If a large screening factor is used, however, the
RWP converges [15]. In this paper, like Ref. [15], we
chose a screening factor α = 4. For the NSDI process,
the returning electron energy is large, meaning that scat-
tering is being contributed from small distance of the
atom. Since the SFA2 integral contains fast oscillating
exponent, choosing a large alpha avoids the need to inte-
grate over a large volume which would incurs numerical
errors. The choice of large alpha is to avoid such errors
in the wave packet included in Eq. (28). Since the wave
packet calculated from SFA2 still has to be normalized
to the one from TDSE at one energy point, the specific
α used is not critical. Figure 3 shows that the RWPs
at four selected intensities drop rapidly at low energies,
followed by a plateau at high energies. Going into more
detail, the flatness of the RWPs at high energies for He
is slightly different from that seen for Ne. This is at least
partially due to the fact that different laser parameters
were used for these two atoms and that the focal-volume
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FIG. 3: Returning electron wave packets for (a) He and (b)
Ne in linearly polarized laser pulses at 390 nm and 400 nm,
respectively. The calculations include the integration over
the focal volume of the laser. The vertical solid lines mark
the excitation thresholds of He+ and Ne+ in the field-free
case, while the vertical dotted lines mark the corresponding
thresholds for excitations in the field at a peak intensity of
15× 1014 W/cm2. See text for details.

integration was included.
In Fig. 3 the excitation thresholds of He+ (40.8 eV)

and Ne+ (27.0 eV) in the field-free case are marked by the
vertical solid lines, while the vertical dotted lines mark
the corresponding thresholds for excitations in the field
at a peak intensity of 15 × 1014 W/cm2 when the re-
turning electron approaches the parent ion at the time
t = 290◦/ω. It should be emphasized that, as an as-
sumption, the electric field at the moment of recollision
does not affect the energies of any bound states. The
change of threshold only means that the minimum en-
ergy required for the returning electron to promote the
ground-state electron to the excited state is reduced due
to the lower potential barrier caused by the electric field.
We use the BSR method [21, 22] to calculate the TCSs

for ionization and excitation of He+ and Ne+ by electron
impact. The results are plotted in Fig. 4. The details
of the R-matrix calculations for electron impact ioniza-
tion and excitation of He+ were given in our previous
paper [15], and the ideas for Ne+ are similar. With
a large number of pseudostates included in the close-
coupling expansion, the numerical results obtained here
can be considered converged to an overall accuracy of
a few percent or even better. It should be noted that
for laser-induced collisions of the returning electron with
the parent ion, only singlet scattering occurs for both
cases. This is due to the fact that the returning electron
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FIG. 4: Total cross sections for electron impact ionization
(blue dotted curves) and excitation (red broken curves) of (a)
He+ and (b) Ne+ in the ground state, respectively. The black
curves represent the summed total cross sections for ionization
and excitation. For He+, only the singlet total cross sections
are presented for both excitation and ionization. The arrows
mark the maximum energies of the returning electron.

is initially in the ground state, a singlet spin state, and
that the total spin is preserved during the collision in our
nonrelativistic models. The singlet TCSs for e-He+ colli-
sions are shown in Fig. 4, while only spin-averaged TCSs
from prior calculations are currently available for e-Ne+

collisions. However, due to the uncertainty of the laser
intensity distributions in the gas cell and the steep vari-
ation of the NSDI yields with peak laser intensity, it is
not expected that the sensitivity of the comparison with
theory is large enough to justify the computational effort
needed to (re)generate TCSs for the singlet spin channels
only. In the future, if correlated two-dimensional mo-
mentum distributions of the two electrons are available
experimentally for the 400 nm laser pulses, then such a
calculation will be justified. For electron impact excita-
tion of Ne+, the TCSs include combined excitations to 12
excited states from 2s2p6 to 2s22p45f. Based on the n−3

scaling law, the excitations to higher states can safely be
neglected.

For the current purpose, the highest laser intensities
are 2.8× 1015 W/cm2 and 2.0× 1015 W/cm2 for He and
Ne, respectively. The arrows in Fig. 4 mark the corre-
sponding maximum returning electron energies of 127 eV
and 96 eV, respectively. The figure shows that the sum of
the singlet TCSs for He is about half of the spin-averaged
one for Ne, although the individual TCSs for He were al-
ready increased by about a factor of 2 when the spin
conservation was accounted for [15, 36]. For the energy
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FIG. 5: Double ionization yields for Ne exposed to linearly
polarized laser pulses at 400 nm. The experimental data are
taken from Ekanayake et al. [35], and the simulated results
from the QRS model are normalized for good visual agreement
with experiment. The calculations include the integration
over the focal volume of the laser.

range considered here, excitation dominates ionization
for both He+ and Ne+.

