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Here, we numerically simulate probabilistic elementary entangling operations between rail-
encoded photons for the purpose of scalable universal quantum computation or communication.
We propose grouping logical qubits into single-photon blocks wherein single-qubit rotations and the
CNOT gate are fully deterministic and simple to implement. Inter-block communication is then
allowed through said probabilistic entangling operations. We find a promising trend in the increas-
ing probability of successful inter-block communication as we increase the number of optical modes
operated on by our elementary entangling operations.

I. INTRODUCTION

Since the discovery of several high-profile quantum al-
gorithms in the 1990s, there has been significant interest
in developing programmable quantum hardware that is
both reliable and scalable. One particular approach has
been the linear optical quantum computing paradigm,
where qubits are encoded into the spatial and polariza-
tion states of a small number of photons. The advan-
tage to using photons is that they tend to not inter-
act with their environment and optical quantum states
are thus naturally resistant to decoherence [1]. On the
other hand, photon-photon interaction is weak and lin-
ear entangling operations are limited to bosonic interfer-
ence effects [1, 2]. Early proposals for an optical quan-
tum computer circumvented this problem by encoding
information into the degrees of freedom of a single pho-
ton, but this approach limited scalability [3–5]. In 2001,
Knill, Laflamme, and Milburn discovered that univer-
sal entangling operations between a pair of qubits en-
coded into separate photons could be achieved proba-
bilistically using ancillla photons and partial measure-
ments [6, 7]. Still, experimental efforts continue to de-
velop and use single-photon devices, often for specialized
applications [8–15].

In our work here, we explore a balance between the
reliability of single photon computing and the scalabil-
ity of multi-photon computing. We propose encoding a
few qubits into single-photon blocks so that within each
block “entangling” operations between qubits are carried
out through simple deterministic linear elements. Success
of this model depends completely on reliable communi-
cation between blocks, which is accomplished through
photon-pair entangling operations. Here, we numerically
test our ability to carry out these inter-block operations
using only linear optical circuit elements (i.e., beam split-
ters and phase shifters), ancilla states, and probabilistic
partial measurements.

This paper is organized as follows: in Sections II
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and III we review mathematical definitions and introduce
methods for simulating linear optical quantum circuits.
Then, in Section IV, we discuss the single-photon block
encoding model in detail. In Sections V-VI we present
a formalism for describing the most fundamental entan-
gling operations between pairs of photons. Finally, in
Sections VII-VIII we present our results.

II. MATHEMATICAL BACKGROUND

An optical quantum state of N photons contained in
M optical modes can be written in the Fock basis,

|ψ〉 = c1 |N1, 02, . . . , 0M 〉+ c2 |N − 11, 12, 03, . . . , 0M 〉
· · ·+ cdH |01, 02, . . . , NM 〉 , (1)

where the Hilbert space dimension of the system is given
by

dH =
(N +M − 1)!

N !(M − 1)!
(2)

or the number of ways to order N indistinguishable pho-
tons and M − 1 partitions.

A linear optical operation acting on a quantum state
is generally described by the transformation of creation
operators [1, 16]:

â†α →
M∑
β=1

Uαβ â
†
β , (3)

where Uαβ are the elements of a unitary complex matrix,
U . One typically writes a state given by Eq. (1) as

|ψ〉 =

[
c1

(â†1)N√
N !

+ c2
(â†1)N−1â†2√

(N − 1)!
+ . . . (4)

+cdH
(â†M )N√
N !

]
|0, 0, . . . , 0M 〉

and applies the symbolic transformation, Eq. (3). For
large N and M , however, this process can quickly become
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intractable. Here, we use an efficient and highly paral-
lelizable numerical protocol for simulating linear optical
quantum gates or state evolution that is equivalent to the
action of Eq. (3), but can effectively handle large values
of N and M . We will present this protocol in its entirety
in Section III.

Before we begin, we define A(U) as the unitary matrix
which represents the action of Eq. (3) on a quantum state
in the Fock basis (1). The output state |ψ′〉 of a linear
optical circuit will be determined by standard matrix-
vector multiplication,

|ψ′〉 = A(U) |ψ〉 . (5)

If N ≥ 2, the group A = {A(U)} of all possible lin-
ear optical operators is a proper (strict) subgroup of the
unitary group,

A ⊂ U(dH). (6)

In other words, not all quantum transformations on
multi-photon Fock states can be implemented via linear
optical circuits. Indeed, the condition that entangling
operations between photons be linearly accessible is gen-
erally found to be severely restricting [17–23].

