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We study the dynamics of discrete-time quantum walk using quantum coin operations, Ĉ(θ1) and
Ĉ(θ2) in time dependent periodic sequence. For two-period quantum walk with the parameters θ1
and θ2 in the coin operations we show that the standard deviation (σθ1,θ2(t)) is same as the minimum
of standard deviation obtained from one of the one-period quantum walk with coin operations θ1
or θ2, σθ1,θ2(t) = min{σθ1(t), σθ2(t)}. Our numerical result is analytically corroborated using the
dispersion relation obtained from the continuum limit of the dynamics. Using the dispersion relation
for one- and two-period quantum walk, we present the bounds on the dynamics of three- and higher
period quantum walks. We also show that the bounds for the two-period quantum walk will hold
good for the split-step quantum walk which is also defined using two coin operators using θ1 and
θ2. Unlike the previous known connection of discrete-time quantum walks with the massless Dirac
equation where coin parameter θ = 0, here we show the recovery of massless Dirac equation with
non-zero θ parameters contributing to the intriguing interference in the dynamics in a totally non-
relativistic situation. We also present the effect of periodic sequence on the entanglement between
coin and position space.

I. INTRODUCTION

Quantum walk is a generalization of the classical ran-
dom walk equivalent in a quantum mechanical frame-
work [1–5]. By exploiting the quantum interference in the
dynamics, quantum walks outperform the classical ran-
dom walk by spreading quadratically faster in position
space [6, 7]. At certain computational tasks, quantum
walks provide exponential speedup [8, 9] over classical
computation and are used as a powerful tool in most of
the efficient quantum algorithms [10–13]. Both the vari-
ants, continuous-time and discrete-time quantum walk
have been shown to be universal quantum computation
primitive, that is, they can be used to efficiently real-
ize any quantum computation tasks [14, 15]. With the
ability to engineer and control the dynamics of discrete-
time quantum walk by controlling various parameters in
the evolution operators, quantum simulations of localiza-
tion [16–18], topological bound states [19, 20], relativistic
quantum dynamics where the speed of light is mimicked
by the parameter of the evolution operator [5, 21–27]
and neutrino oscillations [28, 29] has been shown. Quan-
tum walk has also played an important role in modelling
the energy transfer in the artificial photosynthetic mate-
rial [30, 31]. Faster transport [32], graph isomorphism [33]
and quantum percolation [34, 35] are few other applica-
tion where quantum walk has found application.
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Experimentally, controlled evolution of quantum walks
has also been demonstrated in various physical systems
such as NMR [36], trapped ions [37, 38], cold atoms [39]
and photonic systems [40–43] making it a most suitable
dynamic process which can be engineered for quantum
simulations.

Among the two variants of quantum walks, the dynam-
ics of the continuous-time variant are described directly
on the position Hilbert space using an Hamiltonian. The
dynamics of each step of the discrete-time variant are
defined on a Hilbert space composing of both, the po-
sition and particle Hilbert space using a combination of
unitary quantum coin operation acting only on the par-
ticle space followed by a position shift operation acting
on both, particle and position space. By exploring differ-
ent forms of quantum coin and position shift operators in
homogeneous [44, 45], periodic [46], quasiperiodic [47, 48]
and random [17, 49] sequence, ballistic spreading to the
localization of the wavepacket of the particle has been
studied. One of the mathematically rigorous approach
to understand the asymptotic behaviour of the dynam-
ics is to compute the limit distribution function [50, 51].
In Ref. [46], limit distribution function for two-period
quantum walk using two orthogonal matrices as alternate
quantum coin operations has been computed. Inspite of
the important role of quantum interference in the dy-
namics of quantum walk it has been shown that the limit
distribution of two-period quantum walk is determined
by one of the two quantum coin operation (orthogonal
matrix).

This is an important observation which needs to be
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explored in more detail to understand the intricacy in-
volved in the dynamics of the periodic quantum walks.
Particularly, when two-period quantum walks is shown
to produce the dynamics identical to the split-step quan-
tum walk [52] which has been used to simulate topologi-
cal quantum walks, Dirac-cellular automata [53] and Ma-
jorana modes and edge states [52] where both the coin
operations play an important role.

Obtaining the limit density function for non-
orthogonal unitary matrix as quantum coin operation for
two-period and for other n−period quantum walk has
been a hard task. Even if one succeeds in meticulously
obtaining a limit theorem, it will give us an asymptotic
behaviour and fails to layout the way evolutions modu-
late during each sequence of periodic operations.

