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We consider the temporal correlations of the quantum state of a qubit subject to simultaneous
continuous measurement of two non-commuting qubit observables. Such qubit state correlators are
defined for an ensemble of qubit trajectories, which has the same fixed initial state and can also be
optionally constrained by a fixed final state. We develop a stochastic path integral description for the
continuous quantum measurement and use it to calculate the considered correlators. Exact analytic
results are possible in the case of ideal measurements of equal strength and are also shown to agree
with solutions obtained using the Fokker-Planck equation. For a more general case with decoherence
effects and inefficiency, we use a diagrammatic approach to find the correlators perturbatively in
the quantum efficiency. We also calculate the state correlators for the quantum trajectories which
are extracted from readout signals measured in a transmon qubit experiment, by means of the
quantum Bayesian state update. We find an excellent agreement between the correlators based on
the experimental data and those obtained from our analytical and numerical results.

I. INTRODUCTION

Continuous weak quantum measurement (CWQM) has
attracted much attention in the quantum information
science community. The subject involves the studies
of quantum state dynamics conditioning on observed
time-continuous measurement records, particularly in the
regime where the measurement strength does not need to
be infinitely strong. This topic has been discussed the-
oretically in the past few decades [1–10], and its experi-
mental study has been motivated by recent developments
in superconducting qubit technology [11–17]. Such ex-
perimental and theoretical efforts have paved the way for
interesting applications of CWQMs such as rapid state
purification [18], quantum feedback [9, 13, 16, 19, 20],
and preparation of entangled states [21–24]. With
CWQMs, it is also possible to simultaneously measure
non-commuting observables [25–27], and the first exper-
imental demonstration of such measurement on a super-
conducting qubit was realized only last year [28].

Precise simultaneous measurement of non-commuting
observables of a quantum system is forbidden by text-
book quantum mechanics. This is so because if one of the
measurements were to collapse the system wavefunction
to an eigenstate of a measurement operator, a precise or
strong measurement of another non-commuting observ-
able would produce an uncertain result. Such measure-
ment incompatibility with strong measurements, how-
ever, can be bypassed by using CWQMs. The reason

is that the latter are rather imprecise (weak) measure-
ments such that the readout signals have small signal-
to-noise ratios (SNRs), and, therefore, the two compet-
ing measurements collapse the system state only partially
over time, resulting in a quantum state that continuously
evolves in a diffusive manner.

Simultaneous continuous measurement of two qubit
observables, σz and σϕ ≡ σz cosϕ + σx sinϕ, was imple-
mented by weakly coupling a superconducting transmon
qubit to two intracavity modes [28]. The measurement
was effectively a stroboscopic measurement of a fast ro-
tating qubit. In that experiment, the considered angles
included ϕ = 0 (commuting observables) and ϕ ≠ 0 (non-
commuting observables, for example ϕ = π/2 corresponds
to measurement of σx and σz). The corresponding quan-
tum trajectories were inferred from the measurement
readouts and verified using state tomography techniques.
In the case of simultaneous measurement of commuting
observables (ϕ = 0), the qubit state evolves, as expected,
to either eigenstates of σz (i.e., measurement induces two
state attractors at the Bloch points z = ±1). In contrast,
for simultaneous measurement of σx and σz, the qubit
state does not collapse to any eigenstates of such ob-
servables. Instead, the quantum trajectories exhibit free
diffusion in the Bloch sphere [27].

The goal of this paper is to investigate the temporal
correlations of the qubit state during a simultaneous con-
tinuous measurement of two non-commuting qubit ob-
servables. Qubit trajectories depend on the nature of the
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coupling between the qubit and the detectors and the de-
tectors’ properties (e.g., quantum efficiency). We empha-
size that the quantum state correlators are different from
the correlators of detector readout signals, discussed, e.g.,
in [29]. The self-correlation function of the detector read-
outs does not depend on the measurement quantum ef-
ficiency, η, if we consider temporal correlations at suffi-
ciently long times (larger than the reciprocal bandwidth
of the detector). The cross-correlation function is not af-
fected by η even at vanishing times [29]. This can be un-
derstood physically by considering the readout of a non-
ideal detector (with η < 1) as the sum of two contribu-
tions; namely, one from the readout of an ideal detector
(η = 1) and another from a source of uncorrelated noise,
whose strength is proportional to η−1 − 1. Both contri-
butions then contribute additively to the readout corre-
lators. In contrast, quantum state correlators depend on
the quantum efficiency, and their measurement requires
detectors with not too small η, which is nowadays possi-
ble with experimental setups based on superconducting
qubits weakly coupled to microwave cavities [15, 28].

In this work, we consider the statistical properties of
the state of a qubit subject to simultaneous continuous
measurement of two non-commuting observables. We are
interested in the temporal correlations of state-dependent
quantities over certain sub-ensembles of quantum trajec-
tories. It is noted that the correlators analyzed here are
distinct from the correlators often discussed in previous
literature, which are of the form, ⟨σi(t1)σj(t2)⟩, where
σi,j are time-dependent qubit observables written in the
Heisenberg picture and the expectation bracket ⟨⋅⟩ im-
plies non-selective ensemble averaging. The correlators
for quantum state trajectories considered here bring us
the ability to apply boundary conditions to the quantum
state in the ensemble, both at the beginning and at the
end of the course of the measurement. In this paper, we
consider two scenarios (i) quantum state correlators with
pre-selection (fixed initial state), and (ii) quantum state
correlators with pre- and post-selection (fixed initial and
final states). We adopt the calculation technique based
on stochastic path integrals [30] to qubit trajectories in
the Bloch sphere. The stochastic path integral descrip-
tion provides a convenient way to explore the statistical
properties of sub-ensembles of quantum trajectories by
allowing us to impose boundary conditions at the be-
ginning and at the end of each trajectory. We obtain
analytical results for the case of ideal measurements of
σx and σz of equal strength. In the non-ideal case, η < 1,
we develop a diagrammatic perturbation theory, similar
to the loop expansion in quantum field theory, to calcu-
late the considered sub-ensemble averages in the limit of
small η. Moreover, we calculate the quantum state cor-
relators from the quantum state trajectories monitored
in Ref. [28] and show that they agree well with our ana-
lytical and numerical results.

