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Two-dimensional atomic arrays exhibit a number of intriguing quantum optical phenomena, in-
cluding subradiance, nearly perfect reflection of radiation and long-lived topological edge states.
Studies of emission and scattering of photons in such lattices require complete treatment of the ra-
diation pattern from individual atoms, including long-range interactions. We describe a systematic
approach to perform the calculations of collective energy shifts and decay rates in the presence of
such long-range interactions for arbitrary two-dimensional atomic lattices. As applications of our
method, we investigate the topological properties of atomic lattices both in free-space and near
plasmonic surfaces.

I. INTRODUCTION

Quantum optical properties of lattices of atoms and
atom-like emitters are being actively explored both the-
oretically and experimentally [1–15]. In such lattices,
atoms are assumed to be confined such that tunneling
between sites is negligible and they interact via photon-
mediated dipole-dipole interactions giving rise to hy-
bridized atom-photon bands. The photonic band struc-
ture of three-dimensional (3D) atomic lattices has been
investigated in a number of studies [2–6]. Recently, there
has been significant interest in the photonic properties of
two-dimensional (2D) atomic lattices, which have been
shown to exhibit a variety of remarkable phenomena, in-
cluding subradiance [15, 16], near perfect reflection of
radiation [12, 14] and long-lived topological excitations
[10, 11].

In such lattices, a key distinction arises between the ra-
diative interatomic coupling that gives rise to collective
behavior and the radiative coupling to free-space modes
that leads to unwanted losses. In order to fully account
for the radiative loss of atoms, the atomic coupling to
all free-space modes, including propagating long-range
photons, has to be considered. Determining the eigen-
modes of the lattice in the presence of such long-range
interactions between atoms is a non-trivial task, requir-
ing careful treatment in order to obtain accurate results
and to understand the photonic properties of the lattice.

In this work, we describe a general approach for the cal-
culation of photonic band structures in two-dimensional
atomic lattices with arbitrary lattice geometries. Previ-
ously, general methods have been put forward [2–6] to
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accurately calculate photonic band structures for 3D in-
finite atomic lattices. Here, we make use of the general
approach described in Refs. [5, 6] and focus on 2D lat-
tices, where the axial symmetry is broken along the third
dimension. Previous photonic calculations involving infi-
nite 2D atomic lattices were either restricted to two-level
atoms in a square lattice [15], required summations in
real-space where convergence is slow [11, 14], or relied
on the method that we will now describe in detail [10].
As an application of our method, we study the topolog-
ical properties of both Bravais and non-Bravais lattices
in free space.

FIG. 1. Constituent atoms in the 2D atomic lattice. Each
atom is assumed to have one ground |g〉 and three excited
states |σ+〉, |σ−〉 and |π〉 that can be Zeeman split by a mag-
netic field.

Furthermore, our formalism can also be used to de-
scribe two-dimensional lattices of emitters near planar
surfaces. As a novel application, we study atomic lattices
close to plasmonic surfaces and describe their emerging
topological character. We note that studying the emis-
sion pattern of dipoles near metallic surfaces has been
an active research area for over a century [17] and has
been at the forefront of plasmonics research over the past
few years [18–25]. Our work provides a new and simple
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framework to study the collective decay rates into both
free-space modes and plasmonic channels of a periodic
lattice of dipole-like emitters near a metal surface, while
also taking into account realistic metallic dispersion.

Our manuscript is organized as follows. In section II
we describe a general analytical approach to finding the
Bloch modes of an infinite two-dimensional atomic lat-
tice. In section III we apply our formalism to analyze
a non-Bravais square lattice and a triangular lattice of
atoms in free space and discuss their topological prop-
erties. In section IV we discuss a square lattice and a
triangular lattice of atoms in the vicinity of a silver sur-
face and discuss the topological properties of the latter.
Key results and conclusions are summarized in section
V.

II. GENERAL FORMALISM

We consider a 2D lattice of atoms in the x-y plane
with interatomic spacing a. The quantization axis ẑ is
perpendicular to the plane of the atoms. Each atom is as-
sumed, for simplicity, to have transitions from the ground
state |g〉 to the excited states |σ±〉 = ∓(|x〉 ± i|y〉)/

√
2

and |π〉 = |z〉, which are excited by σ̂± and ẑ polarized
light respectively (Fig. 1). Note that our formalism can
be extended in a straightforward way to describe atoms
with different internal level structures as long as only a
single ground state is considered.