With the obtained RWPs and TCSs, the calculation
for the total yield of NSDI is straightforward by per-
forming the integration in Eq. (28), in which both the
focal-volume averaging and the change of the thresholds
due to the presence of the electric field at the time of re-
scattering are taken into account. The simulated NSDI
yields for Ne are plotted as a function of intensity in
Fig. 5. Recall that, to fit the experimental measurements
of Ekanayake et al. [35], a normalization factor is used in
Fig. 2. After normalization, similar to the total single
ionization rate shown in Fig. 2, the normalized numeri-
cal results for NSDI of Ne are again in good accord with
experiment.

Experimentally, absolute single-ionization or double-
ionization yields can currently not be accurately deter-
mined. However, the ratio of double to single ioniza-
tion from a given experiment can be more definitely ob-
tained. In theoretical calculations, strong-field double
and single ionization can be calculated by solving the
many-electron TDSE directly. However, such calcula-
tions are extremely difficult for Ti-Sapphire and mid-
infrared wavelength lasers even for the two-electron he-
lium target. By going to about 400 nm lasers, converged
TDSE calculations appear possible. It would be compu-
tationally expensive, however, to account for the volume
integration, since the latter requires the calculations be
carried out over many intensities. Thus it is desirable
to develop theoretical models for single and double ion-
ization, by which absolute yields can be calculated accu-
rately, while the ratios of double to single ionization can
be compared directly to experiments. The calculations
should also be relatively fast, so that volume integration
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FIG. 6: Comparison of energy spectra between the QRS and
TDSE calculations for high-order above-threshold ionization
of (a) He exposed to a 390 nm laser pulse at a peak intensity
of 8.0×1014 W/cm2, and (b) Ne exposed to a 400 nm laser
pulse at a peak intensity of 9.6×1014 W/cm2, respectively.
All calculations were performed for 5-cycle pulses at a single
intensity without focal-volume integration.

can be accounted for.
For single ionization in strong fields, TDSE calcula-

tions within the single electron model as described in
Section II.B can be readily calculated. Single ioniza-
tion can also be calculated using the SFA1 model. Even
though SFA1 does not give accurate absolute ionization
probabilities, it does provide an accurate intensity depen-
dence. By comparing TDSE and SFA1 results, therefore,
the normalization factor for single ionization is readily
obtained.
To obtain absolute double ionization yields, on the

other hand, there are generally no TDSE results avail-
able to calibrate a model for any target, and particularly
in the nonsequential double-ionization intensity regime.
It is well established, however, that in the NDSI inten-
sity regime, double ionization proceeds through electron
impact excitation and ionization of the target ion by the
returning rescattering electrons. In the QRS theory, the
returning electrons are represented by the RWP, which is
also responsible for the emission of HATI electrons and
HHG. Both HATI and HHG processes are primarily one-
electron processes, and hence they can be calculated by
solving the one-electron TDSE, as well as by using the
SFA2. As explained in Section II.C, however, in SFA2
the cross sections for electron collisions are calculated
using the first-order Born approximation. The latter is
well known to be inaccurate at lower energies. On the
other hand, the RWP is dominated by the intense laser
field, once the electron is removed from the parent atom.
It has been demonstrated that the RWP has the correct
energy dependence and is fairly independent of the target
for a given laser pulse. Thus one can obtain the RWP
correctly, except for a normalization factor. Within the
QRS model, the RWPs for HATI electrons and for NSDI
are the same. They differ only by HATI being due to
elastic scattering while NSDI is an inelastic scattering
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process. The former can be accurately calculated within
a one-electron model while the latter requires many-body
calculations. According to the QRS theory, both of these
calculations are needed for electron scattering without
the laser field. Then the RWP can be extracted from
SFA2. By replacing the HATI spectrum obtained from
the QRS theory with the one calculated by solving the
TDSE, the normalization factor can be obtained. In
Fig. 6, we compare the high-energy photoelectron spec-
tra from TDSE and QRS. With an appropriately cho-
sen normalization factor, the HATI energy spectra above
4Up due to elastic rescattering of the returning electron
with the parent ion, as obtained from the QRS simula-
tions, are in very good agreement with the TDSE results
for both He and Ne.