III. NUMERICAL SIMULATION OF LINEAR
OPTICAL DEVICES

For an optical circuit made up of K components,

A(UK)A(UK−1) . . . A(U1) = A(U1U2 . . . UK). (7)

It is preferred to compile the optical hardware compo-
nents via the matrix multiplication U1U2 . . . UK , rather
than render each A(Uk) independently. The proof of
Eq. (7) appears in Appendix A.

Rewriting Eq. (1) as

|ψ〉 =
∑
~n

c~n |~n〉 , (8)

where

|~n〉 = |n1, n2, . . . , nM 〉 (9)

are the Fock states, we define

|~m(~n)〉 = |m1,m2, . . . ,mN 〉 (10)

where mα is the mode-location of photon number α. Of
course the choice of vector |~m(~n)〉 for a given |~n〉 is not
unique, since photons are indistinguishable and labeling
them is an arbitrary process. We simply need to choose
some labeling and pick any valid |~m(~n)〉 for each |~n〉.
Then the elements of A(U) in the basis |~n′〉〈~n| are given
by

A(U)~n′,~n = (11)

M∏
p=1

√
n′p!√
np!

 ∑
perm(~m′)

Um1m′1
Um2m′2

. . . UmNm′N

 ,

where the summation is over all distinct permutations
of integer entries in the vector ~m′. The proof of Eq. (11)
appears in Appendix B.

In practice, the input state |ψ〉 to an optical cir-
cuit will often be a simple product state with a definite
number of photons in each mode, e.g. |N, 0, . . . , 0M 〉.
Furthermore, a partial measurement on the output state
|ψ′〉 will leave us in some relevant subspace of the full
Hilbert space. We can then formally state the following
facts.

Fact 1: If the input states |ψ〉 to our optical cir-
cuit are known to be limited to some subspace of the
full Hilbert space of the system, we need only build the
relevant columns of A(U).

Fact 2: If the output states |ψ′〉 of our optical cir-
cuit are then projected onto some subspace of the full
Hilbert space, we need only build the relevant rows of
A(U).

With Eq. (7), Eq. (11) and the Facts, we can
now present our protocol for simulating a linear optical
quantum circuit.

Initialization Stage:

(1) Establish the Fock basis {|~n〉} of our input state |ψ〉.
Include only the basis states having nonzero overlap
with |ψ〉, as per Fact 1.

(2) For each element of the basis set |~n〉 construct
a corresponding |~m(~n)〉 as defined in Eq. (10).

(3) Establish the Fock basis {|~n′〉} of our output
state |ψ′〉. Do not include basis states that will be
projected out in the measurement, as per Fact 2.

(4) For each element of the basis set |~n′〉 construct
a corresponding |~m′(~n′)〉 as defined in Eq. (10).

(5) Store all ~n, ~n′, ~m, ~m′ as integer vectors.

Rendering Stage:

(1) Compile the total optical circuit composed of
K components by performing the matrix multiplication
U = U1U2 . . . UK .

(2) Render the matrix representation of the quan-
tum operator A(U) using Eq. (11) for all of the relevant
input basis states {|~n〉} and all of the relevant output
basis states {|~n′〉}.

Initialization needs only to be performed once; we
can then quickly build A(U) for any particular optical
circuit design, U . This allows fast, repeated simulation
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necessary for Monte Carlo applications or numerical
optimization. For an open source implementation of this
algorithm, see Ref. [24].

IV. RAIL ENCODING QUBITS INTO
DETERMINISTIC BLOCKS

It is well established that we can implement any quan-
tum transformation acting on states in the Fock basis
using linear optical components if only a single photon is
in the system [3–5]:

If N = 1, A = U(dH) . (12)

That is, we can build a universal quantum computer or
fully decodable quantum channel in a single-photon rail
encoding. However, by forcing N = 1, we sacrifice the
scalability of our hardware; Eq. (2) simplifies to

dH = M. (13)

To implement j qubits, we need M = 2j optical modes.
Here, we propose grouping single-photon blocks of logical
qubits together in order to establish scalability; we want
to extend the applicability of single-photon computing to
general, large-scale quantum algorithms.

