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In this work, we present a method to exponentiate non-sparse indefinite low-rank matrices on a quantum

computer. Given access to the elements of the matrix, our method allows to determine the singular values and

their associated singular vectors in time exponentially faster in the dimension of the matrix than known classical

algorithms. The method extends to non-Hermitian and non-square matrices via matrix embedding. Moreover,

our method preserves the phase relations between the singular spaces allowing for efficient algorithms that

require operating on the entire singular value decomposition of a matrix. As an example of such an algorithm,

we discuss the Procrustes problem of finding a closest isometry to a given matrix.

Matrix computations are central to many algorithms in op-

timization and machine learning [1–3]. At the heart of these

algorithms regularly lies an eigenvalue or a singular value de-

composition of a matrix, or a matrix inversion. Such tasks

could be performed efficiently via phase estimation on a uni-

versal quantum computer [4], as long as the matrix can be sim-

ulated (exponentiated) efficiently and controllably as a Hamil-

tonian acting on a quantum state. Ref. [5] paved the way for

such a simulation of quantum systems by introducing an ef-

ficient algorithm for exponentiating Hamiltonians with tensor

product structure—enabling applications such as in quantum

computing for quantum chemistry [6]. Step by step, more gen-

eral types of quantum systems were tackled and performance

was increased: Aharonov and Ta-Shma [7] showed a method

for simulating quantum systems described by sparse Hamilto-

nians, while Childs et al. [8] demonstrated the simulation of

a quantum walk on a sparse graph. Berry et al. [9] reduced

the temporal scaling to approximately linear via higher-order

Suzuki integrators and further improvements in the sparsity

scaling were presented in Ref. [10]. Beyond sparse Hamil-

tonians, quantum principal component analysis (qPCA) was

shown to be capable of efficiently handling non-sparse posi-

tive semidefinite low-rank Hamiltonians [11] given multiple

copies (or samples) of the Hamiltonian as a quantum density

matrix, as opposed to the requirement of quantum oracles as

in the works before. This method offers applications in quan-

tum process tomography and state discrimination [11], as well

as in quantum machine learning [12–18], specifically in curve

fitting [19] and support vector machines [20]. In an oracu-

lar setting, Refs. [10, 21, 22] showed the simulation of non-

sparse Hamiltonians via discrete quantum walks. The scaling

in terms of the simulated time t is t3/2 or even linear in t.
In the spirit of Ref. [11], we provide an alternative method

for efficiently simulating non-sparse matrices in an oracular

setting that requires only one-sparse simulation techniques.

Compared to Ref. [11], the matrices are not restricted to be

positive semidefinite and the samples required are simple uni-

form superpositions instead of the actual Hamiltonian. We
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achieve a run time in terms of the matrix maximum element

and a t2 scaling, and discuss a class of low-rank matrices

which can be efficiently simulated.

In order to effectively treat a general non-Hermitian non-

quadratic matrix, we make use of an indefinite “extended Her-

mitian matrix” that incorporates the original matrix. With

such an extended matrix, we are able to efficiently determine

the singular value decomposition of dense non-square, low-

rank matrices. As one possible application of our method, we

discuss the Procrustes problem [1] of finding a closest isomet-

ric matrix.

Method.− We have been given an N × N dense (non-

sparse) Hermitian indefinite matrix A ∈ CN×N via efficient

oracle access to the elements of A. For the more general case

of non-Hermitian matrices, see the section “non-square ma-

trices” below. The oracle either performs an efficient compu-

tation of the matrix elements or provides access to a storage

medium for the elements such as quantum RAM [23, 24]. Our

new method simulates e−i (A/N) t on an arbitrary quantum

state for arbitrary times t. Note that the eigenvalues of A/N
are bounded by ±‖A‖max, where ‖A‖max = maxmn |Amn|
denotes the maximal absolute value of the matrix elements of

A. This means that there exist matrices A for which the uni-

tary e−i (A/N) t can be far from the identity operator for a time

of order ‖A‖−1
max, i.e. an initial state can evolve to a perfectly

distinguishable state. For such times, the unitary e−i (A/N) t

can be well approximated by a unitary generated by a low-

rank matrix.

