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The most typical ingredient of topologically protected quantum states are magnetic fluxes. In a
system of spins, complex-valued interaction parameters give rise to a flux, if their phases do not
add up to zero along a closed loop. Here we apply periodic driving, a powerful tool for quantum
engineering, to a trapped-ion quantum simulator in order to generate such spin-spin interactions.
We consider a simple driving scheme, consisting of a repeated series of locally quenched fields,
and demonstrate the feasibility of this approach by studying the dynamics of a small system. An
emblematic hallmark of the flux, accessible in experiments, is the appearance of chiral spin currents.
Strikingly, we find that in parameter regimes where, in the absence of fluxes, phonon excitations
dramatically reduce the fidelity of the spin model simulation, the spin dynamics remains widely
unaffected by the phonons when fluxes are present. Our work provides a realistic experimental recipe
to engineer the minimal building block of a topological quantum system with currently existing ion
traps apparatus.

Magnetic fluxes can profoundly alter the behavior of a
quantum system. They are responsible for the Aharonov-
Bohm effect [1, 2], fractal energy spectra [3, 4], or in-
triguing many-body phases exhibiting fractional quan-
tum Hall physics [5, 6]. Most importantly, properties of
a quantum system can be topologically protected in the
presence of fluxes, as is the case for quantized Hall con-
ductances. The underlying mechanism is due to breaking
of time-reversal symmetry (TRS) which fixes the chirality
of the edge currents. Thereby, suppressed backscattering
leads to quantized conductances. An exciting applica-
tion of topological protection is fault-tolerant quantum
computing [7]. In the present paper we will show that
a magnetic flux can enhance the fidelity of a quantum
simulation even in the few-body regime.

Quantum simulation of topological matter has been
pursued very actively using cold atoms [8–14], photons in
cavities [15–18], or nitrogen-vacancies [19]. Another ex-
perimental platform with long-standing history of quan-
tum simulations involves trapped ions: Refs. [20, 21]
suggested the implementation of spin models, which have
later been realized in the laboratory using linear Paul
traps [22–26], or two-dimensional Penning traps [27, 28].
Nowadays trapped ions are the leading platform for quan-
tum simulation of spin models [29]. They offer high-
efficiency detection and ion addressability at the single-
site level [30, 31], enabling full state tomography [32] and
measurement of high-order N -body correlators [33].

A particularly interesting feature of trapped ions are
long-range spin-spin interactions, which can be exploited
to engineer magnetic fluxes even in a 1D architecture
[34]. A standard route to artificial fluxes is Floquet en-
gineering, that is the control of a Hamiltonian via peri-
odic driving. Early proposals for modifying the tunnel-
ing strength in quantum wells using time-periodic fields
date back to the 1980s and 1990s [35–38]. Since then the
progress in laser cooling and the emergence of cold atoms
as highly controllable quantum systems have provided an
experimental platform to apply these ideas. Controlling

the tunneling of atoms in an optical lattice by periodic
modulation was proposed in Refs. [39, 40] and realized
in Refs. [41, 42]. The technique then became a wide-
spread tool for implementing artificial gauge potentials
in atomic systems [8, 10, 11, 14]. More generally, Flo-
quet engineering has been recognized as a strategy for
producing topological phases of matter such as topologi-
cal insulators and Majorana fermions [43–45].