As an example, two qubits can be encoded into an N =
1,M = 4 system as shown in Table I. We can then encode

Logical Qubit State Physical Fock State

|00〉 |1, 0, 0, 0〉
|01〉 |0, 1, 0, 0〉
|10〉 |0, 0, 1, 0〉
|11〉 |0, 0, 0, 1〉

TABLE I: Two qubits encoded into a single-photon block.

four qubits into the N = 2,M = 8 system partitioned
into two blocks as described in Table II. In this encoding,
we can apply any single-qubit rotation or a controlled-
Unitary gate between logical qubits 1 and 2 or between
logical qubits 3 and 4 through deterministic manipulation
of a single photon [1, 3, 8, 12, 15]. The difficulty here
lies in the application of entangling operations between
blocks. For example, we may want to apply the CNOT1,4

gate meaning that the control is logical qubit 1 and the
target is logical qubit 4. This operation requires the two
photons in our system to interact; if a photon is contained
in modes 3 or 4, we swap a photon between modes 5 and
6 or between modes 7 and 8.

Generalizing the 2-qubit block encoding in Table I, we
can encode q qubits into a block of 1 photon in 2q modes.
Again, operations between pairs of logical qubits con-
tained entirely within in a block are simple to implement
using linear optics, but we will need to test our ability
to realize communication between blocks. We assume
a mapping between logical qubit states and Fock states

Logical Qubit State Physical Fock State

|0000〉 |1, 0, 0, 0, 1, 0, 0, 0〉
|0001〉 |1, 0, 0, 0, 0, 1, 0, 0〉
|0010〉 |1, 0, 0, 0, 0, 0, 1, 0〉
|0011〉 |1, 0, 0, 0, 0, 0, 0, 1〉
|0100〉 |0, 1, 0, 0, 1, 0, 0, 0〉
|0101〉 |0, 1, 0, 0, 0, 1, 0, 0〉
|0110〉 |0, 1, 0, 0, 0, 0, 1, 0〉
|0111〉 |0, 1, 0, 0, 0, 0, 0, 1〉
|1000〉 |0, 0, 1, 0, 1, 0, 0, 0〉
|1001〉 |0, 0, 1, 0, 0, 1, 0, 0〉
|1010〉 |0, 0, 1, 0, 0, 0, 1, 0〉
|1011〉 |0, 0, 1, 0, 0, 0, 0, 1〉
|1100〉 |0, 0, 0, 1, 1, 0, 0, 0〉
|1101〉 |0, 0, 0, 1, 0, 1, 0, 0〉
|1110〉 |0, 0, 0, 1, 0, 0, 1, 0〉
|1111〉 |0, 0, 0, 1, 0, 0, 0, 1〉

TABLE II: Four qubits encoded into two single-photon blocks.

Logical Qubit State Physical Fock State

|0 . . . 00〉 |1, 0, 0, 0, . . . , 0〉
|0 . . . 01〉 |0, 1, 0, 0, . . . , 0〉
|0 . . . 10〉 |0, 0, 1, 0, . . . , 0〉
|0 . . . 11〉 |0, 0, 0, 1, . . . , 0〉

...
...

|1 . . . 11〉 |0, 0, 0, 0, . . . , 1〉

TABLE III: q qubits encoded into a single-photon block.

within a single block as in Table III. Without loss of
generality, we can group two blocks together, choose the
first qubit in the control block as a control qubit, and the
last qubit in the target block as a target qubit. Then,
we can generalize the CNOT1,4 gate to the CNOTfirst,last

gate, which swaps adjacent modes in the target block if
a photon is in the second half of the modes in the control
block. This operation cannot be implemented through
vanilla linear optics:

CNOTfirst,last /∈ A. (14)

In the special case q = 1, our block encoding reduces to
the standard dual-rail encoded qubit [1]. In the KLM [6,
7] scheme, the CNOTfirst,last gate can be applied to dual-
rail qubits using probabilistic partial measurements with
success probability p = 2/27.

