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High-harmonic generation by a highly non-linear interaction of infrared laser fields with matter
allows for the generation of attosecond pulses in the XUV spectral regime. This process, well estab-
lished for atoms, has been recently extended to the condensed phase. Remarkably well pronounced
harmonics up to order ∼ 30 have been observed for dielectrics. We present the first ab-initio multi-
scale simulation of solid-state high-harmonic generation. We find that mesoscopic effects of the
extended system, in particular the realistic sampling of the entire Brillouin zone, the pulse propaga-
tion in the dense medium, and the inhomogeneous illumination of the crystal have a strong effect on
the formation of clean harmonic spectra. Our results provide a novel explanation for the formation
of clean harmonics and have implications for a wide range of non-linear optical processes in dense
media.

PACS numbers: 42.65.Ky, 42.50.Hz, 72.20.Ht

The generation of high harmonics (HHG) in the non-
linear interaction of intense ultrashort infrared (IR) laser
pulses with matter has turned out to be a highly success-
ful route towards the generation of attosecond pulses in
the EUV and XUV spectral regimes [1–4]. It has become
the workhorse of investigation of a vast array of electronic
processes on the attosecond time scale [5]. Expanding
the range of accessible photon energies and intensities
faces, however, fundamental limitations. Experimental
and theoretical investigations have established a scaling
of the cut-off energy Ecut ∝ λ2 for HHG from atoms in
the gas phase raising hopes to reach ever higher photon
energies by increasing the wavelength λ of the driving
laser pulse. However, the intensity in the cut-off region
was found to scale unfavorably Icut ∝ λ−5.3 due to the
large spatial dispersion of the electron wave packet upon
return to its parent atom [6–10]. Propagation effects in
gas filled capillaries have been found to partially offset
this suppression at high λ [11].

Extending HHG to the condensed phase promises to
overcome some of these limitations to enable compact
and brighter light sources and to open up the novel field
of solid-state photonics on the attosecond scale. The re-
cent observation of HHG in solids for intensities below
the damage threshold [12–18] suggests opportunities for
controlling electronic dynamics [16, 17] and for an all-
optical reconstruction of the band structure [19].

The observed solid-state HHG substantially differs
from the corresponding atomic spectra. For example,
while for atoms the cut-off frequency ωHHG

cut scales linearly
with the (peak) intensity I0 of the driving pulse [20, 21],
for HHG from bulk dielectrics or semiconductors ωHHG

cut

scales linearly with the peak field F0 (or
√
I0) [14]. The

processes underlying solid-state HHG have remained a
matter of debate. Several simplifying models have been
proposed accounting for Bloch oscillations within a single
band (“intraband harmonics”) [22, 23] and non-linear in-
terband polarization (“interband harmonics”) [15, 24, 25]
as sources of HHG. Most descriptions involve the semi-
conductor Bloch equations (SBE, [26]) using input pa-
rameters on various levels of sophistication and a varying
number of energy bands [27, 28]. Recently, first simula-
tions employing time-dependent density functional the-
ory (TDDFT, [29]) have become available [30, 31].

One major puzzle has remained so far unresolved:
while many experiments display remarkably “clean” har-
monic spectra with pronounced peaks near multiples
of the driving frequency (odd multiples when inver-
sion symmetry is preserved) all the way up to the cut-
off frequency, corresponding simulations display a noisy
spectrum lacking any clear harmonic structure over a
wide range of frequencies in the “plateau” region above
the band-gap energy. In previous theoretical works
[16, 17, 32–35], this problem was addressed by propos-
ing remarkably short dephasing times T2 in the SBEs of
the order of T2 ≈ 1 fs or less than an optical half-cycle.
While such short decoherence times yield “cleaner” har-
monic spectra in qualitative agreement with the experi-
ment, they raise important questions as to the ultrafast
decoherence processes for electronic excitations in solids.