In this paper we re-visit the dynamics of two-period
discrete-time quantum walk using a non-orthogonal uni-
tary quantum coin operations Ĉ(θ1) and Ĉ(θ2). For two-
period quantum walk with the parameters θ1 and θ2 in
the coin operations we show that the standard deviation
(σθ1,θ2) is same as the minimum of standard deviation
obtained from the one-period quantum walk with coin
operations θ1 or θ2, σθ1,θ2 = min{σθ1 , σθ2}. Our numer-
ical result is analytically corroborated using the disper-
sion relation obtained from the continuum limit of the
dynamics. Though the standard deviations are identi-
cal, the spread in position space after t steps is bounded
by the ±|t cos(θ1) cos(θ2)|. And the interference pattern
is also clearly distinct. This shows up with the promi-
nent presence of both the parameters θ1 and θ2 in the
differential form of the dynamics expression. We also
show that the bounds we obtained for two-period quan-
tum walk will hold good for the split-step quantum walk
which is defined using two coin operators using θ1 and θ2.
Our dispersion relationship approach can be extended
to study bounds on the dynamics of three- and higher
period quantum walks. Unlike the previous known con-
nection of discrete-time quantum walks with the massless
Dirac equation where coin parameter θ = 0, here we show
the recovery of gapless (massless) and gapped (massive)
Dirac equation with non-zero θ parameters contributing
to the intriguing interference in the dynamics in a totally
non-relativistic situation. We also study the effect of pe-
riodic sequence on the entanglement between coin and
position space.

In Sec. II we will give a basic introduction to the oper-
ators that define the evolution of discrete-time quantum
walk. Using that as a basis we will define the periodic
quantum walk and present the numerical results for two-
period quantum walk. In Sec. II A, we obtain the dis-
persion relation for one- and two-period quantum walk
and use it arrive at the bounds on the dynamics of two-
and three- and higher- period quantum walk. In Sec. III,
we present the emerge of Dirac equation from two-period
quantum walk and present the enhancement of entangle-
ment for periodic quantum walks in Sec. IV. We conclude
with our remarks in Sec. V.

II. PERIODIC QUANTUM WALK

Dynamics of the one dimensional discrete-time quan-
tum walk on a particle with two internal degree of free-
dom is defined on an Hilbert space Hw = Hc⊗Hp where
the coin Hilbert space Hc = span{|↑〉 , |↓〉} and position
Hilbert space Hp = span{|i〉}, i ∈ Z representing the
number of position states available to the walker. The
generic initial state of the particle, |ψ〉c, can be written
using a two parameters δ, η in the form,

|ψ(δ, η)〉c = cos(δ) |0〉+ e−iη sin(δ) |1〉 . (1)

Each step of the walk evolution is defined by the action
of the unitary quantum coin operation followed by the
position shift operator. The single parameter quantum
coin operator which is a non-orthogonal unitary and acts
only on the particle space can be written in the from,

Ĉ(θ) =

[

cos(θ) −i sin(θ)
−i sin(θ) cos(θ)

]

. (2)

The position shift operator Ŝ that translates the particle
to the left and/or right conditioned on the internal state
of the particle is of the form,

Ŝ = |0〉 〈0| ⊗
∑

i∈Z

|i− 1〉 〈i|+ |1〉 〈1| ⊗
∑

i∈Z

|i+ 1〉 〈i| . (3)

The state of the particle in extended position space after t
steps of homogeneous (one-period) quantum walk is given

by applying the operator Ŵ = Ŝ(Ĉ ⊗ I) on the initial
state of the particle and the position,

|Ψ(t)〉 = Ŵ t

[

|ψ〉c ⊗ |x = 0〉

]

=
∑

x

[

ψ
↓
x,t

ψ
↑
x,t

]

. (4)

Probability of finding particle at position and time (x, t)
will be

P (x, t) =
∥

∥

∥
ψ
↓
x,t

∥

∥

∥

2

+
∥

∥

∥
ψ
↑
x,t

∥

∥

∥

2

. (5)

Using P (x, t) we can compute the standard deviation (σ)
of the probability distribution after t steps of walk.