In this paper we study the feasibility of Floquet engi-
neering in a system of trapped ions [34, 46, 47]. Similar
to the proposal of Ref. [34], we consider a time-periodic
series of local quenches, that is, of local potentials be-
ing repeatedly switched on and off. On the level of a
spin system, it has been demonstrated in Ref. [34] that
such shaking is able to equalize all interaction strengths,
and to render interaction parameters complex-valued. In
large enough systems, of the order of hundreds of spins,
this has been shown to give rise to a fractal energy spec-
trum with end states between different energy bands.
In the present paper, we are interested in microscopic
signatures of complex-valued spin-spin interactions, hav-
ing direct relevance for trapped ions experiments. To
this end, we consider a minimal system of three ions in
a linear Paul trap, which we realistically describe by a
spin-phonon (or Dicke) model rather than by a pure spin
model. Our simulation identifies a parameter regime for
which Floquet engineering is feasible: On the one hand,
the shaking has to be fast compared to the spin dynam-
ics in order to achieve the desired Floquet Hamiltonian,
on the other hand, the shaking must be slow compared
to the spin-phonon coupling such that vibrational and
spin degrees of freedom remain decoupled. Then, the
system reduces effectively to the one of a single particle
hopping along a triangle pierced by a magnetic flux, and
chiral currents appear as an immediate consequence of
the flux. Unexpectedly, our simulation also reveals that
phonon effects, which reduce the fidelity of the quan-
tum simulation, are suppressed through the presence of
magnetic fluxes. It remains an interesting open question
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FIG. 1. Driving scheme. (a) Shaking protocol for a chain
of three spins: The first sequence (t < 3) renders interactions
between spin 1 (left ion) and 3 (right ion) complex-valued.
For 3 < t < 4 and 4 < t < 5 real-valued interactions between
spin 1 and 2 (center ion), and 2 and 3 are acquired. The
strength of nearest-neighbor interactions is suppressed by a
factor 1/5, while second-neighbor interactions are suppressed
by a factor 2/5. This allows to obtain a situation as depicted
in (b): All ions interact equally, encircling a magnetic flux Φ.

whether this behavior can be traced back to the topolog-
ical protection expected for larger-sized chiral systems.

We start from a Dicke-like Hamiltonian given by

H0(t) =
∑
m

~ωma†mam +
∑
i,m

~Ωiηi,m(am + a†m)σxi sin(ωt),

(1)

describing the collective motion of ions in terms of
phonons, created by a†m at frequencies ωm, coupled to
two internal states of the ions. Here, we work in the
(fast) rotating frame of the atomic transition, and ap-
ply rotating-wave approximation. Raman lasers with
Rabi frequency Ωi and beatnote frequency ω induce spin
flips, described by a Pauli matrix σxi at an individual
ion denoted by i, and (de-)excites phonon modes. The
strength of this coupling further depends on the Lamb-
Dicke parameters ηi,m. The spin degrees of freedom can
be decoupled from “dressed” phonon operators [20, 21],
and the time evolution is captured by an effective Ising
spin model [23, 48], HJ = ~

∑
ij Jijσ

x
i σ

x
j , with cou-

plings Jij = ΩiΩj
∑
m
ηi,mηj,m

δm
, controlled by the detun-

ing δm = ω − ωm.
For the shaking, we drive the system with a transverse

magnetic field term HB(t) = ~
∑
i[B0+µi(t)]σ

z
i ≡ HB0+

HB1(t). The homogeneous and time-independent term
HB0 provides an approximate XX symmetry to the Ising
model. The inhomogeneous time-dependent one, HB1(t)
implements the shaking protocol. However, on the level
of a spin-phonon model, a transverse field also leads to
entanglement between spins and phonons [48, 49].

Noting that [HB0, HB1] = 0, we derive an effective
Hamiltonian by first switching to the interaction picture
of HB0 via U(t) = exp[−iHB0t]. Applying the rotating-
wave approximation, we get an effective XX model,
U(t)†H0(t)U(t)− i~U(t)† d

dtU(t) = HXX +HB1(t), with

HXX = ~
∑
ij Jij σ

+
i σ
−
j + H.c., where σ± ≡ (σx± iσy)/2.

Then, we switch to the interaction picture of the time-
dependent part HB1, via Ũ(t) = exp[−i

∑
i χi(t)σ

z
i ],

FIG. 2. Fidelity of different descriptions. (a) For τ/∆ = 1/4,
we evaluate the discrepancy between the ideal model as de-
picted in Fig. 1(b) and the exact Floquet Hamiltonian from
the XX model as a function of the driving strength µ0. (b)
We compare the dynamics in the Ising model HJ (three solid
lines for three ions, distinguished by color and by the num-
bers within the diamonds along the lines) and XX model HXX
(dashed-dotted lines). The diamonds (connected by dashed
lines as a guide to the eye) mark the stroboscopic evolu-
tion at times t = mT . (c) For different values of the flux
and at stroboscopic times t = mT , the deviations between
Ising and Dicke dynamics is plotted, defined as |∆〈σz〉|2 ≡∑
i