Let σ and ρ beN -dimensional density matrices. The state σ
is the target state on which the matrix exponential of A/N is

applied to, while multiple copies of ρ are used as ancillary

states. Our method embeds the N2 elements of A into a Her-

mitian sparse matrix SA ∈ CN2×N2

, which we call “modified

swap matrix” because of its close relation to the usual swap

matrix, but with each column of SA containing a single ele-

ment of A. The modified swap matrix between the registers

for a single copy of ρ and σ is defined as

SA =

N
∑

j,k=1

Ajk |k〉〈j| ⊗ |j〉〈k| ∈ C
N2×N2

. (1)

This matrix is one-sparse in a quadratically bigger space

and reduces to the usual swap matrix for Ajk = 1 and
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j, k = 1, . . . , N . Given efficient oracle access to the elements,

we can simulate a one-sparse matrix such as SA with a con-

stant number of oracle calls and negligible error [7–9, 25]. We

discuss the oracle access below in section “matrix oracle and

resource requirements”. The resulting matrix exponential of

SA is applied to a tensor product of a uniform superposition

and an arbitrary state. Performing SA for small ∆t leads to

a reduced dynamics of σ when expanded to terms of second

order in ∆t as

tr1{e−iSA∆t ρ⊗ σ eiSA∆t} = (2)

σ − i tr1{SA ρ⊗ σ}∆t + i tr1{ρ⊗ σ SA}∆t+O(∆t2).

Here, tr1 denotes the partial trace over the first regis-

ter containing ρ. The first O(∆t) term can be rewrit-

ten as tr1{SA ρ⊗ σ} =
∑N

j,k=1 Ajk〈j|ρ|k〉|j〉〈k|σ. Choos-

ing ρ = |~1〉〈~1|, with the uniform superposition |~1〉 :=
1√
N

∑

k |k〉, leads to tr1{SA ρ⊗ σ} = A
N σ. This choice for

ρ contrasts with the qPCA method, where ρ is proportional

to the simulated matrix [11]. Analogously, the second O(∆t)
term becomes tr1{ρ ⊗ σ SA} = σ A

N . Thus for small times,

evolving with the modified swap matrix SA on the bigger sys-

tem is equivalent to evolving with A/N on the σ subsystem,

tr1{e−iSA∆t ρ⊗ σ eiSA∆t} = σ − i
∆t

N
[A, σ] +O(∆t2)

≈ e−i A
N

∆t σ ei
A
N

∆t. (3)

Let ǫ0 be the trace norm of the error term O(∆t2). We can

bound this error by ǫ0 ≤ 2 ‖A‖2max∆t
2 (see Appendix). Note

that ‖A‖max coincides with the largest absolute eigenvalue of

SA. The operation in Eq. (3) can be performed multiple times

in a forward Euler fashion using multiple copies of ρ. For n
steps, the resulting error is ǫ = n ǫ0. The simulated time is

t = n∆t. Hence, fixing ǫ and t,

n = O

(

t2

ǫ
‖A‖2max

)

(4)

steps are required to simulate e−i (A/N) t. The total run time

of our method is nTA: the number steps n is multiplied with

the matrix oracle access time TA (see sec. Matrix oracle and

resource requirements below).

We now discuss for which Hermitian matrices the algorithm

runs efficiently. At a simulation time t, only the eigenval-

ues of A/N with |λj |/N = Ω(1/t) matter. Let the num-

ber of these eigenvalues be r ≤ N . Thus, effectively a ma-

trix Ar/N is simulated,for which the following lower bound

holds: tr{A2
r/N

2} =
∑r

j=1 λ
2
j/N

2 = Ω(r/t2). It also holds

that tr{A2
r/N

2} ≤ tr{A2/N2} = ‖A‖2F/N2 ≤ ‖A‖2max,

with ‖A‖F the Frobenius norm of A. Combining the upper

and the lower bound, we find that the rank of the effectively

simulated matrix is r = O(‖A‖2maxt
2).

For the algorithm to be efficient in terms of matrix or-

acle calls, we require that the number of simulation steps

n is O(poly logN). Let the desired error be 1/ǫ =
O(poly logN). Assuming ‖A‖max = Θ(1), meaning a con-

stant independent of N , we have from Eq. (4) that we can

only exponentiate for a time t = O(poly logN). For such

times, only the large eigenvalues of A/N with |λj |/N =
Ω(1/poly logN) matter. Such eigenvalues appear if the ma-

trix is dense enough, for example A/N has Θ(N) non-zeros

of size Θ(1/N) per row. For the rank of the simulated matrix

in this case, we find that r = O(poly logN), thus effectively

a low-rank matrix is simulated. To summarize, we expect the

method to work well for low rank matrices A that are dense

with relatively small matrix elements.