We begin our analysis with a review of the quantum
trajectory approach to quantum measurement and the
stochastic master equation in Sec. II A, and then intro-

duce the stochastic path integral formalism in Sec. II B.
The stochastic path integral formalism is then used to
compute statistical quantities such as conditional aver-
ages and correlation functions, presented specifically for
the “XZ measurement” (the joint simultaneous measure-
ment of σx and σz observables) in Sec. III. In Sec. III A,
we investigate the simplest case, that of an ideal XZ mea-
surement with equal measurement strength, where the
quantum state dynamics resembles diffusion on a sphere.
The non-ideal case is considered in III B, using the per-
turbative expansion of the path integral in terms of di-
agrams to approximate the statistical averages. A com-
plementary approach to this physics using the Fokker-
Planck is demonstrated in Sec. IV. We compare our re-
sults with the correlators constructed from the experi-
ment data using superconducting circuits [28] in Sec. V,
and conclude in Sec. VI.

II. BACKGROUND

A. The stochastic master equation

We first discuss the stochastic master equation de-
scribing the evolution of a qubit subject to simultaneous
CWQM of two non-commuting observables. Any qubit
observable can be decomposed in terms of the Pauli ma-
trices σx, σy and σz. Thus, without loss of generality, we
assume that the measured qubit observables are σz and

σϕ ≡ σz cosϕ + σx sinϕ. (1)

The cases of ϕ = 0 and ϕ = π correspond to simultaneous
measurement of two commuting observables with corre-
lated and anti-correlated measurement results, respec-
tively. For other angles ϕ, the two measured observables
do not commute.

Simultaneous continuous measurement of the observ-
ables σz and σϕ in the weak coupling regime, given a sys-
tem state ρ(t), produces the detector readouts [29, 31, 32]
rz(t) and rϕ(t) respectively,

rz(t) =
∆rz

2
(Tr[σzρ(t)] +

√
τzξz(t)),

rϕ(t) =
∆rϕ

2
(Tr[σϕρ(t)] +

√
τϕξϕ(t)), (2)

where the first and second terms at the right-hand-side
of each equation represent the signal and the noise parts,
respectively. The parameters ∆rz and ∆rϕ are the re-
sponses of the z- and ϕ-detectors, which we can rescale
for simplicity so that ∆rz,ϕ = 2. The parameters τz and
τϕ are the detector “characteristic measurement times”,
which are defined as the integration time necessary to
obtain a SNR of one for the time-averaged measurement
readouts [33]. The quantum efficiency for each measure-
ment channel is defined as ηi = 1/(2Γiτi), where i = z,ϕ
and Γz,ϕ are the total (ensemble averaged) dephasing
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rates for the two measurements. Ideal measurements cor-
respond to the unit quantum efficiency ηi = 1, whereas,
non-ideal measurements correspond to the case of ηi < 1.
The noises ξz(t) and ξϕ(t) are assumed uncorrelated
Gaussian white noises with the two-time correlation func-
tions

⟨ξz(t)ξz(t
′
)⟩ = ⟨ξϕ(t)ξϕ(t

′
)⟩ = δ(t − t′). (3)

The qubit trajectory is described by the stochastic master
equation (Itô interpretation [34]) [29, 31, 32]

ẋ = − (Γz + Γϕ cos2 ϕ)x +
Γϕ sin 2ϕ

2
z + (1 − x2

)
ξϕ sinϕ
√
τϕ

− xz (
ξϕ cosϕ
√
τϕ

+
ξz

√
τz

) , (4a)

ẏ = − (Γz + Γϕ)y − xy
ξϕ sinϕ
√
τϕ

− yz (
ξϕ cosϕ
√
τϕ

+
ξz

√
τz

) ,

(4b)

ż = − Γϕ sin2 ϕz +
Γϕ sin 2ϕ

2
x + (1 − z2

)(
ξϕ cosϕ
√
τϕ

+
ξz

√
τz

)

− xz
ξϕ sinϕ
√
τϕ

, (4c)

where we have used the Bloch parametrization of the
qubit density matrix, ρ(t) = [1̂1 + x(t)σx + y(t)σy +

z(t)σz]/2, where 1̂1 is the identity matrix. We may also
include additional terms to the right-hand-side of Eq. (4)
to account for coherent evolution of the qubit due to a
Hamiltonian, Hq, and environmental decoherence due to
a weak coupling of the qubit to unmonitored degrees of
freedom [29]. In section V, we specify such additional
drift terms for the considered experiment [28]. Equa-
tion (4) describes the state dynamics during a simulta-
neous continuous measurement of σz and σϕ. We note
that the corresponding Lindblad equation, obtained from
Eq. (4) by simply dropping the noise terms, is not capa-
ble of correctly predicting the statistical quantities that
we calculate.

B. Stochastic path integral for XZ measurements

An alternative description of the stochasticity of the
qubit trajectories can be obtained by writing the joint
probability density function, P, of the noises in the mea-
surement readouts and the quantum state trajectory at
all times as a (stochastic) path integral. The general
treatment of the stochastic path integral formalism for
continuous weak measurements is discussed in detail in
Refs. [30, 35]. Here, we consider an example for the XZ
measurement, where the measured qubit observables are
σx and σz. The more general case of arbitrary angle
ϕ is briefly discussed in Sec. III C. To construct such
stochastic path integral, we need two ingredients. One
is the probability densities of the measurement readout

noises at each time step, dt, and the other element is
the deterministic evolution of the quantum state given
particular values of the noises. Considering a qubit
measurement of duration T , which is divided into N
steps of duration dt, the joint probability density of the
noises and the quantum states (at all times) is given

by P = ∏
N−1
k=0 P (qk+1∣qk, ξx,k, ξz,k)P (ξx,k)P (ξz,k). The

terms ξx,k and ξz,k are the values of the white noises
at the time tk = t0 + k dt, with the probability den-

sity, e.g., P (ξx,k) =
√
dt/2π exp (−ξ2

x,k dt/2). The vec-

tor qk = {xk, yk, zk} denotes the Bloch vector at that
time. The transition probability P (qk+1∣qk, ξx,k, ξz,k) =

δ(qk+1 −E[qk, ξx,k, ξz,k]) describes the deterministic evo-
lution of the qubit state for given ξx,k and ξz,k.

For the XZ measurement, the qubit evolution is dic-
tated by the stochastic master equation (4) with ϕ = π/2,

ẋ = −Γzx + (1 − x2
)
ξx

√
τx

− xz
ξz

√
τz
, (5a)

ż = −Γxz + (1 − z2
)
ξz

√
τz

− xz
ξx

√
τx
, (5b)

where Γx denotes the dephasing rate due to measurement
of σx. Because the Bloch y-coordinate does not appear
in Eq. (5), we can disregard its evolution as long as we
are interested in the qubit state evolution on the Bloch
xz plane. This is indeed the case if the initial value of
such variable is y(t = t0) = 0. Then, from Eq. (4b),
y(t) = 0 for all times and we can redefine the state vector
qk = {xk, zk}. The form of E[qk, ξz,k, ξx,k] is obtained by
writing Eq. (5) in an explicit time-discretized form, e.g.,
ẋ = (xk+1 − xk)/dt = fx(xk, zk, ξx,k, ξz,k).