(
〈σiz〉Ising − 〈σiz〉Dicke

)2
. Here, as in rest of the paper, the

system parameters are δCOM = 2π × 80 kHz for the blue-
detuning from the center-of-mass mode, mass M = 171amu,
trap frequencies ωXY = 2π× 5 MHz and ωZ = 2π× 900 kHz.
The Rabi frequency is Ω = 2π × 200 kHz, recoil frequency is
ωrec = 2π×26 kHz. This choice leads to a root mean square of
the spin-spin interactions Jrms = 2π×270 Hz. Field strengths
are B0 = Jrms and µ0 = 20Jrms.

where χi(t) = 1
~
∫ t

0
dτµi(τ). The final Hamilto-

nian H ′XX(t) = Ũ(t)†HXX(t)Ũ(t)− i~Ũ(t)† d
dt Ũ(t) again

has XX structure but with time-dependent couplings.
By time-averaging over a period T , we get a time-
independent XX Hamiltonian with effective couplings
given by [50]

J ′ij =
Jij
T

∫ T

0

e2i[χi(t)−χj(t)]dt. (2)

We apply this general formalism to a concrete driving
scheme, similar to the one proposed in Ref. [34]. Each
potential µi(t) takes piecewise constant values, being in-
teger multiples of some frequency µ0 = π/∆. Here, ∆
provides the time unit, with T an integer multiple of ∆.
This choice is motivated in the following way:

1. If two potentials µi and µj remain constant dur-
ing an interval ∆, the interaction J ′ij remains un-
changed if µi = µj , or else is fully suppressed:

J ′ij =
Jij
∆

∫∆

0
e2imµ0tdt = Jijδm,0. This feature al-
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lows for engineering the effective strength of inter-
actions.

2. If a potential changes within an interval ∆, complex
interaction parameters can arise. For concreteness,
let us assume that two potentials differ by mµ0 for
a time τ = ∆/q, with m ∈ Z. The potentials shall
then drop to zero simultaneously for an interval of
length ∆, and finally return to their original values
for an interval of length ∆− τ . For such sequence,
the first order Floquet analysis yields a phase fac-
tor:

J ′ij =
Jij
2∆

∫ τ+∆

τ

e2πim/qdt =
Jij
2

e2πim/q. (3)

Accordingly, the shaking period shown in Fig. 1(a)
should (i) generate a complex phase ϕ/(2π) = −τ/∆
on the link between spin 1 and 3, and (ii) enhance the
ratio |J ′13|/|J ′12| = |J ′13|/|J ′23| by a factor 2 compared to
the original ratio |J13|/|J12|. This can fully compensate
the decay of interaction strength with distance, and lead
to approximately equal interactions between all pairs, cf.
Fig. 1(b).

The reasoning so far was based on the assumption
that time-averaging in the interaction picture approxi-
mates well the effective Hamiltonian. Rigorously, the
effective Hamiltonian is obtained from Floquet’s theo-
rem. Due to time-periodicity of the evolution operator
U(t, t0) = U(t + T, t0 + T ), the operator U(T, 0) fully
determines the evolution at stroboscopic times t = mT .
Writing U(T, 0) = exp

(
− i

~HeffT
)
, we obtain an effec-

tive Hamiltonian Heff , which exactly describes the stro-
boscopic dynamics. For our protocol, consisting only of
quenches, Heff can straightforwardly be evaluated. As
seen in Fig. 2(a), the discrepancy between the couplings
in the exact Heff and the couplings approximated accord-
ing to Eq. (2), regarding both absolute value and phase,
decreases as ∼ 1/µ0 with the shaking strength. Relative
errors < 0.1 require a shaking µ0 ≈ 20Jrms, where Jrms

denotes the root mean square of the spin-spin interac-
tions before shaking.

Fig. 2(b) compares the spin dynamics in the Ising
and the XX model in the presence of a flux Φ = π/2
(τ = ∆/4) after initially preparing the system in a state
|↑↓↓〉. With B0 = Jrms, the curves show good quanti-
tative agreement. Small wiggles in the dynamics of the
Ising model are due to the strong transverse fields, but do
not appear in the stroboscopic evolution. Both models
exhibit clear evidence of a chiral current, as the up-spin
moves counter-clockwise from ion 1, to ion 3, and finally
to ion 2. Notably, the evolution is almost periodic with
a period T ′, so comparing the states at time t and T ′− t
allows for a practical detection of TRS breaking [17].