A large class of matrices satisfies these criteria. Draw a ran-

dom unitary matrix U ∈ CN×N from the Haar measure and r
suitable eigenvalues of size |λj | = Θ(N) and multiply them

as U diagr(λj)U
† to construct A. Here, diagr(λj) ∈ CN×N

is the diagonal matrix with the r eigenvalues on e.g. the first

r diagonal entries and zero otherwise. The entries of a typi-

cal random normalized vector have absolute size O(1/
√
N),

and the entries of the outer product of such a vector with itself

have absolute matrix elements of size O(1/N). Each eigen-

value of absolute size Θ(N) is multiplied with such an outer

product and the r terms are summed up. Thus, a typical matrix

element of A will be of size O(
√
r) and ‖A‖max = O(r).

Phase estimation.− Phase estimation provides a gateway

from unitary simulation to many interesting applications. For

the use in phase estimation, we extend our method such that

the matrix exponentiation of A/N can be performed condi-

tioned on additional control qubits. With our method, the

eigenvalues λj/N of A/N can be both positive and negative.

The modified swap operator SA corresponding to a Hermi-

tian matrix A with eigendecomposition A =
∑

j λj |uj〉〈uj |
is augmented as |1〉〈1| ⊗ SA, which still is a one-sparse

Hermitian operator. The resulting unitary e−i |1〉〈1|⊗SA∆t =
|0〉〈0| ⊗ 1+ |1〉〈1| ⊗ e−iSA∆t is efficiently simulatable. This

operator is applied to a state |c〉〈c| ⊗ ρ ⊗ σ, where |c〉 is an

arbitrary control qubit state. Sequential application of such

controlled operations allows to use phase estimation in order

to prepare the state [25]

|φ〉 = 1
√

∑

j |βj |2
∑

|λj |/N≥ǫ

βj |uj〉|λj/N〉 (5)

from an initial state |ψ〉|0 . . . 0〉 with O(⌈log(1/ǫ)⌉) con-

trol qubits forming an eigenvalue value register. Here,

βj := 〈uj |ψ〉 and ǫ is the accuracy for resolving the eigen-

values. To achieve this accuracy, phase estimation is run for

a total time t = O(1/ǫ). Thus, O(‖A‖2max/ǫ
3) queries of the

oracle for A are required, which is of order O(poly logN)
under the low-rank assumption for A discussed above.

Matrix oracle and resource requirements.− To simulate the

modified swap matrix SA, we employ the methods developed

in Refs. [8, 9]. First, we assume quantum oracle access to the

original matrix A,

|j k〉|0 · · · 0〉 7→ |j k〉|Ajk〉. (6)

This operation can be provided by quantum random access

memory (qRAM) [23, 24] using O(N2) storage space and

quantum switches for accessing the data in TA = O(log2N)
operations. Alternatively, matrices whose elements are effi-

ciently computable have by definition TA = O(poly logN).
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The unitary operation for the simulation of the one-sparse ma-

trix SA with the sparse methods [8, 9] can be simply con-

structed from the oracle in Eq. (6) and is given by

|(j, k)〉|0 · · · 0〉 7→ |(j, k)〉|(k, j), (SA)(k,j),(j,k)〉. (7)

Here, we use (j, k) as label for the column/row index of the

modified swap matrix.

In the following, we will compare the required resources

with those of other methods for sparse and non-sparse ma-

trices: For a general N × N and s-sparse matrix, O(sN)
elements need to be stored. In certain cases, the sparse ma-

trix features more structure and its elements can be computed

efficiently [9, 25]. For non-sparse matrices and the qPCA

method [11], only multiple copies of the density matrix as

opposed to an operation as in Eq. (6) are required for appli-

cations such as state tomography. For machine learning via

qPCA [11, 20], the density matrix is prepared from a classical

source via quantum RAM [23, 24] and requires O(N2) stor-

age. In comparison, the requirements of the method in this

work are in principle not higher than these sparse and non-

sparse methods, both in the case of qRAM access and in the

case when matrix elements are computed instead of stored.