The point of departure of the present work is the first
realistic ab-initio multi-scale simulation of HHG by self-
consistently treating the microscopic non-linear response
and the mesoscopic propagation of the optical signal.
Diamond can serve as a prototypical bulk dielectric for
which a full ab-initio treatment is feasible. On the mi-
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croscopic scale we employ two complementary methods:
an ab-initio TDDFT simulation and a multi-band SBE
approach with input parameters from ab-initio ground-
state DFT calculations and a dense 3-dimensional Bril-
louin zone (BZ) sampling. Properties of the extended
solid target on the mesoscopic scale enter through prop-
agation effects on the light fields in dense matter and the
inhomogeneous field distribution within the focal spot
that is typically smaller than the extended target. These
mesoscopic effects turn out to have a surprisingly strong
influence on the resulting HHG spectra.

We use TDDFT in a real-space real-time implementa-
tion [36, 37] to simulate the electronic dynamics driven

by the strong IR field ~F (t) employing the adiabatic local-
density approximation (LDA). Alternatively, we imple-
ment the SBEs by propagating the elements of the den-

sity matrix ρ
~k
mn,

∂tρ
~k
mn = −iω~k+ ~A/c

mn ρ
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with the transition energy ω

~k
mn = ε

~k
m − ε

~k
n and the

transition dipole elements ~d
~k
mn between Houston orbitals

of the valence (VB) and conduction bands (CB), n,

|n,~k + ~A/c〉 [38, 39] at wave vectors ~k displaced by the

time-dependent vector potential ~A/c. Both ω
~k
mn and ~d

~k
mn

are taken from ground state (GS) ab-initio DFT serv-
ing also as initial state of the TDDFT calculation. The
second term on the right-hand side describes the deco-
herence characterized by a dephasing time T2 (a corre-
sponding term accounting for the population relaxation
with relaxation time T1 is omitted because T1 � T2).

The crystal is irradiated by pulses polarized along the
Γ − X direction having a total duration of 32 fs (cor-
responding to τp ≈ 6.8 fs full-width at half maximum
of the peak intensity), a carrier wavelength of 800 nm
[photon energy ωIR = 1.55 eV], peak intensities I0 of up
to 2 × 1013 W/cm2, and a sin6-envelope for the field.

From the time-dependent induced current densities ~J(t)
derived from either methods the resulting high harmonic
spectrum is calculated using Larmor’s formula [40]

Sn̂(ω) ∝
∣∣∣∣Ft{ d

dt
~J(t) · n̂

}∣∣∣∣2 = ω2
∣∣∣ ~J(ω) · n̂

∣∣∣2 (2)

where n̂ is the unit vector in polarization direction.

We account for the propagation through the extended
system by combining the microscopic SBE solution for
the current density ~J(t) of individual cells with the solu-
tion of Maxwell’s equations [36]

1

c2
∂2
t
~A(~r, t)−∇2 ~A(~r, t) =

4π

c
~J(~r, t) (3)

FIG. 1. (Color online) Current densities induced in diamond
by a 6.8 fs laser pulse with intensity I0 = 2×1013 W/cm2 sim-
ulated using different methods: TDDFT (green solid line) and
semiconductor Bloch equations (SBE) with 2 valence bands
(VB) and 4 conduction bands (CB) (dash-dotted red line), 4
VBs and 4 CBs (dashed blue line) each sampled on a dense
grid over the whole 3-dimensional Brillouin zone (BZ). For
comparison the result for a single line in the BZ (Γ−X; dotted
black line; scaled) is shown. All results represent microscopic
single-cell calculations neglecting mesoscopic propagation ef-
fects.

where the cells are placed on a mesoscopic grid along the
propagation direction [ ~A(~r, t)→ ~A(X, t)] with grid spac-
ing ∆X = 8 nm and a crystal thickness of up to 1 µm.
We use a 5-point stencil for the approximation of the sec-
ond derivative in space and a standard 4-th order Runge-
Kutta propagator to solve the differential equations in
time. The microscopic responses to the impinging pulse
at different grid points i, ~J(Xi, t), are thus coupled via
Eq. (3). In particular, high harmonic radiation emit-

ted from the source term ~J(Xi, t) propagates through
the crystal via Eq. (3) driving the response at the other
microscopic sites thereby accounting for re-absorption of
HHG within the crystal. From the electric field ~F (ω) of
the transmitted pulse we retrieve the harmonic spectrum
via Sn̂(ω) ∝ ω2|~F (ω) · n̂|2.