Two-period quantum walk : To describe the periodic
quantum walk we will use two quantum coin operation
C(θ1) and C(θ2). The evolution operator for the t step
of two-period quantum walk will be of the form,

[Ŵθ2Ŵθ1 ]
t/2. (6)

For n-period quantum walk the evolution is described us-
ing operation Ŵθ2 for every multiple of n steps and Ŵθ1

for all other steps. We should note that the two-period
quantum walk we have defined is a time-dependent peri-
odic evolution but for the localized initial state and evolu-
tion operators we have defined it is equivalent to position-
dependent two-period quantum walk. This equivalence
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FIG. 1. (Color online) Probability distribution after
200 step of quantum walk using different combination of
quantum coin operations and a corresponding standard
deviation as a function of time. In (a, c, e) we have
plotted the probability distribution in position space for
both one- and two-period quantum walk. We can notice
that the spread of the probability for two-period case
after t steps is bounded by ±min{t|cos(θ1)|, t|cos(θ2)|}.
The standard deviation plot in (b, d) shows that
σθ1,θ2(t) = σθ2(t) and in (f) σθ1,θ2(t) = σθ1(t). However,
the interference pattern is clearly distinct with
prominent oscillations for two-period case.

should be attributed to the probability distribution which
will be zero at odd (even) position when t is even (odd).
But this equivalence will not hold good to any n− period
quantum walk in general.

From earlier results we know that the spread of the
one-period quantum walk probability distribution using
evolution operation Ŵθ is bounded between −t cos(θ) and
+t cos(θ) (±t cos(θ)) and σ ∝ t|cos(θ)| [44, 45]. For a
two-period walk it looks natural to expect the spread to
be bounded somewhere between positions ±t cos(θ1) and
±t cos(θ2). But in reality the spread is bounded between
±min{t|cos(θ1)|, t|cos(θ2)|}.

In Fig. 1, the probability distribution and standard
deviation (σ) after 200 steps of quantum walk using
different values of θ1 and θ2, separately (one-period)
and together in two-period sequence is presented. We
can see that the spread of the probability distribu-
tion of the two-period quantum walk Pθ1,θ2(t) is always
bounded within the spread of the probability distribution
min{Pθ1(t), Pθ2(t)} and σθ1,θ2(t) = min{σθ1(t), σθ2(t)}.
But the interference pattern are not identical. In Fig. 2,
σθ1,θ2 after 100 steps as function of θ1 when θ2 is fixed
is presented. In Fig. 3, σθ1,θ2 as function of θ1 and θ2
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FIG. 2. (Color online) Standard deviation (σ) as
function of θ1 when θ2 is fixed. With increase in θ1 we
can notice that σθ1,θ2(t) = min{t|cos(θ1)|, t|cos(θ2)|}.

FIG. 3. (Color online) Standard deviation as function
of θ1 and θ2 after 25 step of quantum walk. With
increase in both, θ1 and θ2 we can note that
σθ1,θ2(t) = min{t|cos(θ1)|, t|cos(θ2)|}.

after 25 steps of quantum walk is shown. Analysing the
dependence of σ on the two coin parameters we can note
that the σθ1,θ2(t) ∝ min{t|cos(θ1)|, t|cos(θ2)|}.

In Ref. [46], for combination of orthogonal matri-
ces in two-period quantum walk, the limit distribution
(L1,2(X)) was computed for specific combination of pa-
rameters and shown to be identical to the limit dis-
tribution of quantum walk using single coin operation,
L1,2(X) = min{L1(X), L2(X)}. However, from the
probability distribution shown in Fig. 1, the interference
pattern within in the bound is different and limit distri-
bution function fails to capture that. To get more insight
into dynamics of two-period quantum walk and explore
the physical significance we will study the dynamic ex-
pression at time t and obtain the dispersion relation for
it in continuum limit.
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A. Dispersion relation and bounds on spread of

wavepacket

One-period quantum walk : The state of the particle af-
ter t + 1 number of steps of a one-period discrete-time
quantum walk can be written as,

|Ψ(t+ 1)〉 =

t+1
∑

x=−(t+1)

(ψ↓
x,t+1 + ψ

↑
x,t+1) (7)

where the left and right propagating components of the
particle is given by,

ψ
↓
x,t+1 =cos(θ)ψ↓

x+1,t − i sin(θ)ψ↑
x+1,t (8a)

ψ
↑
x,t+1 =− i sin(θ)ψ↓

x−1,t + cos(θ)ψ↑
x−1,t. (8b)

This can be written in the matrix form,

[

ψ
↓
x,t+1

ψ
↑
x,t+1

]

=

[

cos(θ) −i sin(θ)
0 0

]

[

ψ
↓
x+1,t

ψ
↑
x+1,t

]

+

[

0 0
−i sin(θ) cos(θ)

]

[

ψ
↓
x−1,t

ψ
↑
x−1,t

]

. (9)

By adding and subtracting the LHS of the Eq. (9) by
[

ψ
↓
x,t

ψ
↑
x,t

]

and RHS by

[

cos(θ) −i sin(θ)
−i sin(θ) cos(θ)

]

we get a dif-

ference operator which can be converted to differential
operator which will result in the differential equation of
the form,