Non-square matrices.− Our method enables us to also ef-

fectively establish properties of general non-square low-rank

matrices. To determine the singular value decomposition of

a matrix A = U ΣV † ∈ CM×N with rank r, simulating the

positive semidefinite matrices AA† and A†A via qPCA al-

ready yields the correct singular values and vectors. However,

essential information is missing, leading to ambiguities in the

singular vectors that become evident when inserting diagonal

matrices into the singular value decomposition of AA† that

change the relative phases of the singular vectors,

AA† = UΣ2U † = UΣD†V † V DΣU † =: ÂÂ†, (8)

with D := diag(e−iϑj ), ϑj being arbitrary phases. If

Avj = σjuj for each j = 1, . . . , r, then

Âvj = UΣD†V †vj = σje
iϑjuj := σj ûj , (9)

which means there are different phase relations between left

and right singular vectors in Â from those in A. Although A

and Â still share the same singular values and even the same

singular vectors up to phase factors, ‖A− Â‖F will in general

(with the exception of positive semidefinite matrices, where

U = V ) not be zero or even be small: The matrixA cannot be

reproduced this way—a singular value decomposition is more

than a set of singular values and normalized singular vectors.

This affects all kinds of algorithms that require the appropriate

phase relations between each left singular vector uj and the

according right singular vector vj . Such applications are de-

termining the best low-rank approximation of a matrix, signal

processing algorithms discussed in Ref. [26], or determining

the nearest isometric matrix, related to the unitary Procrustes

problem, of a non-Hermitian matrix.

In order to overcome this issue, consider the “extended ma-

trix”

Ã :=

[

0 A
A† 0

]

, (10)

which was introduced for singular value computations in

Ref. [27] and recently in sparse quantum matrix inversion in

[25]. The non-zero eigenvalues of Ã correspond to {±σj}
with {σj} being the singular values ofA for j = 1, . . . , r. The

corresponding eigenvectors are proportional to (uj ,±vj) ∈
CM+N (see Appendix). The left and right singular vectors

of A can be extracted from the first M and last N entries,

respectively. Since Ã is Hermitian, its eigenvectors can as-

sumed to be orthonormal: ‖(uj, vj)‖2 = ‖uj‖2 + ‖vj‖2 = 1,
and (uj , vj) · (uj,−vj)† = ‖uj‖2 − ‖vj‖2 = 0, from which

follows that the norm of each of the subvectors uj and vj is

1/
√
2, independent of their respective lengths M and N . The

important point is that the eigenvectors of the extended matrix

preserve the correct phase relations between the left and right

singular vectors since (eiϑjuj, vj) is only an eigenvector of Ã
for the correct phase eiϑj = 1.

The requirements for our quantum algorithm can be satis-

fied also for the extended matrix. For randomly sampled left

and right singular vectors, the matrix elements have maximal

size of O(
∑r

j=1 σj/
√
MN), thus σj = O(

√
MN). In ad-

dition, an 1/(M + N) factor arises in the simulation of the

extended matrix from the ancillary state ρ = |~1〉〈~1| as before,

which leads to the requirement σj = Θ(M +N). These two

conditions for σj can be satisfied if the matrix A is not too

skewed, i.e. M = Θ(N). In summary, by simulating the

corresponding Hermitian extended matrices, general complex

matrices of low rank can be simulated efficiently, yielding the

correct singular value decomposition.

Procrustes problem.− The unitary Procrustes problem is to

find the unitary matrix that most accurately transforms one

matrix into another. It appears in many fields, such as in

shape/factor/image analysis and statistics [1]. As an appli-

cation for our method in the case of non-square matrices, we

will discuss the more general Procrustes problem of finding

the isometry W that most accurately transforms a matrix B
into a matrix C: Formally, minimize ‖WB − C‖F among

all isometries W ∈ CM×N , W †W = 1, with B ∈ CN×K

and C ∈ CM×K , where M > N . The problem is equiv-

alent to the problem of finding the nearest isometric matrix

W ∈ CM×N to a matrix A ∈ CM×N by taking A = CB†.