V. ELEMENTARY PHOTON-ENTANGLING
OPERATIONS

In practice, we find it useful to dismantle the
CNOTfirst,last gate into a set of elementary entangling
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sub-operations. We can first examine the C1 sub-
operation acting on three modes as defined in Table IV.
Here, the first mode is a control mode, while the second

|0, 0, 0〉 → |0, 0, 0〉

|0, 0, 1〉 → |0, 0, 1〉
|0, 1, 0〉 → |0, 1, 0〉
|1, 0, 0〉 → |1, 0, 0〉

|1, 0, 1〉 → |1, 1, 0〉
|1, 1, 0〉 → |1, 0, 1〉

TABLE IV: The C1 operation acting on three modes expressed
as a transformation of Fock basis states. The first mode acts
as the control while the second and third modes act as tar-
gets. We can build the CNOTfirst,last gate by applying this
operation 22q−2 times for block size q ≥ 1.

and third modes are target modes. We apply the C1 op-
erator four times to build the CNOT1,4 in q = 2, where
in each sub-operation the control mode take values 3 or
4 in Table II and the pair of target modes takes values
5,6 or 7,8. The end result is the CNOT1,4 operation: If
a photon is in mode 3 or 4 we swap a photon between
mode 5 and mode 6 or a photon between mode 7 and
mode 8. More generally, a CNOTfirst,last gate for block
size q can be constructed by applying the C1 operation
22q−2 times by setting the control mode to each of the
modes in the second half of the control block, and the
two target modes to every sequential pair of modes in
the target block. Because there will never be more than
a single photon in a block, the basis states in Table IV will
be the only possible inputs to the C1 transformation. If
C1 is performed correctly, photon leakage between blocks
cannot occur. Other entangling sub-operations we study
here include the C2, C3, and C4 gates which are presented
in Tables V-VII. As the sub-operations get increasingly
more complex, a smaller number of such sub-operations
is required to implement the inter-block logical operation
CNOTfirst,last.

The focus of our work here is to test our ability
to build these operators as probabilistic measurement-
assisted transformations. By this, we mean that we aug-
ment our optical computational state |ψc〉 with an an-
cilla state |ψa〉, apply a linear optical transformation, and
then perform a partial projective measurement (refer to
Fig. 1). The total action of this non-unitary process can
be written formally as a Kraus operator we call PAULA,
which acts on any input optical quantum state |ψc〉 com-
posed of Nc photons in Mc modes contained in the com-
putational subspace:

E = PA(U)La (15)

|ψ′c〉 =
E |ψc〉√

〈ψc|E†E |ψc〉
. (16)

|0, 0, 0, 0〉 → |0, 0, 0, 0〉

|0, 0, 0, 1〉 → |0, 0, 0, 1〉
|0, 0, 1, 0〉 → |0, 0, 1, 0〉
|0, 1, 0, 0〉 → |0, 1, 0, 0〉
|1, 0, 0, 0〉 → |1, 0, 0, 0〉

|1, 0, 0, 1〉 → |1, 0, 1, 0〉
|1, 0, 1, 0〉 → |1, 0, 0, 1〉
|0, 1, 0, 1〉 → |0, 1, 1, 0〉
|0, 1, 1, 0〉 → |0, 1, 0, 1〉

TABLE V: The C2 operation acting on four modes expressed
as a transformation of Fock basis states. The first two modes
act as the controls while the last two modes act as targets. We
can build the CNOTfirst,last gate by applying this operation
22q−3 times for block size q ≥ 2.

|0, 0, 0, 0, 0〉 → |0, 0, 0, 0, 0〉

|0, 0, 0, 0, 1〉 → |0, 0, 0, 0, 1〉
|0, 0, 0, 1, 0〉 → |0, 0, 0, 1, 0〉
|0, 0, 1, 0, 0〉 → |0, 0, 1, 0, 0〉
|0, 1, 0, 0, 0〉 → |0, 1, 0, 0, 0〉
|1, 0, 0, 0, 0〉 → |1, 0, 0, 0, 0〉

|1, 0, 0, 0, 1〉 → |1, 0, 0, 1, 0〉
|1, 0, 0, 1, 0〉 → |1, 0, 0, 0, 1〉
|1, 0, 1, 0, 0〉 → |1, 1, 0, 0, 0〉
|1, 1, 0, 0, 0〉 → |1, 0, 1, 0, 0〉

TABLE VI: The C3 operation acting on five modes expressed
as a transformation of Fock basis states. The first mode acts
as the control while the last four modes act as targets. We
can build the CNOTfirst,last gate by applying this operation
22q−3 times for block size q ≥ 2.