∂

∂t

[

ψ
↓
x,t

ψ
↑
x,t

]

=

[

cos(θ) −i sin(θ)
i sin(θ) − cos(θ)

]

[

∂ψ↓
x,t

∂x
∂ψ↑

x,t

∂x

]

+

[

cos(θ)− 1 −i sin(θ)
−i sin(θ) cos(θ)− 1

]

[

ψ
↓
x,t

ψ
↑
x,t

]

. (10)

By reorganising the preceding expression we get a simul-
taneous equation of the form,

{

∂

∂t
− cos(θ)

∂

∂x
− (cos(θ)− 1)

}

ψ
↓
x,t

+i sin(θ)

{

∂

∂x
+ 1

}

ψ
↑
x,t = 0 (11a)

{

∂

∂t
+ cos(θ)

∂

∂x
− (cos(θ)− 1)

}

ψ
↑
x,t

+i sin(θ)

{

∂

∂x
− 1

}

ψ
↓
x,t = 0. (11b)

For the above expression governing the dynamics of each
step of one-period quantum walk in continuum limit, we
can seek a Fourier-mode wave like solution of the form

ψx,t = ei(kx−ωt), (12)

where ω is the wave frequency and k is the wavenumber.
Upon substitution into real part of the Eq. (11) we get,

ω = ∓k cos(θ) + i[cos(θ)− 1] (13)

and the group velocity will be

v
g
1 =

dω

dk
= ∓ cos(θ). (14)

From this we can say that the wavepacket spreads at
a rate of cos(θ) during each step of the quantum walk
and after t steps the spread will be between ±t cos(θ).
Though we have used only one form of the quantum coin
operation with complex elements in it, the group veloc-
ity will be ∝ cos(θ) even when a most generic unitary
operator is used as a quantum coin operation [17].
Two-period quantum walk : For the two-period quantum
walk the evolution is driven by two quantum coin oper-
ation Ĉ(θ1) and Ĉ(θ2). First, we will write the state at

position x and time t + 1, ψ
↓(↑)
x,t+1 as component of θ2 at

time t,

ψ
↓
x,t+1 = cos(θ2)ψ

↓
x+1,t − i sin(θ2)ψ

↑
x+1,t (15a)

ψ
↑
x,t+1 = −i sin(θ2)ψ

↓
x−1,t + cos(θ2)ψ

↑
x−1,t. (15b)

In the preceding expression, dependency of the state

ψ
↓(↑)
x,t+1 on coin parameter θ1 can be obtained by writing

the state ψ
↓(↑)
x±1,t as component of θ1 at time (t− 1),

ψ
↓
x+1,t = cos(θ1)ψ

↓
x+2,t−1 − i sin(θ1)ψ

↑
x+2,t−1 (16a)

ψ
↑
x+1,t = −i sin(θ1)ψ

↓
x,t−1 + cos(θ1)ψ

↑
x,t−1 (16b)

ψ
↓
x−1,t = cos(θ1)ψ

↓
x,t−1 − i sin(θ1)ψ

↑
x,t−1 (16c)

ψ
↑
x−1,t = −i sin(θ1)ψ

↓
x−2,t−1 + cos(θ1)ψ

↑
x−2,t−1 (16d)

Now, substituting Eq. (16) into Eq. (15) we obtain,

ψ
↓
x,t+1 = cos(θ2)[cos(θ1)ψ

↓
x+2,t−1 − i sin(θ1)ψ

↑
x+2,t−1]

−i sin(θ2)[−i sin(θ1)ψ
↓
x,t−1 + cos(θ1)ψ

↑
x,t−1]

(17a)

ψ
↑
x,t+1 = −i sin(θ2)[cos(θ1)ψ

↓
x,t−1 − i sin(θ1)ψ

↑
x,t−1]

+ cos(θ2)[−i sin(θ1)ψ
↓
x−2,t−1 + cos(θ1)ψ

↑
x−2,t−1].

(17b)

Without loosing any generic feature in the preceding evo-
lution expression we can replace t with t+ 1. After that
we can effectively reduce the two step evolution expres-
sion using coins with parameter θ1 and θ2 to a combined
single step evolution expression by replacing x±2 in RHS
by x± 1 and t+ 2 in LHS by t+ 1. This will result in

ψ
↓
x,t+1 = cos(θ2)[cos(θ1)ψ

↓
x+1,t − i sin(θ1)ψ

↑
x+1,t]

−i sin(θ2)[−i sin(θ1)ψ
↓
x,t + cos(θ1)ψ

↑
x,t] (18a)

ψ
↑
x,t+1 = −i sin(θ2)[cos(θ1)ψ

↓
x,t − i sin(θ1)ψ

↑
x,t]

+ cos(θ2)[−i sin(θ1)ψ
↓
x−1,t + cos(θ1)ψ

↑
x−1,t]. (18b)
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FIG. 4. (Color online) Group velocity obtained from
dispersion relation as function of θ1 and θ2 for
two-period quantum walk. The group velocity obtained
in continuum limit of evolution for each step of the walk
when multiplied by number of steps of walk it matches
with the overall pattern of standard deviation obtained
in discrete evolution of the walk.

