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The discrete Efimov scaling behavior, well-known in the low-energy spectrum of three-body bound
systems for large scattering lengths (unitary limit), is identified in the energy dependence of atom-
molecule elastic cross-section in mass imbalanced systems. That happens in the collision of a heavy
atom with mass mpy with a weakly-bound dimer formed by the heavy atom and a lighter one with
mass my, < myg. Approaching the heavy-light unitary limit the s—wave elastic cross-section o will
present a sequence of zeros/minima at collision energies following closely the Efimov geometrical
law. Our results, obtained with Faddeev calculations and supplemented by a Born-Oppenheimer
analysis, open a new perspective to detect the discrete scaling behavior from low-energy scattering
data, which is timely in view of the ongoing experiments with ultra-cold binary mixtures having
strong mass asymmetries, such as Lithium and Caesium or Lithium and Ytterbium.

The Efimov effect [1] refers to a discrete scaling sym-
metry, which emerges in the quantum three-body sys-
tem at the unitary limit (when the two-body scatter-
ing lengths diverge). The optimal condition to observe
this discrete scaling symmetry in cold atomic laborato-
ries is now found for heteronuclear three-atom systems
with large mass asymmetry and large interspecies scat-
tering lengths. In the Efimov (unitary) limit, the shallow
three-body levels are geometrically spaced, namely the
ratio between the binding energies of the n and n + 1
levels is given by B /B{"™) = exp (2r/s0), where sg
is a universal constant, which depends only on the mass
ratio and not on the details of the interaction. The en-
ergy ratio for three identical bosons is exp (27/sg) =~ 515,
decreasing for the case of two heavy particles and a light
one. When my/myg = 0.01, for example, the value of
this energy ratio goes to exp (27/so) = 4.698 [2].

The Efimov geometric discrete scaling has been studied
with mass-imbalanced cold-atom mixtures with Caesium
and Lithium, in experimental and theoretical works [3-5].
The ratio between the positions of two successive peaks in
the three-body recombination rate, measured by varying
the large negative scattering lengths (agr,), was found in
close agreement with the theory [3]. Complementary to
this finding, what should be the fingerprint of the Efimov
scaling in the s—wave ultra-cold atom-molecule cross-
section, if one varies the incident momentum energy k
instead of the scattering lengths? What to expect? Is it
beyond the trimer crossing the corresponding continuum,
which creates the resonant enhancement of the inelastic
collisions of Caesium atoms with Caesium dimers as ob-
served [6], or not?

Furthermore, there is an evident strong interest in
ultra-cold heteronuclear atom-molecule collisions by ex-
perimental groups [7—10]. Trap setups with ultra-cold de-
generated mixtures of alkali-metal-rare-earth molecules

with strong mass-imbalanced systems as Ytterbium and
Lithium (1"'"Yb—SLi) have also been reported in
Refs. [11, 12]. We should mention that on the theory
side [13], reactions at ultra-cold temperatures with three-
body systems such as SLi + '"YDbOLi were also inves-
tigated. Therefore, the present possibilities to manip-
ulate collisions with Lithium(Li)-Caesium(Cs) [14] and
Ytterbium-Lithium [11, 12], as well as the molecules of
LiCs and LiYb in ultra-cold experimental setups [15],
open new opportunities to probe the discrete Efimov scal-
ing with large mass asymmetries. This can be achieved
by using low-energy collisions of a heavy atom, such as
Caesium or Ytterbium, in the weakly-bound molecules
as LiCs or LiYb, with my/my =0.045 and 0.034, re-
spectively. We should add that in the present context it
may be quite relevant to extend the experimental tech-
nique used in Ref. [16] (for mononuclear systems) to ob-
serve Efimov trimers close to the atom-dimer threshold
to strongly mass imbalanced atomic mixtures.

Going back in time, what was known theoretically from
the pioneer works for the tri-nucleon systems [17-20],
was the existence of a pole in the spin doublet s—wave
neutron-deuteron k cot §p, which was associated with a
virtual state in the tri-nucleon system. Furthermore,
such pole is also present in the neutron-'°C scatter-
ing [21-23], with a corresponding pronounced minimum
of the s—wave elastic cross-section. As it is well-known
that the geometrical scaling factor can decrease consid-
erably for systems with two heavy (H) and one light (L)
particles, by extending the above investigation, our aim
was to reply some relevant questions related to manifes-
tation of Efimov physics at the scattering region, which
can well be explored with the present experimental fa-
cilities. By considering collision of two condensates, the
energy dependence of the three-body recombination rate
was investigated in Ref. [24], with log-periodic oscilla-



tions been pointed out in the case of Cs-Cs-Li. Within
our present approach, we are further investigating this
property, by considering elastic scattering observables as
cross-sections and scattering lengths, going to extreme
limiting mass-imbalanced cases of H—(HL) atom-dimer
collisions, where the dimer is weakly bound and the col-
lision energy is also close to the threshold. By going to
such limits, the expectation is to explore the singular
behavior of kcotd, which is associated to zeros of the
corresponding cross-section due to the log-periodic oscil-
lations of such observable.