In Eq. (15), La is the operator defined by

La |ψc〉 = |ψa〉 ⊗ |ψc〉 ∀ |ψc〉 , (17)

where |ψa〉 is a normalized ancilla state composed of Na
photons in Ma optical modes. The matrix representation
of La is sparse and satisfies L†aLa = I. A(U) is the
standard unitary linear optical transformation as defined
in Eq. (11), where N = Nc+Na and M = Mc+Ma. P is
a partial projective measurement over the ancilla modes.
We assume the projection operator P is given by

P = |~na〉〈~na| ⊗ I , (18)

where |~na〉 is some Fock state containing the same num-
ber of photons Na and modes Ma as the input ancilla
state |ψa〉. E therefore preserves photon and mode num-
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|0, 0, 0, 0, 0, 0〉 → |0, 0, 0, 0, 0, 0〉

|0, 0, 0, 0, 0, 1〉 → |0, 0, 0, 0, 0, 1〉
|0, 0, 0, 0, 1, 0〉 → |0, 0, 0, 0, 1, 0〉
|0, 0, 0, 1, 0, 0〉 → |0, 0, 0, 1, 0, 0〉
|0, 0, 1, 0, 0, 0〉 → |0, 0, 1, 0, 0, 0〉
|0, 1, 0, 0, 0, 0〉 → |0, 1, 0, 0, 0, 0〉
|1, 0, 0, 0, 0, 0〉 → |1, 0, 0, 0, 0, 0〉

|0, 1, 0, 0, 0, 1〉 → |0, 1, 0, 0, 1, 0〉
|0, 1, 0, 0, 1, 0〉 → |0, 1, 0, 0, 0, 1〉
|0, 1, 0, 1, 0, 0〉 → |0, 1, 1, 0, 0, 0〉
|0, 1, 1, 0, 0, 0〉 → |0, 1, 0, 1, 0, 0〉
|1, 0, 0, 0, 0, 1〉 → |1, 0, 0, 0, 1, 0〉
|1, 0, 0, 0, 1, 0〉 → |1, 0, 0, 0, 0, 1〉
|1, 0, 0, 1, 0, 0〉 → |1, 0, 1, 0, 0, 0〉
|1, 0, 1, 0, 0, 0〉 → |1, 0, 0, 1, 0, 0〉

TABLE VII: The C4 operation acting on six modes expressed
as a transformation of Fock basis states. The first two modes
act as the controls while the last four modes act as targets. We
can build the CNOTfirst,last gate by applying this operation
22q−4 times for block size q ≥ 2.

FIG. 1: The measurement-assisted transformation described
by E. An input computational state |ψc〉 and ancilla state
|ψa〉 are processed through a linear circuit. Then, a partial
measurement P is performed and we are left with the output
computational state |ψ′c〉.

ber. In accordance with Facts 1 and 2, we do not con-
struct the entire matrix A(U) – only the columns asso-
ciated with nonzero components of La |ψc〉 and the rows
left after the projection P . We define dc as the dimen-
sion of the subspace containing all possible input compu-
tational states to our circuit, and d′c as the full physical
Hilbert space associated with the output modes:

d′c =
(Nc +Mc − 1)!

Nc!(Mc − 1)!
. (19)

E can be represented as a d′c by dc rectangular matrix.
A measure of gate fidelity (more precisely, the real part

of the fidelity amplitude) between the PAULA operator
E and a target operation T can be defined by

F (E, T ) =
Re[tr

(
E†T

)
]√

dc tr(E†E)
. (20)

The probability of having successfully applied E for
F (E, T )→ 1 is given by

S(E) =
tr
(
E†E

)
dc

. (21)

To construct the C1 operation defined in Table IV,
which acts on input states having 0, 1, or 2 photons,
we simultaneously maximize the gate fidelity and success
probability for each Nc = 0, 1, 2 separately over the same
quantum optical circuit U and ancilla state |ψa〉. That
is, we establish an ideal target TNc

and Kraus PAULA
operator ENc

for each photon number Nc and attempt to
find an optical mode transformation U and ancilla input
|ψa〉 such that F (ENc

, TNc
) → 1 for all Nc with opti-

mal S(ENc
). We will demonstrate the details of this in

the following section for C1. The same approach is read-
ily extended to C2 . . . C4, and in the following we omit a
detailed discussion of the optimization relating to those
operators, instead showing only the final results.

VI. NUMERICAL ANALYSIS OF C1

We consider first C1 acting on the subspace of Nc = 0
photons. Here we get the correct transformation for free:

|0, 0, 0〉 → |0, 0, 0〉 . (22)

Up to a possible overall phase (see below), this will be
the result for any linear optical circuit U and any ancilla
state |ψa〉, just because E in this subspace is always a 1
by 1 matrix: dc = d′c = 1.