In matrix form this can be written as,
[

ψ
↓
x,t+1

ψ
↑
x,t+1

]

=

[

− sin(θ2) sin(θ1) −i sin(θ2) cos(θ1)
−i sin(θ2) cos(θ1) − sin(θ2) sin(θ1)

]

[

ψ
↓
x,t

ψ
↑
x,t

]

+

[

0 0
−i cos(θ2) sin(θ1) cos(θ2) cos(θ1)

]

[

ψ
↓
x−1,t

ψ
↑
x−1,t

]

+

[

cos(θ2) cos(θ1) −i sin(θ1) cos(θ2)
0 0

]

[

ψ
↓
x+1,t

ψ
↑
x+1,t

]

.

(19)

By adding and subtracting the LHS of

the Eq. (19) by

[

ψ
↓
x,t

ψ
↑
x,t

]

and RHS by

[

cos(θ2) cos(θ1) −i sin(θ1) cos(θ2)
−i sin(θ1) cos(θ2) cos(θ2) cos(θ1)

]

we get a dif-

ference operator which can be converted to differential
operator which will result in the differential equation of
the form,

∂

∂t

[

ψ
↓
x,t

ψ
↑
x,t

]

=cos(θ2)

[

cos(θ1) −i sin(θ1)
i sin(θ1) − cos(θ1)

]

[

∂ψ↓
x,t

∂x
∂ψ↑

x,t

∂x

]

+

[

cos(θ1 + θ2)− 1 −i sin(θ1 + θ2)
−i sin(θ1 + θ2) cos(θ1 + θ2)− 1

]

[

ψ
↓
x,t

ψ
↑
x,t

]

.

(20)

The preceding matrix representation can be reorganised
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FIG. 5. (Color online) Probability distribution after
200 step of quantum walk for different combination of
quantum coin operations and a corresponding standard
deviation as a function of time. In (a, c, e) we have
plotted the probability distribution in position space for
both one- and three-period quantum walk. We can
notice that the spread of the probability for
three-period case after t steps is always lower than
±max{t|cos(θ1)|, t|cos(θ2)|} but not bounded by
minimum of the two like it was for two-period quantum
walk. The standard deviation plot in (b, d, f) shows
that σθ1,θ2(t) will be around min{σθ1(t), σθ2(t)}.

and written as a simultaneous equations,
{

∂

∂t
− cos(θ2) cos(θ1)

∂

∂x
− [cos(θ1 + θ2)− 1]

}

ψ
↓
x,t

+i

{

sin(θ1) cos(θ2)
∂

∂x
+ sin(θ1 + θ2)

}

ψ
↑
x,t = 0

(21a)
{

∂

∂t
+ cos(θ2) cos(θ1)

∂

∂x
− [cos(θ1 + θ2)− 1]

}

ψ
↑
x,t

−i

{

sin(θ1) cos(θ2)
∂

∂x
− sin(θ1 + θ2)

}

ψ
↓
x,t = 0.

(21b)

For the above expression effectively governing the dy-
namics of the two-period quantum walk in continuum
limit, we can seek a Fourier-mode wave like solution of
the form ψx,t = ei(kx−ωt). Upon substitution into real
part of the Eq. (21) we get,

ω = ∓k cos(θ2) cos(θ1) + i[cos(θ1 + θ2)− 1] (22)

and the group velocity will be

v
g
2 =

dω

dk
= ∓ cos(θ2) cos(θ1). (23)
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FIG. 6. (Color online) Standard deviation as function
of θ1 and θ2 after 45 steps of three-period quantum
walk. Except for θ’s where |cos(θ1)| ≈ |cos(θ2)| and
close to unity, standard deviation is very low. This can
be attributed to multiple peaks in the distribution
where peaks with higher probability is closer to origin.

In Fig. 4 we have plotted group velocity for two-period
quantum walk, vg2(θ1, θ2). This gives an effective dis-
placement of the wavepacket for each step of two-period
quantum walk when two step evolution using θ1 and θ2
is combined to one effective step evolution. Comparing
Fig. 4 and Fig. 3, vg and σ as function of θ1 and θ2 we can
see an identical pattern and only when the dominance of
one θ over the other happen, the transition is smooth for
vg. This is due to the continuum approximation we made
in the analytics.