Following the outline presented in Refs. [30, 35],
we write the delta functions for the deterministic
evolution as Fourier integrals to express the joint
probability density of the noises and qubit state as
P ({qk}

N
1 ,{ξx,k}

N−1
0 ,{ξz,k}

N−1
0 ∣q0) ∝ ∫Dp e

−S . Note
that the latter depends on the initial qubit state, q0, at
the time t0. We refer to the exponent, S, as the stochas-

tic action and ∫Dp ≡ ∫
i∞
−i∞⋯ ∫

i∞
−i∞∏

N−1
k=0 (2π)−2dpx,kdpz,k.

Here, pk = {px,k, pz,k}, introduced by the Fourier rep-
resentation of the delta functions, are considered as
auxiliary integration variables which are regarded as
pure imaginary (so that S is real). Hereon, our nota-
tion will be in the time-continuous form, i.e., px(t) =

limdt→0{px,k}, for simplicity and we will use the time-
discrete form whenever necessary. The stochastic action
S for the XZ measurement of a qubit is given by

S = ∫

T

t0
dt{px(t)ẋ(t) + pz(t)ż(t) −H} , (6)

where H = −Γzpx(t)x(t) − Γxpz(t)z(t) +Hx +Hz given
that

Hx =
1

√
τx

[(1 − x2
)ξxpx − xzξxpz] −

ξ2
x

2
, (7a)

Hz =
1

√
τz

[(1 − z2
)ξzpz − xzξzpx] −

ξ2
z

2
, (7b)
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where the time argument of the noise and qubit variables
are omitted for simplicity.

The joint probability density, P, mentioned above
can be used to compute statistical averages of state-
dependent quantities, A[q(t)], which may depend on
q(t) at various times; e.g., A[q(t)] = z(t1)z(t2) or
x(t1)z(t2) where t1, t2 are some intermediate times be-
tween t0 and T . In particular, the conditional averages
with fixed boundary conditions, q(t0) = q0 ≡ qin and
q(T ) = qN ≡ qf , of the quantum trajectories can be cal-
culated as follows

qf
⟨A[q(t)]⟩qin

=

∫
q(T )=qf

q(t0)=qin
Dq ∫Dξ A[q(t)]P[q(t), ξ(t)∣qin]

P (qf , T ∣qin, t0)
, (8)

where the denominator

P (qf , T ∣qin, t0) = ∫
q(T )=qf

q(t0)=qin

Dq∫ Dξ P[q(t), ξ(t)∣qin],

(9)

is the conditional probability density to obtain the fi-
nal state qf at time T given the initial state, qin,

at the time t0. We use the notation ∫
q(T )=qf

q(0)=qin
Dq ≡

∫ ⋯ ∫ ∏
N−1
k=1 dxkdzk, which implies integration over the

intermediate qubit states except over the initial and fi-
nal states, q0 and qN , respectively. Similarly, ∫Dξ ≡

∫ ⋯ ∫ ∏
N−1
k=0 dξx,kdξz,k.

III. STATE CORRELATIONS OF JOINTLY
MEASURED, NON-COMMUTING

OBSERVABLES

In this section we show how to calculate conditional av-
erages with pre- and/or post-selection using the stochas-
tic path integral formalism. We consider conditional av-
erages of the form, e.g., qf

⟨z(t1)x(t2)⟩qin
. The latter

represents the two-time quantum state correlator of the
qubit z-coordinate at time t1 and the x-coordinate at
time t2, and the average is over quantum trajectories
with initial state q(t0) = qin and final state q(T ) = qf .
Conditional averages with only pre-selection can be ob-
tained by taking the limit T →∞. We first consider the
case which is simple to treat analytically; namely, ideal
XZ measurement with detectors of equal measurement
strengths (Γx = Γz). Then, we discuss a diagrammatic
perturbation theory for non-ideal measurements.

A. Conditional averages for ideal XZ measurement

We will assume that the initial state of the qubit at
the time t = 0 corresponds to some state on the Bloch xz
great circle: x2 + z2 = 1; i.e., y(0) = 0. From Eq. (4b),
we notice that the y-coordinate will remain zero during
the XZ measurement. Moreover, ideal measurements are

characterized by the fact that pure states remain pure
during the measurement, even in the case of simultaneous
weak measurement of non-commuting observables [27].
Thus, for the considered ideal XZ measurement, the
quantum trajectories can be parametrized by only the
polar coordinate, θ(t),

x(t) = sin θ(t), y(t) = 0 and z(t) = cos θ(t). (10)

From Eqs. (4a) and (4c), we obtain the following equation
for the polar coordinate, θ(t), in the Itô interpretation

θ̇(t) = (Γx − Γz) sin θ(t) cos θ(t)

− sin θ(t)
ξz(t)
√
τz

+ cos θ(t)
ξx(t)
√
τx
, (11)

where τx = 1/2Γx and τz = 1/2Γz. In particular, for
the case of interest of detectors of equal measurement
strengths, the above equation reduces to (Γx = Γz = Γm)

θ̇(t) =
ξθ(t)
√
τm

, (12)

where τm = τx = τz is the measurement time of
both measurement channels, and ξθ(t) ≡ cos θ(t)ξx(t) −
sin θ(t)ξz(t) can be regarded as a single Gaussian noise
term with two-time correlation function: ⟨ξθ(t)ξθ(t

′)⟩ =
δ(t − t′). Equation (12) describes free diffusion of the
qubit state on the xz great circle.