Within a microscopic calculation employing a single
cell of the periodic structure and neglecting propagation
we have first verified that for moderate intensities of the
driving pulse (I0 ∼ 1012 W/cm2) the SBE results for
the time-dependent current density rapidly converge to
that of the TDDFT prediction when consistent input for
the band structure is used and dephasing is neglected
(T2 → ∞). Enforcing a continuous phase evolution of
the dipole matrix elements along any trajectory through
the BZ, in particular near narrow avoided crossings (see
Fig. S1) and a fine k-grid (∆k ' 0.01) have been found to
be crucial prerequisites for convergence to the ab-initio
TDDFT simulation. Another important convergence pa-
rameter is the number of VBs and CBs [27, 28]. The
present results (Fig. 1) show, however, that approxima-
tions including only a one-dimensional cut through the
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FIG. 2. (Color online) Microscopic single-cell calculations
of harmonic radiation emitted from diamond for I0 = 2 ×
1013 W/cm2, λ = 800 nm and τp = 6.8 fs (FWHM) of the
driving pulse [white solid inset in (b)]; (a) and (c) TDDFT;
(b) and (d) SBEs. Upper panels (a) and (b) time-frequency
analysis (Gabor transform with width σ = 2 fs; on a log-
arithmic color scale). Lower panels (c) and (d) resulting
high-harmonic spectrum. In (d) also the spectrum includ-
ing dephasing with T2 = 10 fs (orange line) is shown. The
dashed vertical lines indicate the odd multiples of the carrier
frequency ωIR = 1.55 eV of the exciting laser pulse.

BZ and, thus, without properly sampling the full BZ as
have been frequently employed [17, 27, 33, 34] fail in the
non-linear regime.

The HHG resulting from microscopic single-cell calcu-
lations using either TDDFT or SBEs (Fig. 2) displays
a noisy spectrum with strong spectral contributions at
all energies above the band-gap energy (εLDA

gap ≈ 5.5 eV
≈ 3.55ωIR). The lack of clear signatures of discrete har-
monics in single-cell HHG spectra of an extended periodic
system can be easily understood within a semiclassical
picture [25]. Within the reduced real-space zone scheme
of a single cell the electron and hole wave packets driven
by the pulse traverse the cell many times meeting each
other at a multitude of different recombination times and
with different recombination energies. Only for high fre-
quencies near the cut-off harmonic peaks become more
clearly visible as the number of contributing recombina-
tion times is strongly reduced.

The broad quasi-continuous spectrum in the plateau
region (black lines in Fig. 2) is at variance with a large
number of solid-state HHG experiments finding a clean
harmonic spectrum [12, 15, 17, 18]. A recently employed
phenomenological approach to “purify” the spectrum has
invoked including very short dephasing times of the order
of a fraction of an optical cycle (T2 ≈ T0/4 [32]) or of
about 1 fs [17, 33] into the microscopic description. Such
short T2 raise, however, conceptual questions as to the
origin of such ultrafast relaxation channels for electronic
excitations.

FIG. 3. (Color online) Time-dependent linear response of cur-
rent density to δ-like (broadband) excitation at t = 0 given
by experimental optical conductivity data ([41], see text)
evaluated at various photon energies ωi by a Gabor trans-
form (σ = 2 fs). The time dependent current components
J(ωi, t) exemplarily shown for ωi = 8 eV (yellow), 11 eV
(red), 14 eV (purple), and 17 eV (black) are fitted to expo-

nentials ∝ e−t/T2(ωi) (dashed lines) yielding T2(ωi) ≈ 10 fs
for all photon energies ωi.