From the expression for group velocity, Eq. (23), we
can infer that

|vg2 | ≤ min{|cos(θ1)|, |cos(θ2)|}. (24)

Therefore, the bound on the group velocity sets the
bound on the standard deviation, σ(t) ∝ t|vg2 |. This
bound on the group velocity and standard deviation cor-
roborates with the bounds we obtained from the numer-
ical analysis.
Three- and n−period quantum walk : First three step of
three-period quantum walk using two quantum coin oper-
ation Ĉ(θ1) and Ĉ(θ2) is implemented with the evolution
operator in sequence,

Ŵ3P = Ŵθ2Ŵθ1Ŵθ1 . (25)

In Fig. 5, probability distribution after 200 step of
three-period quantum walk is presented and spread
of the probability after t steps is always lower than
±max{t|cos(θ1)|, t|cos(θ2)|} but not bounded by mini-
mum of the two like it was for two-period quantum

FIG. 7. (Color online) Spread of the probability
distribution in position space after 100 step of
three-period quantum walk as function of θ1 and θ2.
This bound on the spread in obtained from the
maximum of group velocity vg3 .

walk. The standard deviation plot in (b, d, f) shows that
σθ1,θ2(t) will be around min{σθ1(t), σθ2(t)} and does not
match explicitly. In Fig. 6, standard deviation as func-
tion of θ1 and θ2 after 45 steps of three-period quantum
walk is shown. Except for evolution parameter where
|cos(θ1)| ≈ |cos(θ2)| and close to unity, standard devia-
tion is very low. This can be attributed to multiple peaks
in the distribution where peaks with higher probability
is closer to origin.

Unlike two-period case where only two peaks were seen
in the probability distribution, multiple peaks can emerge
in the three- and n−period quantum walk (see Fig. 8).
This can result in mismatch between the linear scaling
of group velocity with the standard deviation. However,
group velocity can give us a definite bound on the max-
imum spread of the probability distribution in position
space for three- and n− period quantum walk.

Evolution operator for first three step of three-period
walk can be re-written as,

Ŵ3P = Ŵ2P Ŵθ1 , (26)

where Ŵ2P represent the two-period operator sequence
for which we already know the dispersion relation and
v
g
2 (Eq. (23)) when it is treated as an effective one step

evolution. Extrapolating vg1 and vg2 from one-period and
two-period quantum walk we can write the group velocity
for three period walk in the form,

v
g
3 =

±(vg1 + v
g
2)

2
= ±

1

2

[

cos(θ1)±cos(θ1) cos(θ2)

]

. (27)

For any given values of θ’s, we can get multiple valid value
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FIG. 8. (Color online) Probability distribution and
standard deviation after 200 steps of n−period
quantum walk. In (a) the probability distribution for
three-period, four-period, and fifty-period quantum
walk is shown. The inset shows the position probability
distribution for two-period and when coin is
homogeneous (one-period) with coin parameter θ1 and
θ2 . The standard deviation (b) shows only two-period
evolution is bounded by θ1 for three-period and
four-period it is bounded between θ2 and θ1. We can
verify that the spread in probability distribution is
bounded by maximum of group velocity for all
n−period quantum walks.

for vg3 . This can be interpreted as wavepacket simulta-
neously evolving with different vg3 resulting in multiple
peaks in the probability distribution. Among the possi-
ble values for vg3 the contribution for maximum spread in
position space will be from,

max|vg3 | =
1

2

[

|cos(θ1)|+ |cos(θ1) cos(θ2)|

]

. (28)

From the preceding expression we can conclude that the
bound on the spread of the wavepacket in position space
after t step of three-period walk will be,

± t max|vg3 | =
±t

2

[

|cos(θ1)|+ |cos(θ1) cos(θ2)|

]

. (29)

In Fig. 7, bounds on the spread of the probability dis-
tribution in position space after 100 step of three-period
quantum walk as function of θ1 and θ2 is shown. This
bound on the spread in obtained from the maximum of
group velocity vg3 . By substituting finite values for θ1 and
θ2 into Eq. (29) we can confirm that the bounds we get

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

En
ta
ng

le
m
en

t

a)

θ1= 5π
12

θ2= π
6

(θ1, θ2)2

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

En
ta
ng

le
m
en

t

b)

θ1= 5π
12

θ2= π
6

(θ1, θ2)3
(θ1, θ2)50

FIG. 9. (Color online) Entanglement between the
particle and position for 200 steps for one-, two-, three-
and fifty-period quantum walk. For two-period
quantum walk (a), in contrast to standard deviation,
the mean value of entanglement is bounded around the
maximum of the two on-period quantum walk. For
three-period quantum walk, entanglement reaches a
maximum possible value and from larger n− period
quantum walk we can see how the enhancement
happens when quantum coin operation with θ2 is
introduced periodically.

from maximum of group velocity matches with the maxi-
mum range of spread of probability distribution obtained
from numerical evolution (Fig. 5(a, c, e) and Fig. 8).