As shown in the present work, considering the extreme
mass imbalanced case for the H — (HL) collision, a se-
quence of minima in the s—wave elastic cross-sections
(poles in the kcot dp) was found, for large values of agp,
near the unitary limit. Further, this sequence is found
to follow the same log-periodic behavior corresponding
to the Efimov bound-state spectrum. This has not being
pointed out before (as far we know) in the vast litera-
ture on the Efimov phenomena, because one should go
to extreme H L mass ratios in order to confirm that the
emergent scaling factor corresponds directly to the same
bound-state three-body spectrum. As we are pointing
out, one cannot verify more than one minima in the cross
section if the mass ratio my/my is of the order or larger
than 0.1, with a second minima emerging when this ratio
is about 0.08. Therefore, our present results are quite
consistent with the up to three log-periodic oscillations
obtained for the '*3Cs+'33Cs+"Li three-body recombi-
nation [24], as in such a case we have mp/mg ~ 0.053.
This behavior can better be verified from the systematic
study we have performed, where the emergent scaling
factor obtained for scattering observables is confirmed to
be close to the same one obtained in the corresponding
Efimov spectrum. Physically, we can understand that
from the characteristic log-periodic behavior carried out
by the wave-function when the Efimov long-range poten-
tial is dominant, being reflected in the colliding energy
ratios where we have the minima for the cross-section.

We should remind that zeros or minima in scattering
cross sections, actually can be considered as manifesta-
tions of the Ramsauer-Townsend effect [25]. This kind of
effect was discovered by the occurrence of minima in the
scattering cross-section of electrons from atoms of a noble
gas at some small value of the electron energy [26]. On
this regard, see Ref. [27], as well as reported experimental
observations in Refs. [28, 29]. However, a quite different
physical system is being explored in our approach, where
the zeros (minima) in the cross-section of an atom-dimer
system are associated to the log-periodic sequence of the
corresponding three-body bound-state spectrum.

For the relation between the three-body bound-state
spectrum with the minima in the s—wave elastic scatter-
ing cross section, another simple physical picture could
emerge as related to the Levinson’s theorem [30], when
considering an effective two-body system. This theorem,

derived for the nonrelativistic quantum scattering theory,
stablished a relation between the total number of bound
states n with the energy-dependent scattering phase-shift
d(E) (at a given partial wave), such that for the s—wave
we have dp(0) — dp(c0) = (n + 1/2)w. Together with the
fact that dp(c0) = 0, it is tempting to associate the num-
ber of zeros in the corresponding elastic cross-section to
the number of bound states for the given effective poten-
tial of the atom-dimer scattering.

In our approach, we compute the s—wave phase-shifts
by using the three-body Faddeev formalism with zero-
and short-ranged interactions, as well as by considering
the Born-Oppenheimer (BO) approximation [31]. The
real part of the s—wave phase shift (dy) shows zeros and
k cot dp has a sequence of poles at colliding energies which
tend to follow the Efimov geometric scaling.

The BO approximation applied to the H—(H L) system
provides a universal long-range attractive 1/R? effective
potential (R is the relative H — H distance) close to the
unitary limit, which acts up to distances ~ |agyr|, as
shown in Ref. [31]. At short distances, the BO potential
brings the details of the finite range pairwise potentials
expressed as a boundary condition at Ry << |agyr| that
determines the reference energy Bs. The eigenstates of
the H — H effective hamiltonian has the characteristic
log-periodic solutions for Ry < R < |agr|, which leads
to the geometrical ratio between the binding energies and
also to the log-periodic properties of s—wave scattering
observables. We extend the procedure used in [31] to
the scattering region, considering the collision of a heavy
particle in the weakly-bound subsystem of the remaining
ones. This approach (see also [32]) was used to interpret
the results obtained with Faddeev calculations for the
renormalized zero-range model [33], as well as for the
Gaussian finite-range interactions.

To simplify our study, we assume no interaction be-
tween the heavy particles and that the heavy-light
molecule (HL) has a weakly-bound energy Bs. When
By — 0 the three-body Efimov levels are given by
Bén) — e~ @n7/50) By where By = Béo) is the ground
state binding energy of the models we use in our ap-
proaches to obtain the s—wave cross-sections.