If only a single photon is found in the three modes,
Nc = 1, we have

dc = d′c = 3 , (23)

and we strive for a target operator,

T1 =

1 0 0

0 1 0

0 0 1

 (24)

in the basis

{|~nc〉} = {|~n′c〉} = {|0, 0, 1〉 , |0, 1, 0〉 , |1, 0, 0〉}. (25)

Finally, in the two-photon subspace, Nc = 2, we have

dc = 2 d′c = 6 , (26)
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and strive for a target operator,

T2 =



0 1

1 0

0 0

0 0

0 0

0 0


(27)

in the basis

{|~nc〉} = {|1, 0, 1〉 , |1, 1, 0〉} (28)

{|~n′c〉} = {|1, 0, 1〉 , |1, 1, 0〉 , (29)

|2, 0, 0〉 , |0, 2, 0〉 , |0, 1, 1〉 , |0, 0, 2〉}.

We define the PAULA operators ENc
(U,ψa) separately

for the Nc = 0, Nc = 1 and Nc = 2 subspaces, and
numerically maximize the function

f(U,ψa) =

2∑
Nc=0

[
F (ENc , TNc) + εS(ENc)

]
(30)

where ε > 0 is a real-valued numerical weight for the
optimization, or equivalently a Lagrange multiplier. We
systematically vary parameters ε, Na, Ma, and partial
measurement P , and repeat maximization of Eq. (30) to
find global solutions.

Any difference in global phases between the operations
in Eqs. (22), (24), and (27) will cause an unwanted rel-
ative phase shift between Fock basis states in the full
transformation C1. For this reason, we use the gate fi-
delity amplitude defined in Eq. (20), which accounts for
a global phase difference between E and T .

VII. RESULTS

A. The entangling operation C1

The physical operation C1 acting on three modes is
of particular importance; it can be applied once to two
qubits encoded in the dual rail (q = 1) in order to ap-
ply an entangling CNOT gate between the two qubits.
Numerical optimization of Eq. (30) leads to the same op-
timal solution as the one given in [25], with two ancilla
photons in two modes:

F (ENc , TNc)max = 1

S(ENc)max = 2/27 (31)

Na = Ma = 2

P = |11〉〈11| .

Increasing the number of ancilla resources beyond Na =
Ma = 2 does not improve the success probability for
numerically accessible ancilla sizes (Na,Ma ≤ 8). Thus,
for a block size of q ≥ 1 qubits, we find a maximum

probability of successfully applying a CNOTfirst,last gate
composed of C1 operations using measurement-assisted
transformations to be

p = (2/27)22q−2

. (32)

B. The entangling operation C2

We find the optimal solution:

F (ENc , TNc)max = 1

S(ENc
)max = 0.0221391 (33)

Na = 3,Ma = 4

P = |1110〉〈1110| .

For a block size of q ≥ 2 qubits, we find a maximum
probability of successfully applying a CNOTfirst,last gate
composed of C2 operations using measurement-assisted
transformations to be

p = (0.0221391)22q−3

. (34)

C. The entangling operation C3

We find the optimal solution:

F (ENc
, TNc

)max = 1

S(ENc
)max = 0.0221266 (35)

Na = 3,Ma = 4

P = |1110〉〈1110| .

For a block size of q ≥ 2 qubits, we find a maximum
probability of successfully applying a CNOTfirst,last gate
composed of C3 operations using measurement-assisted
transformations to be

p = (0.0221266)22q−3

. (36)

D. The entangling operation C4

We find the optimal solution:

F (ENc
, TNc

)max = 1

S(ENc
)max = 0.00691511 (37)

Na = Ma = 4

P = |1111〉〈1111| .

For a block size of q ≥ 2 qubits, we find a maximum
probability of successfully applying a CNOTfirst,last gate
composed of C4 operations using measurement-assisted
transformations to be

p = (0.00691511)22q−4

. (38)
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VIII. DISCUSSION

We observe a promising increase in success probability
of applying the CNOTfirst,last gate as we move to sub-
operations acting on a greater number of modes; refer to
Fig. 2. Even within the reach of our numerical simula-
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■

● 1

▲ 2≃3

■ 4

1 2 3 4
q

0.0740741

1.0×10-14

1.0×10-55

p

FIG. 2: Maximized success probabilities p for implement-
ing a full CNOTfirst,last gate composed entirely of the sub-
operations C1, C2, C3, C4, for blocks encoding q qubits.