The joint probability density of the qubit state,
parametrized by the angle θ(t), and the effective noise,
ξθ(t), can be obtained by following the steps discussed in
section II B. We find

P[θ(t), ξθ(t)]∝ ∫ Dpθ exp ( − S[pθ(t), θ(t), ξθ(t)]),

(13)

where the exponent is equal to (assuming that the initial
time is t0 = 0)

S = ∫

T

t0=0
dt {ipθ(t)[θ̇(t) − τ

−1/2
m ξθ(t)] +

ξ2
θ(t)

2
} , (14)

and the auxiliary integration variables, pθ(t), are real.
From Eq. (8), we notice that to calculate conditional av-
erages of state-dependent quantities only, A[q(t)], it is
convenient to integrate out the noise ξθ(t) and get

P[θ(t)]∝ ∫ Dξθ P[θ(t), ξθ(t)], (15)

∝ exp(−
τm
2
∫

T

0
dt θ̇2

(t)) , (16)

which is the probability density functional for each real-
ization of θ(t), omitting a trivial proportional constant.
In Eq. (16), the angle coordinate should be treated as a
coordinate on the real axis; i.e., θ ∈ (−∞,∞). Then, the
conditional average, Eq. (8), for XZ measurements with
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detectors of equal measurement strength, can be written
as

qf
⟨A[q(θ)]⟩qin

=
∑n∈Z ∫

θ(T )=θf+2πn

θ(0)=θin Dθ A[q(θ)]P[θ(t)]

P (θf , T ∣θin,0)
,

(17)

where the initial state is qin = (sin θin,0, cos θin) and
the final state is qf = (sin θf ,0, cos θf); such states are
parametrized by the angles θin, θf ∈ [0,2π). The sum in
Eq. (17) is over all angles, θ(T ), corresponding to the
same physical state qf . The denominator in Eq. (17) is
the transition probability,

P (θf , T ∣θin,0) = ∑
n∈Z
∫

θ(T )=θf+2πn

θ(0)=θin
Dθ P[θ(t)]. (18)

We are interested in calculating the quantum state cor-
relators with pre- and post-selection

Czz(t1, t2∣qf , T ;qin,0) ≡ qf
⟨z(t1)z(t2)⟩qin

, (19)

Czx(t1, t2∣qf , T ;qin,0) ≡ qf
⟨z(t1)x(t2)⟩qin

. (20)

Because of the rotational symmetry, the correlator
Cxx(t1, t2∣qf , T ;qin,0) can be obtained from the result
for Czz by changing θin → θin − π/2 and θf → θf − π/2.

In order to compute the conditional correlators, it is
convenient to introduce

As1s2[q(θ)] ≡ exp [i∫
T

0
dtJs1s2(t)θ(t)] (21)

where Js1s2(t) = s1δ(t − t1) + s2δ(t − t2) can be regarded
as a source field, see below, and s1, s2 = ±1. Then, the
state correlators of interest can be expressed as

Czz(t1, t2∣qf , T ;qin,0) =
1

4
∑

s1,s2=±1
qf
⟨As1s2[q(θ)]⟩qin

,

(22)

Cxz(t1, t2∣qf , T ;qin,0) =
1

4i
∑

s1,s2=±1

s2 qf
⟨As1s2[q(θ)]⟩qin

.

(23)

In Eq. (23), the coefficient s2 in each term of the
sum arises because we are interested in the corre-
lation of the x-coordinate at the time t2, x(t2) =

∑s2=±1 s2 exp[is2θ(t2)]/2i, and the z-coordinate at the
time t1, z(t1) = ∑s1=±1 exp[is1θ(t1)]/2.

The calculation of each term in the sums of Eqs. (22)–
(23) requires the calculation of the path integral

∫ Dθ P[θ(t)]As1s2[q(θ)], see also Eq. (17). Such a
Gaussian path integral can be straightforwardly calcu-
lated [36]. We find

∫

θ(T )=θT

θ(0)=θ0
Dθ P[θ(t)]As1s2[q(θ)] = (

τm
2πT

)
1/2

× exp{−∫

T

0
dt [

τm
2

˙̄θ(t)2
− iJs1s2(t)θ̄(t)]} ,

(24)

where θ̄(t) satisfies the (saddle-point) equation

¨̄θ = −
i

τm
Js1s2(t), (25)

with the boundary conditions θ̄(0) = θ0 and θ̄(T ) = θT .
The solution of Eq. (25) can be written in terms of
the corresponding Green’s function, G(t, t′), which satis-
fies the equation ∂2

tG(t, t′) = δ(t − t′) with homogeneous
boundary conditions: G(0, t′) = G(T, t′) = 0,

θ̄(t) = −
i

τm
[s1G(t, t1) + s2G(t, t2)] +

θT − θ0

T
t + θ0. (26)

The Green’s function reads explicitly as

G(t, t′) = (t − t′)Θ(t − t′) − (1 − t′/T )t, (27)

where Θ(⋅) is the Heaviside step function. Note that
the Green’s function is symmetric, G(t, t′) = G(t′, t), and
G(t, t) = −t(1− t/T ). By inserting Eq. (26) into Eq. (24),
we find that the sought path integral is given by

∫

θ(T )=θT

θ(0)=θ0
Dθ P[θ(t)]As1s2[q(θ)] =

√
τm

2πT
Fs1s2(t1, t2)×

exp{−
τm(θT − θ0)

2

2T
+ i
θT − θ0

T
(s1t1 + s2t2) + i(s1 + s2)θ0} ,

(28)

where Fs1s2(t1, t2) ≡ exp{∑a,b=1,2 sasbG(ta, tb)/2τm} is
a coefficient independent of θ0 and θT . Using the re-
sult (28) in Eq. (17), we obtain

qf
⟨As1s2[q(θ)]⟩qin

= Fs1s2(t1, t2)e
iθin(s1+s2)

×
∑n∈Z e−(∆θ+2πn)2τm/2T+i(∆θ+2πn)(s1t1+s2t2)/T

∑n∈Z e−(∆θ+2πn)2τm/2T ,

(29)

where ∆θ = θf − θin. From Eqs. (29) and (22)–(23), the
correlators of interest can be found.

The method discussed above to calculate two-time
quantum state correlators can be easily generalized to
calculate any n-point correlation function of x or z. In
such cases, we would need to introduce As1...sn as a gen-
eralization of Eq. (21) with a source field Js1...sn(t) =

∑
n
j=1 sjδ(t − tj) and sj = ±1. The correlators of interest

can be written as, for instance, qf
⟨x(t1)z(t2)x(t3)⟩qin

=

∑s1s2s3 s1s3 qf
⟨As1s2s3⟩qin

/2(2i)2. Each term in the lat-
ter sum is evaluated following a procedure similar to the
calculation of qf

⟨As1s2⟩qin
.