Since our quantum algorithm is restricted to low rank matri-

ces, let A = CB† be low-rank with rank r and singular value

decompositionA = U ΣV † with U ∈ CM×r, Σ ∈ Rr×r, and

V ∈ CN×r. The optimal solution to the Procrustes problem is

W = U V † [1], setting all singular values to one, in both the

low-rank and the full-rank situation. SinceA is assumed to be

low rank, we find a partial isometry with W †W = Pcol(V ),

withPcol(V ) being the projector into the subspace spanned by

the columns of V . Thus, W acts as an isometry for vectors in

that subspace (see Appendix).

In a quantum algorithm, intrinsically consisting of quantum

operations acting on quantum states, let the task be to apply

the nearest low-rank isometry to a quantum state |ψ〉. The

state |ψ〉 is assumed to be in or close to the subspace spanned

by the columns of V . We assume that the extended matrix for

A in Eq. (10) is given in oracular form and that A is not too

skewed such that σj/(M +N) = Θ(1) and ‖A‖max = Θ(1).
We perform phase estimation on the input state |0, ψ〉|0 . . . 0〉
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and, analogous to Eq. (5), obtain a state proportional to

∑

σj

M+N
≥ǫ

β±
j

∣

∣

∣
uj,±vj

〉

∣

∣

∣

∣

± σj
M +N

〉

(11)

with β±
j = 〈uj ,±vj|0, ψ〉 = ±〈vj |ψ〉/

√
2. The sum has 2 r

terms corresponding to the eigenvalues of the extended ma-

trix with absolute value greater than (M + N) ǫ. Perform-

ing a σz operation on the qubit encoding the sign of the re-

spective eigenvalue and uncomputing the eigenvalue register

yields a state proportional to
∑

j βj |uj ,±vj〉. Projecting onto

the uj part (with success probability 1/2) results in a state

proportional to

∑

σj
M+N

≥ǫ

|uj〉〈vj |ψ〉 ∝ U V †|ψ〉. (12)

This procedure leads to the preparation of the desired state

for the non-square low-rank Procrustes problem with accu-

racy ǫ in runtime O(‖A‖2max log
2(N +M)/ǫ3). In contrast,

performing the singular value decomposition of a low-rank

A classically requires in general without further structural as-

sumptions a runtime O(N3).

Conclusion.− The method presented here allows non-

sparse low-rank non-positive HermitianN×N matricesA/N
to be exponentiated for a time t with accuracy ǫ in run time

O
(

t2

ǫ ‖A‖2max TA

)

, where ‖A‖max is the maximal absolute

element of A and TA is the data access time. If the matrix

elements are accessed via quantum RAM or computed effi-

ciently and the significant eigenvalues of A are Θ(N), our

method can achieve a run time of O (poly logN) for a large

class of matrices. Our method allows non-Hermitian and non-

square matrices to be exponentiated via extended Hermitian

matrices.

We have shown how to compute the singular value decom-

position of a non-Hermitian non-sparse matrix on a quantum

computer directly while keeping the relative phase informa-

tion. The numerous potential applications of the quantum sin-

gular value decomposition include determining the pseudoin-

verse of a matrix or its closest isometry exponentially faster

than any known classical algorithm. In addition, the present

method has been modified to a continuous variable setting as a

subroutine for Gaussian process regression [28]. In addition,

by using a (possibly unknown) ancillary state different from

the uniform superposition, the oracular setting of the present

work and the tomography setting of Ref. [11] can be com-

bined.
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APPENDIX

Norms.− Denote the maximum absolute element of a ma-

trixA ∈ CN×N with ‖A‖max = maxj,k |Ajk|. The Frobenius

or Hilbert-Schmidt norm is given by ‖A‖F =
√

∑

j,k |Ajk|2

and its nuclear norm by ‖A‖∗ =
∑r

i=1 σi, where r is the rank

and σj are the singular values.

Modified swap matrix.− The modified swap matrix is de-

fined as

SA =

N
∑

j,k=1

Ajk|k〉〈j| ⊗ |j〉〈k| ∈ C
N2×N2

. (13)

Taking Ajk = 1 leads to the original swap matrix S =
∑N

j,k=1 |k〉〈j| ⊗ |j〉〈k| ∈ CN2×N2

. The N2 eigenvalues of

SA are

A11, A22, . . . , ANN , A12,−A12, . . . , Aj,k>j ,−Aj,k>j , . . . ,
(14)

where k > j denotes an index k greater than j. The maximal

absolute eigenvalue of SA is thus maxj,k |Ajk| ≡ ‖A‖max,

corresponding to the maximal absolute matrix element of A.