These results establish that Floquet engineering works
sufficiently well for an effective Ising system, if shaking
strength µ0 ∼ 10 kHz is at least an order of magnitude
faster than the spin interactions (J ∼ 1 kHz before shak-
ing, J ′ = J/5 ∼ 200 Hz after shaking). However, the

FIG. 3. Comparison between spin model dynamics and
Dicke model dynamics. We plot the spin evolution in the
Dicke model (solid lines) and the Ising model (dashed lines)
for different parameters τ , adjusting fluxes Φ = 2πτ/∆: (a)
τ = ∆/4,Φ = π

2
. (b) τ = 3∆/4,Φ = −π

2
. (c) τ = ∆/3,Φ =

2π
3

. (d) τ = ∆,Φ = 0. In each plot, the different ions are
distinguished by different colors and boxed numbers next to
the lines.

validity of the spin model description also requires the
detuning of the spin-phonon coupling to be fast. A re-
alistic choice is δ ∼ 100 kHz, i.e. one order of magni-
tude above µ0. To explicitly check the role played by
phonons we have simulated the dynamics under the Dicke
Hamiltonian H(t) = H0(t) + HB(t) using Krylov meth-
ods. The results are seen in Fig. 3 for different fluxes.
We first note that the evolution for Φ = ±π2 , shown in
panels (a,b), exhibits TRS breaking in the same way as
discussed before for the pure spin model. As expected,
the direction of the spin current depends on the sign of
the flux. For other fractional values of the flux, such as
Φ = 2π/3 shown in panel (c), the evolution is not periodic
on relevant time scales, but breaking of TRS can still be
inferred from obvious differences between clockwise and
counter-clockwise flow. In contrast, for “integer” fluxes
(i.e. mod(Φ, π) = 0) shown in panel (d), the spin initially
flows clockwise and counter-clockwise at equal rate.

Strikingly, TRS breaking stabilizes the quantum simu-
lation. For fractional fluxes [panel (a–c)], the evolution in
the Dicke model agrees well with the Ising model dynam-
ics. In contrast, the spin dynamics with integer fluxes
[panel (d)] is heavily perturbed by the phonons, although
only a single parameter τ is changed, see also Fig. 2(c)
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FIG. 4. Chiral currents and energy spectrum. For a particle
on a triangle with |Jij | = J and flux Φ, we plot (a) the chiral
currents defined in Eq. (4), and (b) the eigenenergies, in units
of J , as a function of the flux.

where the corresponding error is plotted as a function
of time. This effect can not be traced to the number of
phonons which is approximately the same for different τ .
With a variety of simulations we checked that this pro-
tective effect is not an accidental one: We varied differ-
ent system parameters (magnetic field strength, shaking
period, Rabi frequency), we changed the gauge of our
shaking scheme, or we started our time evolution from
different initial states (not restricted to phonon vacua).
In all cases, we observed the protective role apparently
played by the flux. We have also carried out analog sim-
ulations for a system of four ions, forming two triangles
glued together. Also here the synthetic flux was found
to protect the spin dynamics, but the effect is less pro-
nounced than for three ions. Interestingly, for four ions
the presence of the flux also does not fully restrict the
spin flow to one direction, suggesting that chirality of
the flow and protection against phonons are linked.

So far, we have studied the dynamics of a system ini-
tially prepared out of equilibrium. Quantum revivals of
the initial state allowed for demonstrating TRS breaking.
The length of a revival period generally depends on the
ratios of energy gaps between contributing eigenstates.
As seen in the energy spectrum in Fig. 4(b), only a single
energy difference characterizes the spectrum of a triangle
at (half-)integer flux, guaranteeing short revival periods.
However, other (potentially incommensurate) gap ratios
can make revival periods arbitrarily long, as can happen
for other fluxes [cf. 2π/3-flux in Fig. 3(c)] or in larger
systems. In such cases, a more general criterion for TRS
breaking and chirality is required. One possibility is to
consider equilibrium chiral currents, quantified as [17]

Ichiral = i 〈Ψ|
∑
i 6=j

Jijσ
+
i σ
−
j −H.c. |Ψ〉 , (4)

for an eigenstate |Ψ〉. As seen in Fig. 4(a), at non-
integer flux equilibrium chiral currents are non-zero for
any eigenstate. At integer flux, chiral currents are zero
for non-degenerate eigenstates, or add up to zero for de-
generate eigenstates.