1. Conditional quantum correlators without post-selection

Thus far we have discussed quantum state correlators
over sub-ensemble of quantum trajectories with pre- and
post-selected states. Now, we consider quantum state
correlators without post-selection. Such correlators can
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FIG. 1. Conditional averages for ideal XZ measurement.
Panel (a) shows the qubit state averaged over a sub-ensemble
of quantum trajectories, which begin at the initial pure state,
qin = {cos(π/4),0, sin(π/4)} at time t = 0 and end at the final
pure state qf = {sin(7π/8),0, cos(7π/8)} at time t = T . We
show the sub-ensemble average trajectories for three different
periods T = τm, 3.5τm and 10τm. Solid lines depict our ana-
lytical results, Eq. (33), and the crosses depict Monte Carlo
simulation results. The dashed line, connecting the initial
state and the fully mixed state, shows the conventional ex-
ponential decay of the (total) ensemble average state due to
XZ measurement. In panel (b), solid lines show our analyti-
cal results for the quantum state correlators, Eqs. (22)–(23)
and (29). The boundary conditions on the quantum trajecto-
ries are the same as in panel (a). The crosses represent Monte
Carlo simulation results.

be obtained by taking the limit T → ∞ on the previous
results. Specifically,

⟨As1s2[q(θ)]⟩qin
= lim
T→∞ qf

⟨As1s2[q(θ)]⟩qin
(30)

= e−(s
2
1t1+s22t2+2s1s2tmin)/2τm+iθin(s1+s2),

(31)

where tmin = min{t1, t2}. We obtain the result (31)
by first applying Poisson’s resummation formula
to the numerator and denominator in Eq. (29);
for instance, ∑n∈Z exp[−(∆θ + 2πn)2τm/2T ] =
√
T /2πτm∑n∈Z exp[−n2T /2τm + ∆θni]. Then, in

the limit T → ∞, only the n = 0 term in the latter sum
contributes. The quantum state correlators without
post-selection are given by the following simple closed

form expressions

⟨z(t1)z(t2)⟩qin
= e−

t1+t2
2τm {cos2 θin cosh(tmin/τm)

+ sin2 θin sinh(tmin/τm)} , (32a)

⟨z(t1)x(t2)⟩qin
= e−

t1+t2
2τm e−

tmin
τm sin(2θin)/2. (32b)

Notice that the sign of the cross-correlation is determined
entirely by the initial angle. It simply indicates whether
the (x, z) coordinates start out as of the same or different
sign to give either positive correlation (+,+), (−,−) or
negative correlation (+,−), (−,+).

2. Qubit state averaged over sub-ensemble with fixed initial
and final states

We know the general fact that measurement induces
exponential decay of the ensemble average qubit state. In
particular, for the considered ideal XZ measurement, the
Bloch state decays as xens(t) = xin exp(−Γmt), yens(t) =
yin exp(−2Γmt) and zens(t) = zin exp(−Γmt). An interest-
ing question to discuss is how the sub-ensemble average
state evolves from a fixed initial state, qin, at time t0 to
a fixed final state qf at time T .

To answer the above question, we need to calculate
qsub−ens−avg(t) = qf

⟨q(t)⟩qin
. For the considered ideal XZ

measurement, the components qf
⟨z(t)⟩qin

and qf
⟨x(t)⟩qin

can be calculated from the real and imaginary parts of

qf
⟨exp[iθ(t)]⟩qin

, which in turn can be obtained from the
result (29) with s2 = 0. We obtain

qf
⟨z(t)⟩qin

= e−t(1−t/T )/2τm

×
∑n∈Z e−(∆θ+2πn)2τm/2T cos (θin + (∆θ + 2πn)t/T )

∑n∈Z e−(∆θ+2πn)2τm/2T ,

qf
⟨x(t)⟩qin

= e−t(1−t/T )/2τm

×
∑n∈Z e−(∆θ+2πn)2τm/2T sin(θin + (∆θ + 2πn)t/T )

∑n∈Z e−(∆θ+2πn)2τm/2T ,

(33)

and qf
⟨y(t)⟩qin

= 0 since we are considering state evolu-
tion on the Bloch xz plane.

In Fig. 1 we show some of the results obtained in this
section. Figure 1(a) depicts the sub-ensemble average
state for various values of T with boundary conditions on
the quantum trajectories specified by the angles θin = π/4
and θf = 7π/8. We notice that for T = 10τm, the aver-
age qsub−ens−avg(t) first becomes mixed (i.e., states lying
inside the Bloch sphere) and approaches the fully mixed
state (x = y = z = 0) at around t = T /2, and then it
unwinds itself such that the subensemble average state
reaches the target pure state qf at the final time T . This
turning behavior is less obvious for shorter post-selection
time T = 3.5τm and T = τm as the trajectories in the
subensemble do not have enough time to wander around
the Bloch sphere to contribute to the mixedness of the
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state. We point out that this evolution is rather different
from the conventional exponential decay of the (total)
ensemble average evolution induced by the XZ measure-
ment (shown as the dashed line in Figure 1(a)). Fig-
ure 1(b) shows the quantum state correlators for the ideal
XZ measurement with the same boundary conditions as
in Fig. 1(a) and T = 3.5τm. Solid lines depict our ana-
lytical formulas, Eqs. (22)–(23) and (29), and the crosses
depict Monte Carlo simulation results. The percentage of
simulated trajectories which satisfy the boundary condi-
tions are 0.12%, 0.30% and 0.34% for T = τm,3.5τm and
10τm, respectively.

B. Perturbative solutions of conditional averages
for non-ideal XZ measurements

In the case of non-ideal XZ measurements, where there
exist measurement inefficiencies, qubit energy relaxation
and dephasing due to unwanted coupling with the envi-
ronment, our knowledge about the qubit state comes in
the form of a mixed state. In order to describe its evolu-
tion, we need to consider two coordinates; for example,
the x and z Bloch coordinates. In this case, an ana-
lytic solution for the correlators is not forthcoming, so we
apply the stochastic path integral perturbatively to com-
pute the conditional averages for the quantum state vari-
ables. Following the method presented in Refs. [30, 37],
the stochastic action discussed in Section II B, Eqs. (6)–
(7), is first rearranged into a free action and an interac-
tion action, S = SF + SI , where,

SF = ∫

T

0
dt{ipx(ẋ + Γzx) + ipz(ż + Γxz) +

ξ2
x

2
+
ξ2
z

2
} ,

(34)

SI = ∫

T

0
dt [{ipxxz − ipz(1 − z

2
)}

ξz
√
τz

+ {−ipx(1 − x
2
) + ipzxz}

ξx
√
τx

] . (35)

The free action includes only the bilinear terms in
x, z, px, pz, ξx and ξz variables and therefore can be
rewritten in terms of the free Green’s function, e.g.,
SF = i∑a=x,z ∫dtdt′pa(t)G−1

a (t, t′)a(t′), where a = x, z.
The rest of the terms in the action define the interaction
action SI . The free Green’s functions for the variables x
and z are given by