The square of the modified swap matrix is

(SA)
2 =

N
∑

j,k=1

|Ajk|2 |k〉〈k| ⊗ |j〉〈j| ≤ ‖A‖2max 1. (15)

Its eigenvalues are |Ajk|2 and the maximal eigenvalue is

‖A‖2max. This already points to the result that the second or-

der error of our method naturally scales with ‖A‖2max, which

we will now derive.

Error analysis.− In the following, we will estimate the er-

ror from the second-order term in ∆t in Eq. (2). The nuclear

norm of the operator part of the second order error is

ǫρ,σ = ‖tr1{SA ρ⊗ σ SA} −
1

2
tr1{(SA)

2 ρ⊗ σ} (16)

− 1

2
tr1{ρ⊗ σ (SA)

2}‖∗.

In Ref. [11], this error was equal to ǫqPCA
ρ,σ = ‖ρ − σ‖∗ ≤ 2,

which is achieved in the present algorithm by choosingA such

thatAjk = 1 for each j, k. Here, our algorithm coincides with

the qPCA method for ρ chosen as the uniform superposition.

For general low-rank A, we bound Eq. (16) via the triangle

inequality. Taking the nuclear norm of the first term results in

‖tr1{SAρ⊗ σSA}‖∗ ≤‖SAρ⊗ σSA‖∗
≤‖ρ⊗ σ‖∗‖S2

A‖∗ ≤ ‖A‖2max. (17)

The second and third term can be treated similarly. We obtain

‖tr1{(SA)
2ρ⊗ σ}‖∗ ≤ ‖A‖2max. Combining all terms yields

the bound

ǫρ,σ ≤ 2‖A‖2max. (18)

Extended matrices.− We define the Hermitian extended

matrix Ã of a general complex-valued, not necessarily square

matrix A ∈ CM×N as

Ã =

[

0 A
A† 0

]

∈ C
(M+N)× (M+N). (19)

Using block matrix identities for the determinant, we obtain

its characteristic polynomial

χÃ(λ) = λ|M−N | det (λ1+
√
AA†)(λ1 −

√
AA†). (20)

The eigenvalues of Ã are either zero or correspond to {±σj},

the singular values of A for j = 1, . . . , r with an addi-

tional sign. Hence, if A has low rank r, then Ã has low

rank 2 r. The corresponding eigenvectors are proportional to

(uj ,±vj) ∈ CM+N since
[

∓σj1 A
A† ∓σj1

]

·
[

uj
±vj

]

= 0, (21)

where uj and vj are the jth left and right singular vector ofA,

respectively. The important point is that the eigenvectors of

the extended matrix preserve the correct phase relations be-

tween the left and right singular vectors since (eiϑjuj,±vj) is

only an eigenvector of Ã for the correct phase eiϑj = 1,

[

∓σj1 A
A† ∓σj1

]

·
[

eiϑjuj
±vj

]

=

[

∓σjeiϑjuj ±Avj
eiϑjA†uj − σjvj

]

=(eiϑj − 1)σj

[

∓uj
vj

]

. (22)

The right hand side is only equal to zero for the correct phase

eiϑj = 1.

Low-rank Procrustes.− Let the isometry be W = U V †

with U ∈ CM×r and V ∈ CN×r. Assume thatM > N , lead-

ing to orthogonal columns in the full-rank Procrustes problem

(r = N ). We find for the low-rank (partial) isometry that

W †W = V U †UV † = V V † =
r

∑

j=1

~vj~v
†
j . (23)

Pick an arbitrary vector ~x =
∑r

j=1 αj~vj + ~x⊥ = ~x‖ + ~x⊥,

where ~x⊥ denotes the part orthogonal to the orthonormal vec-

tors ~vj . Then,

W †W ~x =

r
∑

j=1

αj~vj = ~x‖. (24)

Thus, W †W acts as the identity operator in the low-rank sub-

space, and projects out the space perpendicular to that sub-

space.