Next, we show, for a slightly simplified setting, how to
extract the value of the synthetic flux from a spin-spin
correlation function. Therefore, we consider a shaking
protocol of period T = 2∆, with µ2 = 2µ0 always de-
tuned from µ1 and µ3 which are both set to zero for

FIG. 5. Phase measurement. (a) Spin evolution for shak-
ing on the first and the third ion (µ0 = 10Jrms), with the
central ion detuned at any time, having perfect agreement
between Dicke and Ising model dynamics. Different ions are
distinguished by color and boxed number along the curves.
(b) The complex phase is extracted from the wave function
dynamics in the Ising and the Dicke model, and from the cor-
relation functions in the Dicke model. Theoretically expected
values, for τ = ∆/3, are marked by the black dash-dotted
lines.

τ < t ≤ τ + ∆, while taking values zero and µ0 at
other times. This protocol leads to particularly simple
dynamics, as it freezes out the center spin. Thus, with
|L〉 (|R〉) denoting the position of the up-spin at both
ends, we obtain a two-level or double-well system de-
scribed by H2 = 2~J ′13 |L〉 〈R|+H.c. Accordingly, as seen
in Fig. 5(a), the spin dynamics reduces to Rabi oscilla-
tions between the left and the right spin with a period
Tosc = π/|J ′13|. The complex phase ϕ of J ′13 is reflected
in the relative phase between the two levels. An initial
state Ψ(0) = |L〉 will evolve to Ψ(t) = cos(2|J13|′t) |L〉+
exp

[
−i
(
ϕ− π

2

)]
sin(2|J13|′t) |R〉, where ϕ is the com-

plex phase of J ′13. Thus, information about the phase
is contained in the phase difference ∆φ between the two
components of the wave function. During the course of
time, ∆φ is expected to jump between constant values
∆φ0 = −π2 + ϕ = −π

(
1
2 + 2τ

∆

)
, when sin(2|J13|′t) and

cos(2|J13|′t) have equal signs, and ∆φ± = ∆φ0 ± π, if
signs are opposite.

The relative phase ∆φ can be extracted (up to a sign)
from a σx1σ

x
3 measurement. Denoting Ψ = cL |L〉 +

cR |R〉 we have |∆φ| = arccos
(
〈σx

1σ
x
3 〉

2|cL|·|cR|

)
, where |cL,R| =√

1
2 (1± 〈σz1〉). In Fig. 5(b), we plot ∆φ, as measured

in three different ways: (i) from the wave function in
the Ising model, (ii) from the wave function in the Dicke
model, (iii) from the correlation functions in the Dicke
model. It is seen that all three measures reflect the π
jumps related to the Rabi oscillation, and are quantita-
tively close to the expected values (|ϕ| = 5π/6 and π/6
for τ = ∆/3). It should be noted, though, that in con-
trast to the flux through the triangle, the relative phase
in the double-well is not a gauge-invariant quantity, and
shifting the initial time within the shaking period would
modify the phase.

Finally, we mention that, although we have not con-
sidered decoherence effects explicitly, we have checked
that the dynamics are not significantly changed by an
initial finite phonon population, therefore excluding RF
heating due to trap imperfections or noisy electric fields
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as possible decoherence sources. Thus, decoherence is
mainly expected due to technical imperfections like laser
beam pointing and intensity noise or uncompensated
stark shifts.

In summary, we have simulated a system of three ions
which encircle an artificial flux engineered by periodic
driving. Our simulation not only has shown the feasi-
bility of Floquet engineering in trapped ions, but also
revealed an unexpected robustness of the spin dynamics
when the driving breaks time-reversal symmetry in the
effective model. This effect could stabilize and further en-
hance the quantum simulation of topological models also
in larger systems. Having shown a path towards complex-
valued spin-spin interaction, we believe that trapped ions
provide an ideal system for studying the role of topology
and topological protection in small clusters with tunable
system sizes from microscopic to mesoscopic regimes. Po-
tentially, such clusters will provide robust building blocks
for larger quantum devices.
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