Gx(t, t
′
) = exp{−Γz(t − t

′
)}Θ(t − t′),

Gz(t, t
′
) = exp{−Γx(t − t

′
)}Θ(t − t′). (36)

The function Θ(t) is a left continuous Heaviside step
function (Θ(0) = 0 and limt→0+ Θ(t) = 1, see Ref. [30]).
The Green’s functions for the noise terms in the free ac-
tion are simply the delta functions Gξ(t, t

′) = δ(t − t′),
for both noises ξx and ξz. The perturbative expansion
comes from expanding the exponential, eSI , in powers of

SI , where one can construct diagrammatic rules to keep
track of nonvanishing terms. In the diagrammatic expan-
sion, the terms in the interaction action SI determine ver-
tices, whereas, the Green’s functions determine propaga-
tors. The vertices and propagators are shown in Table I.
We follow the diagrammatic rules explained in full detail
in Ref. [30] and note that the type of expansion presented
in the reference is similar to the loop expansion in quan-
tum theory. However, one can show that, in this case,
the order of the expansion can be equivalently controlled
by a small noise parameter which is related to the mea-
surement efficiency ηx,z. Even though the measurement
efficiency is not shown explicitly in the equations we used
so far, they are actually contained in the definition of the
characteristic measurement time τx,z = 1/(2Γx,zηx,z).

We illustrate the diagrammatic approach by comput-
ing the correlators of this type: CAB(t1, t2∣qin,0) ≡

⟨A(t1)B(t2)⟩qin
, where A,B are any two of the Bloch

sphere coordinates x, z and the conditioning is only on
the initial state qin = {xin, zin} at time t0 = 0. We note
that conditioning on both initial and final states is also
possible, however the diagrammatic rules are far more
complicated and we are not considering that case here.
We begin with the cross-correlation function,

Czx(t1, t2∣qin,0) = ⟨z(t1)x(t2)⟩qin
=
xt2 xin

zt1 zin

+
xt2

z

zt1

xin

zin +
xt2

x

zt1 xin

zin

+
xt2

z

zt1 zin

zin

xin

zin +
xt2

x

zt1 xin

zin

xin

xin ,
(37)

showing how the ending vertices zt1 and xt2 can be con-
nected to other vertices in Table I only up to 0 loops
(tree-level diagrams). Importantly, we note that the
noise propagators (shown as wavy lines) can only con-
nect vertices with the same noise flavors, as a result of
the independence of the two noises ξx and ξz. The math-
ematical expressions corresponding to the diagrams are
given by

Czx(t1, t2∣qin,0) = −(
1

τz
+

1

τx
) zinxin

× ∫

T

0
dt′Gz(t1, t′)Gx(t2, t′)Gx(t′, t0)Gz(t′, t0)

+
xinz

3
in

τz
∫

T

0
dt′Gz(t1, t′)Gx(t2, t′)Gz(t′, t0)3Gx(t

′, t0)

+
x3

inzin

τx
∫

T

0
dt′Gz(t1, t′)Gx(t2, t′)Gz(t′, t0)Gx(t′, t0)3.

(38)
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Type Labels of vertices Value Diagrams

Initial xin, zin xin, zin

2 legged pxξx, pzξz
1√
τx
, 1√

τz

4 legged
pzzxξx, pxx

2ξx,
pxxzξz, pzz

2ξz
−

1√
τx
,− 1√

τz

TABLE I. Different possible vertices and associated diagrams for correlation functions of x and z in joint continuous XZ
measurement. We note the different measurement times τx,z go with the appropriate x or z diagram vertex or propagator.

We evaluate above integrals and obtain

Czx = e
−Γxt1−Γzt2{ − 2xinzin (Γzηz + Γxηx) tmin+

xinz
3
inΓzηz
Γx

(1 − e−2Γxtmin) +
zinx

3
inΓxηx
Γz

(1 − e−2Γztmin) }.

(39)

Other examples are the self-correlators Czz and Cxx. The
diagrams for the z-z correlator conditioning on an initial
state are given by

Czz(t1, t2∣qin,0) = ⟨z(t1)z(t2)⟩qin
=
zt2 zin

zt1 zin

+
zt2

z

zt1

+
zt2

z

zt1

zin

zin +
zt2

z

zt1 zin

zin

+
zt2

z

zt1 zin

zin

zin

zin +
zt2

x

zt1 xin

zin

xin

zin ,
(40)

which can be evaluated to give

Czz = e
−Γx(t1+t2){−4Γzηzz

2
intmin +

Γzηz
Γx

(e2Γxtmin − 1)

+
x2

inz
2
inΓxηx
Γz

(1 − e−2Γztmin) +
z4

inΓzηz
Γx

(1 − e−2Γxtmin)}.

(41)

For the other self-correlator Cxx, the calculation is in the
same way, with the replacements xin ↔ zin, and z ↔ x.

Figure 2 shows the comparison between our analyt-
ical results from the diagrammatic perturbation the-
ory and Monte Carlo simulations. We show the
results for the covariance and variance functions of
the Bloch coordinates, defined as Cov[A(t1)B(t2)] ≡

⟨A(t1)B(t2)⟩qin
− ⟨A(t1)⟩qin

⟨B(t2)⟩qin
and Var[A(t)] ≡

⟨[A(t) − ⟨A(t)⟩qin
]
2
⟩qin

, respectively. We consider two
cases: measurement efficiencies ηx = ηz = 0.5 and 0.05. As
expected from the expansion, where we only keep terms
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FIG. 2. Covariance and variance functions of the Bloch co-
ordinates for non-ideal XZ measurements. The analytical re-
sults obtained from the diagrammatic perturbative expansion
are presented in solid curves and the Monte Carlo simulation
results are presented with markers. The results from the di-
agrammatic expansion agree with the numerical data much
better for the case of small measurement quantum efficiency
η = 0.05, as shown in panel (b), than for the case with η = 0.5,
shown in panel (a). The insets shows the results for the vari-
ance functions. We assume both measurement channels have
the same quantum efficiency (ηx = ηz = η).

up to the tree-level diagrams, the numerical covariance
and variance functions are in good agreement with the
theory when ηx,z are small, corresponding to the small
noise limit where the noisy trajectories are not too far
away from its averaged trajectory [30].
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C. Application to general cases with
non-commuting observables σz and σϕ