We start our analysis by introducing a scaling func-
tion for the dimensionless product of the s—wave cross-
section and energy. With Bs and Bs as the scales of the
HHL system and FE the colliding energy at the three-
body center-of-mass, this function can be written as

0Bs =S (E/Bs,By/Bs, A), (1)

where A = myp/my. This is strictly valid at the zero-
range limit where By = 1/(2ugra%; ), with ugy being
the reduced mass for the H L subsystem. Here and in the
next, the units are such that ~ =1 and my = 1.

The scaling function for A = 0.01 is shown in Fig. 1
for the renormalized zero-range model [22] and for the
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FIG. 1: The s—wave cross-section is shown as a function of
the energy-collision E, for zero-ranged (ZR) (blue-solid lines)
and finite-ranged Gaussian (G) (red-dashed lines) potentials,
for fixed mass ratio A = 0.01 and given two-body energies
(Bf is a factor smaller than BZ to keep both results close
to the unitary limit). Results are in units of Bs.

Gaussian potential model calculated with the method
developed in Ref. [34], which was extended to energies
above the breakup threshold in Ref. [35]. The Gaussian
potential with r¢ being the interaction range is given by

V(r)=Vye /", (2)

where we have used app/ro = 50 and By/Bs = 0.0012.

Noticeable are the minima of the s—wave cross-section,
at energy positions where k cot dy has poles. We observe
that positions of such poles tend to obey the Efimov law
for (kagr)™* — 0. Between the zeros, there is a se-
quence of maxima for the cross-section where the phase-
shift passes through (2n + 1)7/2, as seen in Fig. 1. It is
tempting to associate the maxima obtained for the cross-
section with resonances; however, a calculation by using
the complex scaling method [36] for the Gaussian poten-
tial, excludes that. These results are also corroborating
the conclusions of [21, 23] for the neutron-!?C system,
where no resonance is found when changing the neutron
separation energy in 1°C.

By considering different mass-ratios, with A =
my/myg varying from 0.01 till 0.08, our results for the
cross-sections o (in arbitrary units) are presented in
Fig. 2 for three fixed weakly-bound two-body energies
By /B3 =0.01, 0.03 and 0.05. In the given eight panels
we are presenting o as a function of F/Bs. From these
panels, one can notice a sequence of zeros (or minima)
appearing for ¢ as we decrease the mass ratio A, for a
fixed interval of the colliding energy, such that E/Bs < 1.
Within the intervals for A shown in Fig. 2, by examin-
ing the case with By/Bs =0.01, one should noticed that,
for the less-pronounced mass-imbalance case, A = 0.08,
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FIG. 2: The zero-ranged results for o (in arbitrary units) as
functions of FE/Bjs are given in eight panels, with mass-ratios
A = mr/mp as shown inside the frames. In all the panels
the two-body energies are fixed such that By/Bs =0.01 (solid-
blue lines), 0.03 (dot-dashed-red lines) and 0.05 (dashed-black
lines).

we have the occurrence of only one zero for o within the
given energy range, whereas for A = 0.01 it is possible to
verify the existence of up to five zeros. (In more detail,
this number goes to seven, when considering the energy
interval shown in Fig. 1). Also, as indicated by the curva-
ture behavior, we noticed that a second minimum should
appear in A ~0.08 for an energy much close to zero, as
well as a third minimum in case of A close to 0.04.

Therefore, the large mass asymmetry (A << 1) is more
favorable for the occurrence of several zeros/minima in
o. In order to verify the emergence of a possible scaling
factor between the position of successive zeros/minima
in the s—wave cross-section, in correspondence with the
Efimov bound-state spectrum, one should be able to ex-
trapolate the two-body bound-state energies to the uni-
tary limit (i.e., to Bz = 0).

Corresponding to the upper-left panel of Fig. 2, when
Bs/Bs = 0.01 and A=0.01, we also have Fig. 1 where
E/B;s was extended up to 1, which showed that it is
possible to observe another minimum in o for a collision
energies much larger than the breakup threshold. As
we can observe, in this case, the value of the minimum
in o is affected by absorption, an expected behavior for
energies above the break-up threshold. Therefore, o is
not being reduced to zero, but have just a minimum, with
the value of the energy FE also being deviated slightly to



the right as Bj is increased in Fig. 2. The ratio between
the energy position of the successive zeros is about the
Efimov geometric factor as one can easily check (we will
explore such feature in a systematic way later on), and
as one could expect it should be distorted by absorption
effects, but far away from the breakup threshold.