For n−period quantum walk, the spread of the proba-
bility distribution will be bounded by,

±tmax|vgn| =
±t

(n− 1)

[

(n−2)|cos(θ1)|+|cos(θ1) cos(θ2)|

]

.

(30)
In Fig. 8, probability distribution and standard deviation
after 200 steps of n−period quantum walks is shown. We
can verify that the spread in probability distribution is
bounded by maximum of group velocity for all n−period
quantum walks.

III. TWO-PERIOD QUANTUM WALK,

SPLIT-STEP QUANTUM AND DIRAC

EQUATION

Split-step quantum walk was first introduced to define
topological quantum walk [20] and was show to simulate
Dirac cellular automata [53]. Recently, the decomposed
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form of split-step quantum walk was shown to be equiva-
lent to two-period quantum walk and simulate Majorana
modes and edge states [52]. In this section, staring from
the split-step quantum walk we arrive at the differential
equation form of the evolution equation which is equiv-
alent to two-period quantum walk evolution equation.
From this we can establish that all bounds applicable to
two-period quantum walk will hold good for split-step
quantum walk and equivalent form of Dirac equations.

Each step of split-step quantum walk is a composition
of two half step evolutions,

Ŵss = Ŝ+(Ĉ(θ2)⊗ I)Ŝ−(Ĉ(θ1)⊗ I), (31)

where Ĉ(θ1) and Ĉ(θ2) are quantum coin operation and
we will define it in same form as Eq. (2). Position shift
operator are defined as,

Ŝ− = |0〉 〈0| ⊗
∑

i∈Z

|i − 1〉 〈i|+ |1〉 〈1| ⊗
∑

i∈Z

|i〉 〈i| (32a)

Ŝ+ = |0〉 〈0| ⊗
∑

i∈Z

|i〉 〈i|+ |1〉 〈1| ⊗
∑

i∈Z

|i+ 1〉 〈i| . (32b)

The state at any position x and time t + 1 after the

operation of Ŵss at time t will be ψx,t+1 = ψ
↓
x,t+1 +

ψ
↑
x,t+1, where

ψ
↓
x,t+1 = cos(θ2)[cos(θ1)ψ

↓
x+1,t − i sin(θ1)ψ

↑
x+1,t]

−i sin(θ2)[−i sin(θ1)ψ
↓
x,t + cos(θ1)ψ

↑
x,t] (33a)

ψ
↑
x,t+1 = −i sin(θ2)[cos(θ1)ψ

↓
x,t − i sin(θ1)ψ

↑
x,t]

+ cos(θ2)[−i sin(θ1)ψ
↓
x−1,t + cos(θ1)ψ

↑
x−1,t]. (33b)

The preceding expression is identical to Eq. (18) which
we have obtained for two-period quantum walk. There-
fore, the differential equation form of the evolution will
be same as Eq. (20). By controlling the parameters θ1
and θ2 we can arrive at the Dirac equations for massless
and massive particles.

1. Multiplying Eq. (20) by i~ and setting θ1 = 0 and
θ2 to a small value (mass of sub-atomic particles)
we recover Dirac equation in the form,

i~

[

∂

∂t
−

(

1−
θ22
2

)[

1 0
0 −1

]

∂

∂x
+ iθ2

[

0 1
1 0

]

][

ψ
↓
x,t

ψ
↑
x,t

]

≈ 0.

(34)

2. By choosing θ1 and θ2 such that cos(θ1 + θ2) = 1 in
Eq. (20), and multiplying by i~ we get an expression
identical to Dirac equation of massless particle,

i~

[

∂

∂t
− cos(θ2)

[

cos(θ1) −i sin(θ1)
i sin(θ1) − cos(θ1)

]

∂

∂x

][

ψ
↓
x,t

ψ
↑
x,t

]

= 0.

(35)

Here the co-efficient of the position derivative is a
more general Hermitian matrix which depicts the
oscillation of the spin (eigen state) during the dy-
namics.