tions, we find an improvement over standard KLM for ap-
plying entangling operations within the context of some
quantum algorithms. For example, the simple quantum
circuit

CNOT3 = (39)

(I ⊗ I ⊗ CNOT) · (I ⊗ CNOT⊗ I) · (CNOT⊗ I ⊗ I)

acting on four qubits is presented in Fig. 3. Through
the standard KLM protocol acting on qubits encoded
in the dual-rail, each CNOT gate can be implemented
with success probabilty 2/27 using ancilla resources Na =
Ma = 2. The total success probability of the CNOT3

gate using KLM is then (2/27)3 using ancilla resources
Na = Ma = 6. Grouping these four qubits into two de-
terministic blocks of two qubits, q = 2, we can apply the
same operation with a success probability of 0.00691511
using ancilla resources Na = Ma = 4. This is almost
a twenty-fold improvement, while using a smaller ancilla
resource.

FIG. 3: The quantum circuit CNOT3 acting on four qubits.

The trend in Fig. 2 suggests an order of magnitude
improvement in success probability as we increase the

size (i.e., number of modes operated on) of entangling
sub-operations between blocks. Future work can fur-
ther increase the simulation size to confirm this trend.
A high probability CNOTfirst,last gate built from larger
sub-operations for block size q ≥ 3 would have significant
implications for linear optical quantum computing.
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Appendix A: Proof of Eq. (7)

Eq. (7) can be proved by induction. The base case is
trivial; for a lone unitary matrix U1, Eq. (7) reads

A(U1) = A(U1). (A1)

We can then assume

A(UK−1)A(UK−2) . . . A(U1) = A(U1U2 . . . UK−1). (A2)

That is, applying the left hand side of (A2) is equivalent
to the total transformation

â†α →
∑
β

(U1U2 . . . UK−1)α,β â†β . (A3)

Now we add one final optical component and apply the
transformation A(UK). Our total transformation is now

â†α →
∑
β

(U1U2 . . . UK−1)α,β

(∑
γ

UKβ,γ â
†
γ

)
, (A4)

where UKβ,γ are the β, γ elements of UK . Then,

â†α →
∑
β,γ

(U1U2 . . . UK−1)α,βU
K
β,γ â

†
γ (A5)

=
∑
γ

(U1U2 . . . UK)α,γ â
†
γ , (A6)

which is equivalent to A(U1U2 . . . UK). �

Appendix B: Proof of Eq. (11)

We can write Eq. (8) in the |~m(~n)〉 basis:

|ψ〉 =
∑
~n

c~n |~m(~n)〉 . (B1)

We note that because of photon indistinguishability, the
mapping from |~n〉 to |~m(~n)〉 is not unique. This mapping



8

is, however, injective. No matter which of the allowed
mappings we choose, no information about the state |ψ〉
is lost. Thus, we are free to pick any mapping we want
for each basis Fock state. Then

|ψ〉 =
∑
~n

~cn∏M
p=1

√
np!

â†m1
â†m2

. . . â†mN
|~0〉 . (B2)

We define the operators

Ûα = Uα1â
†
1 + Uα2â

†
2 . . . UαM â

†
M . (B3)

Then

|ψ′〉 = A(U) |ψ〉 = (B4)∑
~n

c~n∏M
p=1

√
np!

Ûm1
Ûm2

. . . ÛmN
|~0〉.

The product of operators Ûα in (B4) will return a massive
expression of MN terms. We can use the commutativity
of the creation operators

[â†i , â
†
j ] = 0 ∀ i, j (B5)

to compress it:

|ψ′〉 =
∑
~n

c~n∏M
p=1

√
np!
· (B6)

∑
1≤m′1≤···
≤m′N≤M

 ∑
perm(~m′)

Um1m′1
. . . UmNm′N

 â†m′1 . . . â†m′N |~0〉.

Finally, we use

â†m′1
. . . â†m′N

|~0〉 =

M∏
p=1

√
n′p(~m

′)! |~n′(~m′)〉 (B7)

to obtain

|ψ′〉 =
∑
~n

c~n
∑

1≤m′1≤···≤m′N≤M

 M∏
p=1

√
n′p(~m

′)!√
np!

(B8)

·

 ∑
perm(~m′)

Um1m′1
. . . UmNm′N

 |~n′(~m′)〉 .

We recognize Eq. (B8) as the result of a matrix-vector
product, Eq. (5), if we define A(U) as in Eq. (11). �
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