The analysis of the perturbative diagrams for XZ mea-
surement can be generalized to the case of simultaneous
and continuous measurement of σz and σϕ with arbitrary
angle, ϕ, between the measurement axes. The stochas-
tic equations for this case are given in Eq. (4) (consider
only equations for x and z), and we can use them to con-
struct a stochastic path integral with a stochastic action,
which can be separated into free and interaction parts,
S̃ = S̃F + S̃I . We notice that the terms in the free ac-
tion for XZ measurement, Eq. (34), apart from the noise
terms, are of the form: pa(ȧ+Γa) where a = x, z, leading
to the Green’s functions of Eq. (36). In order to be able
to use the diagrammatic rules of XZ measurement case
also in the case of arbitrary ϕ, we need to keep the same
structure of the free action in both cases. We do this by
transforming the variables x, z in the stochastic master
equations (4) to a new set of variables u, v that diagonal-
izes the linear parts of the evolution equations. That is,
we find eigenvectors and eigenvalues of the decoherence
matrix M ,

M = (
−(Γz + Γϕ cos2 ϕ)

Γϕ sin 2ϕ

2
Γϕ sin 2ϕ

2
−Γϕ sin2 ϕ

) . (42)

The eigenvalues of the decoherence matrix are λ+ and λ−,

λ± = −
Γz
2
−

Γϕ

2
±

√
Ξ

2
, (43)

where Ξ = Γ2
ϕ + Γ2

z + 2ΓϕΓz cos(2ϕ). The stochastic dif-
ferential equations after the variable transformation are
of the form

u̇ = λ−u + κzuξz + κxuξϕ + αx1u
2ξϕ

+ αx2uvξϕ + αzu
2ξz + αzuvξz, (44a)

v̇ = λ+v + κzvξz + κxvξϕ + αx2v
2ξϕ

+ αx1uvξϕ + αzv
2ξz + αzuvξz, (44b)

where the α- and κ-coefficients are functions of Γz,Γϕ
and ϕ. The final form of the free action, constructed
from these stochastic master equations, is given by S̃F =

∫
T

0 dt{ipu(u̇ + λ−u) + ipv(v̇ + λ+v) + ξ
2
ϕ/2 + ξ

2
z/2} which is

similar to Eq. (34). Therefore, we can apply the same
diagrammatic rules used in the XZ measurement case and
only need to consider the new set of vertices built from
the rest of the terms in the interaction action [those terms
proportional to the α- and κ-coefficients in Eq. (44)].

IV. CONDITIONAL AVERAGES USING THE
FOKKER-PLANCK EQUATION

In this section we will use the Fokker-Planck equa-
tion for the transition probability, P (q, t∣q′, t′), to cal-
culate the conditional quantum state correlators defined

in Eqs. (22)–(23). To find such correlators, we introduce
the two-sided joint probability density W2 for the quan-
tum state to reach the states q1 at time t1 and q2 at time
t2 ≥ t1 given that the initial state is qin at time t0 and
the final state is qf at time T ,

W2(qf , T ∣q2, t2;q1, t1∣qin, t0) =

P (qf , T ∣q2, t2)P (q2, t2∣q1, t1)P (q1, t1∣qin, t0)

P (qf , T ∣qin, t0)
.

(45)

The transition probability P (q, t∣q′, t′), with t > t′, can
be obtained from the Fokker-Planck equation associated
to the Itô equations (4a)–(4c). In particular, such transi-
tion probability can be easily calculated analytically for
the ideal XZ measurement case with detectors of equal
measurement strengths. As in section III, we assume
that the initial state is such that y(0) = 0 and then
y(t) = 0 for all times. Quantum trajectories can then
be parametrized by the polar coordinate, θ(t), which we
will use it to denote the Bloch state q = {sin θ,0, cos θ}.
The Fokker-Planck equation associated to Eq. (12) reads
as

∂tP (θ, t∣θ′, t′) =D∂2
θP (θ, t∣θ′, t′), (46)

where the diffusion coefficient is D = (2τm)−1 and the ini-
tial condition is P (θ, t′∣θ′, t′) = δ(θ − θ′). The solution of
Eq. (46) is given by P (θ, t∣θ′, t′) = (2π)−1

∑n∈Z exp[in(θ−
θ′) − Dn2(t − t′)]. The conditional average quantities,

qf
⟨As1s2[θ(t)]⟩qin

, in Eqs. (22)–(23) are now expressed
in terms of the two-sided joint probability density as

qf
⟨As1s2[q(θ)]⟩qin

= ∫

2π

0
dθ1 ∫

2π

0
dθ2 e

is1θ1+is2θ2×

P (θf , T ∣θ2, t2)P (θ2, t2∣θ1, t1)P (θ1, t1∣θin, t0)

P (θf , T ∣θin, t0)
. (47)

It can be shown that Eq. (47) leads to the same result
as Eq. (29). To show this, we evaluate the integrals in
Eq. (47) and obtain (assuming t0 = 0)

qf
⟨As1s2[q(θ)]⟩qin

= eiθin(s1+s2)−D(s21t1+s22t2+2s1s2t1)×

∑n∈Z e−Dn
2T+[∆θ−2D(s1t1+s2t2)i]ni

∑n∈Z e−Dn
2T+∆θni

.

(48)

We then obtain the result (29) after applying Poisson’s
resummation formula to the sums in the numerator and
denominator in Eq. (48).

The Fokker-Planck approach also enables us to find
analytically the two-sided probability density W of θ at
the time t in terms of the transition probability, obtained
above,

W (θf , T ∣θ, t∣θin, t0) =
P (θf , T ∣θ, t)P (θ, t∣θin, t0)

P (θf , T ∣θin, t0)
. (49)
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FIG. 3. Two-sided probability distribution of the polar coor-
dinate, θ, at the time t. Such distribution takes into account
only quantum trajectories with fixed initial and final states,
parametrized by the angles θin = π/4 and θf = 7π/8, at the
times t = 0 and T = 10τm, respectively. The distribution is
shown for various times: t = 0.5τm, 2.5τm, 5τm, 7.5τm and
9.5τm. The circles represent Monte Carlo simulation results.

Figure 3 shows the above distribution for various times
between t = 0 and T = 10τm, and θin = π/4 and θf = 7π/8.
We note that, at short times, the considered distribution
resembles a Gaussian-like distribution centered at the an-
gle θin, then it tends to flatten out until the time t = T /2
(see green line in Fig. 3). For larger times, t > T /2, the
distribution recovers a Gaussian-like shape centered at
the angle θf . From Fig. 3, it is easy to understand the
behavior exhibited by the sub-ensemble average state,
qsub−ens−avg(t), shown in Fig. 1(a). Specifically, the de-
cay of qsub−ens−avg toward the center of the Bloch sphere
is due to the fact that the distribution, W , becomes in-
creasingly flat until the time t = T /2.