Starting point of our quantitative estimate for T2 are
experimental data on the optical conductivity of di-
electrics. We determine the frequency dependent con-
ductivity σ(ω) from the experimental complex refractive
index

√
ε(ω) = n(ω) + iκ(ω) [41] via

σ(ω) =
ω

4πi
[ε(ω)− 1] . (4)

For an impulsive broad-band excitation spectrum F (t) ∝
δ(t) the time-dependent induced current density follows
as

J(t) =
1

2π

∫
dω e−iωtσ(ω)F (ω) (5)

using Ohm’s law. From Eq. (5) we deduce the frequency
dependent decay constant T2(ω) from fitting exponentials
∝ e−t/T2(ωi) to the Gabor transform of Eq. (5) at vari-
ous photon energies ωi (Fig. 3). For frequencies above the
band gap (between 8 and 17 eV) we find T2(ωi) & 10 fs
considerably longer than previously assumed. It should
be noted that this estimate is strictly valid only in the
linear response regime. However, the present ab-initio
multi-scale simulation allows to extend this estimate into
the non-linear regime. The non-linear extinction co-
efficient at the IR driving frequency κ(ωIR, I0) can be
directly determined from the attenuation of the driv-
ing field self-consistently propagated through the crystal.
The resulting κ is found to be strongly dependent on T2

used in the simulation. Only for large T2 (> 10 fs) corre-
sponding to small spectral broadening we find agreement
with first experimental data [42] on non-linear κ(ωIR, I0)
for diamond in the 1012 to 1013 W/cm2 regime. Using
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FIG. 4. (Color online) Time-frequency analysis (Gabor trans-
form with width σ = 2 fs; upper panels with a logarithmic
color scale) and harmonic spectrum (lower panels) induced
by a pulse with λ = 800 nm, τp = 6.8 fs (FWHM) and in-
cident (vacuum) peak intensity Ivac = 2 × 1013 W/cm2 from
self-consistently solving the Maxwell-Bloch equations for di-
amond for a layer thickness of 1 µm. (a) and (c) harmonic
response in absence of dephasing (T2 →∞); (b) and (d) with
T2 = 10 fs and average over the inhomogeneous intensity dis-
tribution of the driving field. The dashed vertical lines indi-
cate the odd multiples of the frequency ωt of the blue-shifted
transmitted pulse (see text). For comparison the odd multi-
ples of the frequency ωIR of the incident pulse are shown as
solid gray lines in (c). In (c)/(d) also the corresponding HHG
spectrum with/without dephasing is shown in blue/orange.

T2 = 10 fs as lower bound in the SBEs (Fig. 2d and SI)
shows that within a microscopic single-cell calculation,
the lack of pronounced high harmonics in the plateau
regime persists. Therefore, inclusion of mesoscopic ef-
fects of the extended system within a multiscale treat-
ment is crucial to describe the build-up of a clean HHG
spectrum.

The simulation including propagation (Eq. (3)) dis-
plays clearly visible harmonic peaks and a strongly re-
duced background even when dephasing is switched off
(T2 → ∞ in Fig. 4a,c, layer thickness 1µm). Obviously,
destructive interference between a multitude of electron-
hole recombination events along the propagation path
at different recombination times is key to the formation
of a clean harmonic spectrum with peaks at odd har-
monics. It is important to note that the peak positions
agree with odd multiples of the blue-shifted transmitted
driving frequency ωt rather than the incident frequency
ωIR (see Fig. 4c). This predicted non-linear blue shift
δω = ωt − ωIR in diamond is another signature of the
strong non-linear response of the solid and has been, in-
deed, experimentally observed [12, 43]. For the 1 µm
thick crystal the directly transmitted pulse is followed
by a second less intensive pulse from double internal re-
flection at the back and front boundaries of the slab. Due

to its reduced intensity, the reflected pulse only weakly
affects the total transmitted spectrum. The time delay
between direct and reflected pulses (∼ 17 fs) allows for
a direct and independent determination of the effective
index of refraction of neff ≈ 2.4 (the real part of

√
ε(ω))

in agreement with the experimental value at the carrier
wavelength λ = 800 nm [41].