With all the above ingredients carefully prepared, we
are finally able to obtain the ratio between double and
single ionization. Figure 7 shows the ratio between dou-
ble and single ionization of He in a 120 fs pulse with a
wavelength of 390 nm and Ne in a 40 fs pulse with a wave-
length of 400 nm, respectively. In panel 7(a), the mea-
sured intensities are multiplied by 1.5, as suggested by
Parker et al. [20]. With the shift of the measured intensi-
ties, the present QRS simulations are in excellent agree-
ment with the experimental data of Sheehy et al. [34] as
well as with the TDSE calculations of Parker et al. [20]
for almost the entire intensity range, with the exception
being intensities below 5.0× 1014 W/cm2. At these very
low intensities, double ionization and the ratios are rel-
atively small. We believe that noise in the experiment
and convergence problems in the TDSE calculations are
the most likely the reasons for the discrepancies between
those results and the QRS predictions. The calculations
of van der Hart and Burnett [32] are also based on their
version of the rescattering model. Their predicted ratios
exhibit a similar intensity dependence but are shifted to
higher intensities.

In Fig. 7(b), the experimental data for the double-
to-single ionization ratio of Ne were deduced from the
total ionization yields of Ne2+ and Ne+ measured by
Ekanayake et al. [35]. Again, the QRS simulations are in
very good agreement with experiment. The good agree-
ment owes much to the use of accurate electron impact
excitation and ionization cross sections calculated with
the BSR method. With 400 nm lasers, the returning elec-
tron energies are relatively small, and hence thus many-
body calculations are essential. In the actual numerical
calculations, shorter laser pulses (65 fs for He and 40 fs
for Ne, respectively) than those in the experiments were
used, since the ratios of the total ionization yields are not
expected to depend significantly on the duration of the
laser pulses.

It is interesting to note from Fig. 7 that the intensity
dependence of the measured double-to-single ionization
ratio of He is rather different from that of Ne. While the
ratio for He changes by approximately a factor of 200
over the measured intensity range, the ratio for Ne only
changes by a factor of less than 35. The larger ratio for
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FIG. 7: Ratio between double and single ionization as a func-
tion of intensity for (a) He in a 120 fs pulse with a wavelength
of 390 nm, and (b) Ne in a 40 fs pulse with a wavelength of
400 nm. In (a), the present simulations are compared with
the experimental data of Sheehy et al. [34], the TDSE calcu-
lations of Parker et al. [20], and the calculations of van der
Hart and Burnett [32] based on the rescattering model. All
experimental data points were shifted to higher intensity by
50%, as suggested by Parker et al. [20]. In (b), the present re-
sults are compared with the experimental data of Ekanayake
et al. [35].

Ne is due to the larger returning electron wave packets
for Ne in the same intensity range when compared to He.
Figure 4 shows that the excitation and ionization cross
sections between Ne+ and He+ differ by about a factor
of two, but Fig. 6 shows that the probability density for
HATI electrons at the same electron energy is one to two
orders larger for Ne when compared to He.

IV. CONCLUSIONS

Using the QRS model, we have performed numerical
simulations for the double to single ionization ratios of He
and Ne exposed to laser pulses at 390 nm and 400 nm,
respectively. Since the returning electron wave packet
is usually obtained from the strong-field approximation
(SFA2), an overall normalization factor has to be de-
termined. According to the rescattering model, the re-
turning electron wave packets for HATI electrons and
for NSDI processes are the same, and hence the correct
returning electron wave packet can be extracted from
solving the TDSE for HATI electrons using the one-
electron model. By comparing the returning electron
wave packets obtained from TDSE and SFA2, an over-
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all renormalization factor is obtained. Once this factor is
determined, the QRS theory can be applied to NSDI pro-
cesses using accurate electron impact excitation and ion-
ization cross sections from method such as BSR, where
many-electron effects are properly accounted for. Tak-
ing advantage of the simplicity of the QRS theory, single
and double ionization yields can be calculated by includ-
ing the intensity distributions of the focused laser beam.
The resulting ratios calculated with these procedures are
then compared to experimental data. The present results
were found to be in very good agreement with experiment
for both He and Ne, thereby validating the QRS model
for calculating nonsequential double ionization, provided
that accurate electron impact excitation and ionization
cross sections are available.
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