It is noticeable to find minima of the cross-section for
E >> B; and quite deeply immersed in the three-body
continuum, where still the s—wave inelasticity parame-
ter is very close to unity. This astonishing suppression of
the breakup channel for energies of about two orders of
magnitude the two-body binding is a manifestation of the
long-range coherence between the heavy and light parti-
cles and the associated diluteness of the target, making
it hard to destroy the system, where the light particle
binds with any one of the heavy particles and the dy-
namics is dominated only by the exchange of the light
particle between the two heavy ones. The H L molecule
becomes invisible to the collision of the heavy one. Semi-
classically, the possibility of the destructive interference
between the direct trajectory and the one from the ex-
change process gives the zeros of the phase-shift.

The fact that the breakup chanmnel is suppressed is
closely related to the non-existence of resonances. In the
adiabatic hyper-spherical representation of this mass im-
balanced three-body system, it happens that the coupling
between the lowest adiabatic channel, which asymptoti-
cally goes to the atom-dimer channel, with the breakup
channels is weak (see e.g. [35]). In addition, asymp-
totically the lowest adiabatic hyper-spherical potential
is attractive, while the breakup channels have a barrier
around p ~ |agr|. Indeed, in the case of Borromean sys-
tems, such barrier makes the Efimov turn to a continuum
resonance when |ag | is decreased [37].

We summarize the findings presented in figures 1 and 2
as: (i) the number of minima of the s—wave cross-section
decreases significantly when A and the Efimov ratio in-
creases, and (ii) more minima are seen when By/Bs de-
creases. Particularly, with respect to the second point,
we found that the zeros of the cross-section are coming
out from the scattering threshold and the H — (H L) scat-
tering length passes through zero values when By/Bs is
driven towards the more favorable condition for the Efi-
mov effect. That is the counterpart of the unitary limit
where virtual states come from the second energy sheet
to become bound states. In the continuum region, ze-
ros and maxima of the cross-section come one by one
as Ba/Bs — 0, which completes the final picture of the
Efimov limit including the scattering region.

The manifestation of the Efimov discrete scaling in the
atom-molecule collision can be systematically studied by
the ratio between the energies of successive zeros/minima
as a function of the mass ratio and a dimensionless ratio
between two and three-body scales as follows. For that, a
scaling function is introduced relating the energies of two
adjacent minima obtained for the cross-section o. Within

a convention that F, 1 > F,, this function is given by
EnJrl/En =R (1/(E711/+21 aHL); A) ) (3)

where R (0, A) = e>™/%0 is the unitary limit.
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FIG. 3: Ratio between the energy positions of the succes-
sive zeros (n + 1,n) of the cross-section o plotted versus

1/(E71/+21 apr) for mass-ratio A = 0.01. The results obtained
from Faddeev calculations with renormalized zero-range (ZR)
model, for given two-body energies, are indicated inside the
frame.The straight dashed line indicates the Efimov limit
for A = 0.01.The solid-line with dots shows the results ob-
tained from Faddeev calculations with the Gaussian poten-
tial (2). The Born-Oppenheimer (B-O) results (connected by
a dashed-blue line) are shown for three boundary conditions.

The universal scaling function (3) is shown in Fig. 3
for the extreme case A = 0.01, calculated with the Gaus-
sian and zero range potentials. The curious behavior
of the scaling function around the Efimov ratio, indi-
cated by the horizontal dashed line, by departing from
the unitary limit decreases, has a minimum and then in-
creases, namely the zeros more distant. Note that we
have plotted results for the renormalized zero-range po-
tential with different Bo and scattering lengths, ranging
from 0.001 < By/Bs < 0.05. With the Gaussian po-
tentials, within our numerical accuracy, we were able to
approach more closely the Efimov limit. However, when
going to smaller values of 1/ (E,ll/f1 agr), we stand above
the breakup threshold and evidently the coupling to the
breakup channel affects the ratio, as the figure suggests.

The curious behavior of the ratio, namely when start-
ing from smaller to larger collision energies it is first
above the Efimov geometrical factor then it decreases
and increases again towards it, can be qualitatively un-
derstood by considering the collision within the BO ap-
proximation. In this case, the effective H — H long-range
potential is supplemented by a boundary condition at
some short distance R, with the continuity of the log-
arithmic derivative of the wave-function u(R) imposed



at R = agyp. In our illustration, the elastic scatter-
ing S-matrix is found from the boundary condition at
R = ayy. To make our point clear, we assume no two-
body H — H potential; and, we expand the effective BO
potential [31], where the leading-order term is ~ 1/R?,
and we also consider the effect of the next order term,
implying in the inclusion of a Coulomb-like 1/R interac-
tion. Therefore, as one can extract from the expansion
of the potential presented in [31], we have the following
effective two-body equation for the collision of the heavy
particle H with relative momentum k with respect to the
HL dimer:

dR2? R2

2 si+ 3 ( R
GHI

)} u(R) = Ku(R), (4)

where g(y) = 1+ 2y +2.07y?, such that the leading term
in the interaction, — (s 4+ 1/4) /R?, provides the Efimov
limit. The wave number is related to the collision energy
by k= \/2,UfH,HLEa where HHHL = mH(l +A)/(2+A)
The expansion for g(y) is found by requiring an approxi-
mation of the BO potential valid not only for R < ayp,
but also for R/apgy, ~ 1. With this approximation, the
Coulomb-like correction —2 (s% + 1/4) /(agR) is added
to the Efimov term, as well as a constant which is negli-
gible for larger scattering lengths. As shown by [31], in
case of negative-energies we can obtain exact solutions
for the Eq. (4), given by Bessel functions in case we con-
sider the leading term 1/R? for the interaction. In the
present extension to scattering energies, we can also ver-
ify analytical solutions for the Eq. (4), which are given
by Whittaker functions. This eigenvalue equation has
no lower bound energy, namely, the Thomas collapse is
present, which requires a short-range scale imposed by a
boundary condition at R = Ry < agr. In what follows,
a hard wall will be used, and from the boundary condi-
tion at R = agp the phase-shift is finally obtained. In
this way, the log-periodicity of the s—wave phase-shift
with the energy is only deformed by the presence of the
1/R contribution.

As a result, if the BO potential in Eq. (4) is given
only by the Efimov term, the ratio (not plotted in Fig. 3)
would approach the Efimov limit monotonically from
above when decreasing 1/ (E}lfl agr). The minimum ob-
served in the BO results (dashed-blue curve in Fig. 3)
comes from the Coulomb-like correction. As shown by
using different values for the position of the hard wall at
short distances, there are no significative range correc-
tions. Therefore, we note that the first two terms of the
BO potential are quite relevant to provide a qualitative
description of the scaling function. This approximation is
working surprisingly well in particular for large values of
E,llf 1 @H 1, when approaching the Efimov limit, consider-
ing that in this limit the coupling to the breakup channel
(which is not being taken into account) is expected to be

1/2 .
relevant. For smaller values of En/+1 agr the expansion

of the BO potential starts to breakdown due to its poor
efficacy when decreasing the collision energy, with the
wavelength being of the order of the scattering length.

Practical implications. The poles of k cot dy, which cor-
respond to the zeros/minima of the s—wave cross section,
are directly connected with the Efimov spectrum of the
heavy-heavy-light (H H L) system near the unitary limit.
This is shown by considering a mass-imbalanced system
A << 1 with no interaction between the two-heavy par-
ticles and with the heavy-light sub-system bound with
energy close to zero (near unitary limit). In view of
the consistency of the results obtained in the present
work with a picture based on the Levinson’s theorem,
which relates the number of zeros in the s—wave scatter-
ing length with the number of bound states, for a given
effective two-body potential, an interesting perspective
to be worked out is to further explore analytically this
theorem in the context of atom-dimer systems. Other
aspects of interest to be more deeply investigated, which
could impact in the accuracy of the predicted minima,
are related to higher partial-wave contributions to the
cross-sections, as well as possible effects due to existence
of deeply molecular bound-states.

With respect to actual experimental realizations in ul-
tracold atomic gases, to observe effects of the zeros (or
minima) in the cross-sections a possibility is to study the
two-condensate collision, as following a suggestion given
in Ref. [24]. In the present case, the colliding condensate
is formed by the single heavy particle, whereas the target
is the heavy-light dimer condensate.

As we have pointed out, the observation of a sequence
of zeros in the cross section can only be verified for quite
large mass ratios, such that the main focus for recent
ultracold atomic experiments are binary condensed sys-
tems combining atomic species such as Li, Yb or Rb. By
considering the mass ratio between Li and Yb, A =0.034,
the cross-section for the Yb + LiYD collision can in prin-
ciple present a couple of zeros. We can imagine a sit-
uation where ayp_1,; is adjusted at some large positive
values, with the colliding energy being varied slowly. In
this case, o should present minima at some specific col-
liding energies, whose positions are approximately geo-
metrically spaced. In conclusion, we suggest as the best
possible situation to probe the Efimov discrete scaling in
the continuum to consider the atom-molecule scattering
with large mass asymmetry through cold collisions, which
are now feasible [14]. The challenge in these experiments
would be to control the scattering length towards the
large values and then observe the cross-section minima
at geometrically spaced colliding energies.
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