3. By choosing θ1 to be extremely small and corre-
sponding θ2 such that cos(θ1 + θ2) = 1 in Eq. (20),
and multiplying by i~ we get the Dirac equation in
the form,

i~

[

∂

∂t
− cos(θ2)

[

1 0
0 −1

]

∂

∂x

][

ψ
↓
x,t

ψ
↑
x,t

]

≈ 0. (36)

In Ref. [53], it was shown that θ1 = 0 and small value
of θ2 is required to recover Dirac cellular automata from
split-step quantum walk and both θ1 = θ2 = 0 to recover
massless Dirac equation. Here, we have shown the other
possible configurations of non-zero θ values where we can
recover massless Dirac equation. From bounds on two-
period quantum walk (equivalently split-step walk) we
can imply that the spread of wavepacket for massive and
Massless, that is, gapped and gapless Dirac equation of
the form, Eq. (34) and Eq. (36), respectively is bounded
by the parameter θ2. The spread will be very wide for
the former and small for the later (remain around the
origin). For the massless Dirac equation with general
Hermitian matrix, Eq. (35), the spread will be bounded
by min{cos(θ1), cos(θ2)}.

IV. ENTANGLEMENT IN PERIODIC

QUANTUM WALKS

Entanglement of particle with position during quan-
tum walk evolution has been reported in many earlier
studies. Entanglement during temporal disordered (spa-
tial disorder) quantum walk is reported to higher (lower)
than the homogenous (one-period) quantum walk [17]. In
homogenous quantum walk, mean value of entanglement
generated is independent of the initial state of the par-
ticle. But in the split-step quantum walk, the depen-
dence of mean value of entanglement is prominently visi-
ble [53]. Therefore, for two-period quantum walk, entan-
glement behaviour will be identical to the one reported
in Ref. [53]. In this section we will see how the entan-
glement manifests and reaches maximum value for n−
period quantum walk.

As we have considered only a pure quantum state evo-
lution in this study, we will use the partial entropy as
a measure of entanglement, which is enough to give cor-
rect measure of entanglement for the pure state evolution
with unitary operators. We will first take partial trace
with respect to Hp-space (position space) of time evolved
state = Trp(ρ(t)) := ρc(t). Then according our measure
the entanglement at time t is given by,

−Trc[ρc(t) log2{ρc(t)}], (37)

the suffix c represents the coin space.
In Fig. 9, we present the entanglement between the

particle and position space as a function of time for one-
and two- and n−period quantum walk. For two-period
quantum walk, in contrast to standard deviation, the
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mean value of entanglement is bounded around the
maximum of the two one-period quantum walk. For
three-period quantum walk, entanglement reaches a
maximum value, higher than the entanglement due
to both, one-period quantum walk is seen. This is
also in contrast to the way, spread in position space
and standard deviation decreases for periodic quantum
walks. For higher period quantum walk we can see that
the change of coin induces the increase in entanglement.

V. CONCLUSION

In this work we have presented the dynamics of time
dependent periodic quantum walk. In particular, we
have shown the way probability distribution spread, stan-
dard deviation increase and entanglement vary for peri-
odic quantum walk and show the way they are bounded
when compared with the dynamics properties of homoge-
neous (single coin driven) quantum walk. For two-period
quantum walk with the parameters θ1 and θ2 in the
coin operations we show that σθ1,θ2 = min{σθ1 , σθ2} ∝
min{t|cos(θ1)|, t|cos(θ2)|. Our numerical results was cor-
roborated with analytical analysis from the dispersion
relation of the two-period quantum walk. Re-visiting the
split-step quantum walk dynamics we have also shown
that the all the bounds we have presented for two-period
quantum walk will be identical to the split-step quantum

walk. Unlike computing limit density function which is
meticulously hard, we have used the dispersion relation
from one-period and two-period quantum walk to un-
derstand the bounds on the spread of the wavepacket

for n− period quantum walk, ±t
(n−1)

[

(n − 2)|cos(θ1)| +

|cos(θ1) cos(θ2)|

]

. By re-visiting the connection of quan-

tum walks with Dirac equation, we have shown config-
uration of periodic quantum walk evolution which can
recover Dirac equation for both, massive and massless
particles with non-zero coin parameter θ. Thus, the evo-
lution configuration that results in emergence of gapless
and gapped Dirac equation. This can contribute to quan-
tum simulation of dynamics in Dirac materials. We also
showed that the periodic sequence will enhance the en-
tanglement between the coin and position space in the
quantum walk dynamics.

Depending on the convenience of the experimental sys-
tem, either of the, two-period or split-step quantum walk
can be used for quantum simulations of various low-
energy and higher energy particle dynamics defined by
Dirac equations. The bounds we have presented with
further help in understanding the transition from diffu-
sive to localised state.
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