Mesoscopic-scale effects include not only the propaga-
tion along the propagation direction but also the inho-
mogeneous field distribution within the focal spot in the
transverse direction. The spot size is, typically, much
smaller than the sample. Consequently, the intensity dis-
tribution of the laser pulse in the material has to be mod-
eled adequately. The latter effect is included in this work
by an average of the harmonic emission over a Gaussian
profile I(ρ) = Imax exp(−ρ2/2R2) of the driving laser
pulse. To assess this effect independently, we calculate
the resulting averaged current

〈 ~J(t)〉 =
1

R2

∫ ∞
0

dρ ρ ~J [t, I(ρ)] (6)

by a weighted sampling of the beam cross-section for an
ensemble of 20 different intensities. Similar to the de-
structive interference due to propagation effects, also in-
tensity averaging leads to spectra displaying more pro-
nounced harmonic peaks with maxima at odd multiples
of the driving frequency (Fig. S2 in SI).

Combining now the effects of destructive interference
and, thus, dephasing due to propagation and transverse
intensity averaging with dephasing due to microscopic
decoherence processes with dephasing time T2 = 10 fs
(Fig. 4b and d) yield a well-defined harmonic spectrum
in accord with experimental data. From the Gabor trans-
form it is obvious that the effect of the finite microscopic
dephasing time T2 is primarily the damping of the (in-

duced) post-pulse current ~J(t) on the time scale of a few
tens of femtoseconds. It is, however, of minor importance
for the formation of a clean harmonic spectrum.

In conclusion, we have presented the first ab-initio
multi-scale simulation for solid-state high harmonics self-
consistently combining the microscopic non-linear re-
sponse in 3 dimensions within the framework of TDDFT
or multiband Bloch equations with mesoscopic propaga-
tion and source distribution effects. Irrespective of the
level of the underlying description, the microscopic sim-
ulation of the non-linear response of a single cell of the
periodic system of diamond alone fails to yield a well-
defined harmonic spectrum. It is the spatio-temporal dis-
tribution of the emission events on the mesoscopic scale
that leads to the formation of a clean high-harmonic spec-
trum with pronounced peaks at odd harmonics of the
blue-shifted driving frequency in the medium. This pro-
cess can be viewed as the solid state analog to the shaping
of harmonics by propagation in extended gaseous targets
due to phase matching and suppression of the contribu-
tions from long trajectories [44]. Propagation and field
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inhomogeneity effects play, however, a much more promi-
nent role at solid-state densities as in their absence the
well-defined harmonic spectrum is replaced by a noisy
quasi-continuum. Ultrafast microscopic dephasing rates
of the order of T2 ≈ 1 fs previously invoked are neither
necessary nor justified for forming a well-defined har-
monic spectrum. Instead, the present multi-scale sim-
ulation strongly suggests that the dephasing time should
be at least one order of magnitude larger to yield the ex-
perimental optical conductivity at low intensities and the
extinction coefficient in the non-linear regime of higher
intensities.

The present work addressing diamond as a prototypi-
cal bulk dielectric has also wider important implications
for other materials. The strong influence of propagation
and field inhomogeneity effects in the dense medium on
the non-linear optical response observed here is expected
to be present irrespective of the details of lattice or elec-
tronic structure of the material. The blue shift of the
harmonic spectrum found in the present multi-scale sim-
ulation for diamond has been, in fact, experimentally pre-
viously observed for other materials. The present find-
ings may also contribute to disentangling of the relative
importance of intraband and interband contributions to
the harmonic generation. Since interband polarization is
much more effectively suppressed by previously proposed
ultrashort dephasing times than coherent intraband dy-
namics, the contribution of interband polarization may
be significantly higher than expected when realistic de-
phasing times are employed. The present findings have
also important implications for other ultra-fast processes,
for example, probing of biomaterials by transmission of
a broadband pulse [45]. Extraction of information on
the presence of specific molecules will require the disen-
tangling of the non-linear molecular response from meso-
scopic light transport effects.
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