V. QUANTUM STATE CORRELATORS FOR
THE TRANSMON QUBIT EXPERIMENT

To confirm the above theoretical analysis, we now
discuss quantum state correlators of experimental data.
We performed two non-commuting stroboscopic mea-
surements on a superconducting transmon qubit using
the single-quadrature measurement technique and exper-
imental setup described in Ref. [28]. The latter effectively
implements simultaneous continuous measurement of σz
and σx with quantum back-action of the informational
type. The qubit state dynamics is then described by
the stochastic master equation Eq. (4) with the following
additional terms [29], due to finite qubit coherence and
residual Rabi oscillations,

ẋ = − γx + Ω̃Rz, (50a)

ẏ = − T −1
2 y, (50b)

ż = − γz − Ω̃Rx, (50c)

where the terms proportional to γ describe xz-
depolarization of the measured qubit with a rate γ =
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FIG. 4. Comparison of theory and experiment for quantum
state correlators: (a) covariances and (b) variances, for the
qubit under the simultaneous measurement of σx and σz. The
correlators derived from experimental qubit trajectories are
shown in solid curves, whereas the Monte-Carlo simulation
results are shown with markers, showing excellent agreement
with the experimental data. As expected from Fig. 2, the
first order perturbative solutions, shown in dashed gray, while
giving the correct qualitative behaviour, deviate from the
experimental results in the moderately high efficiency limit
(ηz = 0.54 and ηx = 0.41).

(T −1
1 +T −1

2 )/2, T1 = 60µs and T2 = 30µs, and the residual

Rabi-frequency is Ω̃R ≈ 2π × 12kHz [29].
From the experimental readouts of both measurement

channels, we first obtain the quantum trajectories by ap-
plying the quantum Bayesian update at each experimen-
tal time step, dt = 4ns, see Appendix A for details, and
then we calculate the state correlators. The results are
shown in Fig. 4. Figure 4(a) shows the comparison be-
tween state correlators obtained from experimental quan-
tum trajectories, Monte Carlo simulations, and the per-
turbation theory discussed in section III B. In the Monte
Carlo simulations, we use the same set of parameters used
in constructing the qubit trajectories from experimental
data. We find excellent agreement between simulated
and experimental results. As depicted by Fig. 4(a), the
first-order in ηx,z perturbative results are still able to
capture the correct trend of the correlators. Figure 4(b)
shows the variances of the Bloch coordinates x and z.
Here, we also find good agreement between the numeri-
cal simulations and the results obtained from the exper-
imental readouts.



11

VI. CONCLUSIONS

We have investigated the conditional averages and tem-
poral correlation functions of the qubit state evolution
under simultaneous non-commuting observable measure-
ment. We consider the joint measurement of the non-
commuting pseudo-spin observables σx and σz. Under
these continuous measurements, the qubit state trajecto-
ries in time are described by the stochastic master equa-
tion, and the associated stochastic path integral. In the
ideal quantum limit measurement case of equal measure-
ment rates, closed-form solutions of any multi-time cor-
relation function can be found using the stochastic path
integral formalism, even when conditioning on the ini-
tial and final states. We also presented a complimentary
method for finding the conditional correlators using the
Fokker-Planck equation. For the non-ideal measurement
case, where the measurement is inefficient and environ-
ment dephasing is present, the conditional correlators can
be obtained perturbatively using the diagrammatic ap-
proach. We have shown that the perturbative results,
to first order in the efficiency, are in good agreement
with the numerically simulated trajectories in the small
quantum efficiency regime. Most importantly, we have
compared the results of this theoretical analysis with the
qubit trajectory data inferred and tomographically ver-
ified from a superconducting circuit coupled to multi-
mode cavity, and have found excellent agreement between
the correlation functions of the experimental data and
our theoretical treatment.
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Appendix A: Extracting quantum trajectories from
experimental data

In this section, we discuss how to obtain the quantum
trajectories from the experimental readout signals, r̄z(t)

and r̄ϕ(t), recorded with a time resolution of dt = 4ns.
The experimental setup is described in detail in Ref. [28].

Since the experimental readout signals have a finite
time resolution, dt = 4ns, we cannot directly use the
stochastic master equation (4) (valid for infinitesimal
dt) to compute the quantum trajectories. Instead, we
use the quantum Bayesian rule. This garanties that
at each time step we obtain a physical density matrix.
The qubit state at the time t + dt is obtained from the
state at the time t by means of the composed map-
ping: ρ(t + dt) = Lenv ○M[ρ(t)]. Here, the operation
M[ρ] =Mx○Mz[ρ] represents the evolution due to mea-
surement of σz and σx during the time step dt (neglecting
errors of order dt2 due to the non-commutativity of the
measured operators). The evolution due to measurement
of σz alone reads as

(Mz[ρ])ij =
(MzρM

†
z)ij

Tr[MzρM
†
z ]

exp(−Λijdt) (A1)

where Mz = (4πτz/dt)
−1/2 exp[−(r̄z(t) − σz)

2dt/4τz] and
the matrix Λ has vanishing diagonal elements and off-
diagonal elements given by Λ01 = Λ10 = Γz − 1/2τz. Note
that Λ vanishes in the case of ideal measurements. The
state update Eq. (A1) represents the quantum Bayesian
update for a non-ideal measurement of σz for the period
dt. The Bayesian update for σx-measurement is similar
to that of σz. First, we rotate the state along the y-axis
by −π/2 [i.e., ρ → exp(iπσy/4)ρ exp(−iπσy/4)], we apply
the Bayesian update defined in Eq. (A1) [with r̄x(t), τx
and Γx instead of r̄z(t), τz and Γz, respectively], and then
we rotate back the state along the y-axis by π/2. The ex-
perimental parameters are τz = 1/(2ηzΓz) = 1.21µs and
τx = 1/(2ηxΓx) = 1.60µs, and Γz = Γx = 1/1.3µs [28].
Another operation Lenv[ρ] is necessary to account for
the state evolution due to environmental decoherence and
residual Rabi oscillations, which in our case is obtained
by evolving Eq. (50) over the time step, dt. In the exper-
iment, the initial Bloch vector for the qubit trajectories
is qin = {sin(π/4),0, cos(π/4)}, and the total number of
readout traces is approximately 2×105 for each measure-
ment channel. After calculating the experimental quan-
tum trajectories, we calculate the quantum state correla-
tors with only the pre-selection condition, q(t = 0) = qin.
The results are shown in Fig. 4.
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