A. Hamiltonian

We use the dipole approximation to write down the
Hamiltonian describing the interaction of the atoms with
the quantized radiation field [5, 6, 26]

H = ~
N∑
n=1

ωA

(
|σ+,n〉〈σ+,n|+ |σ−,n〉〈σ−,n|+ |πn〉〈πn|

)
+

∫
d3k

∑
ε

~cka†kεakε −
N∑
n=1

dn ·E(rn) +HZeeman, (1)

where N is the number of atoms, ωA = 2πc/λ
is the atomic transition frequency with wavelength
λ and c is the speed of light in vacuum. Here
|σ±,n〉〈σ±,n| and |πn〉〈πn| represent operators that only
act on the subspace of the n-th atom. The cre-
ation and annihilation operators of the electromag-

netic field satisfy [akε, a
†
k′,ε′ ] = δε,ε′δ(k− k′), where k

is the wave vector with magnitude k = |k| and
ε labels the two photon polarizations ε̂k perpendicu-
lar to k. The atomic transition dipole operator is
given by d = d(|σ+〉〈g|σ̂+ + |σ−〉〈g|σ̂− + |π〉〈g|ẑ) + h.c.,
where we assume, for simplicity, that all three tran-
sition dipole moments are equal. The dipole opera-
tor couples to the quantized transverse electromagnetic
field modes E(r) =

∫
d3k

∑
ε[Ek ε̂kakεeik·r + h.c.], where

Ek = i(2π)−3/2[~kc/(2ε0)]1/2 and rn denotes the position
vector of individual atoms. The Hamiltonian accounting
for the Zeeman splitting of the atoms is given by

HZeeman = ~
N∑
n=1

µB
(
|σ+,n〉〈σ+,n| − |σ−,n〉〈σ−,n|

)
, (2)

where µB is the Zeeman shift of the atomic levels with
magnetic moment µ due to an out-of-plane magnetic field
B = Bẑ.

Following the adiabatic elimination of the reservoir de-
grees of freedom via the Born-Markov approximation [2–
6, 15, 26, 27], we obtain a master equation for the evo-
lution of the system density operator ρ(t), which in the
single excitation sector is given by

ρ̇ = − i
~

(
Heffρ− ρH†eff

)
(3)

+
6π~Γ0c

ωA

N∑
i,j=1

∑
α,β=σ+,σ−,π

Im Gαβ(ri − rj)|gi〉〈αi|ρ|βj〉〈gj |,

where the non-Hermitian, effective spin Hamiltonian
reads

Heff = ~
N∑
i=1

∑
α=σ+,σ−,π

(
ωA − i

Γ0

2

)
|αi〉〈αi|+HZeeman

+
3π~Γ0c

ωA

∑
i 6=j

∑
α,β=σ+,σ−,π

Gαβ(ri − rj)|αi〉〈βj |, (4)

and Γ0 = d2ω3
A/(3πε0~c3) is the radiative linewidth of a

single atom in free space andGαβ(r) is the dyadic Green’s
function describing the dipolar spin-spin interactions (see
Section II D). Note that as part of the Markov approx-
imation, the only frequency-dependence is through the
atomic frequency ωA [15].

The first term on the right-hand side of Eq. (3) de-
scribes the deterministic evolution of the atomic wave-
function and includes dipole-dipole interactions mediated
via photon exchange, whereas the second term accounts
for stochastic quantum jumps [15, 28–30]. In the absence
of a driving field, the dynamics in the single excitation
sector is completely characterized by the non-Hermitian
Hamiltonian in Eq. (4), since a quantum jump prepares
the system in a trivial state where all atoms are in their
ground states and the system does not evolve. Therefore,
it is not necessary to keep track of these quantum jumps
and the system dynamics can be studied without includ-
ing the second term on the right-hand side of Eq. (3).
The time evolution of the system is then described by
the non-Hermitian Hamiltonian in Eq. (4) via the equa-
tion

Heff|ψ(t)〉 = i~∂t|ψ(t)〉, (5)

where the overall decrease in amplitude reflects the dis-
sipative transfer of population to the ground state.
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B. Bravais lattices

For an infinite periodic Bravais lattice, which has a
single atom per unit cell, the single excitation eigenmodes
of Eq. (4) are Bloch modes of the form

|ψkB 〉 =
∑
n

eikB ·Rn

(
c+|σ+,n〉+ c−|σ−,n〉+ cz|zn〉

)
, (6)

where the summation runs over all lattice vectors {Rn},
kB is the Bloch wavevector, and c+, c− and cz are con-
stants that depend, in general, on kB .

It is convenient to solve for and manipulate the dyadic
Green’s function in the Cartesian basis. Therefore,
we transform Eq. (4) and Eq. (6) using the relation

|σ±〉 = ∓(|x〉 ± i|y〉)/
√

2 and perform all calculations in
the Cartesian basis in the rest of this paper.

Using the Bloch ansatz for the wavefunction, finding
the eigenvalues EkB of the effective Hamiltonian Heff re-
duces to diagonalizing the following 3 × 3 matrix M,
whose components are given by

Mαβ = (ωA − iΓ0/2) δαβ + ξαβ + χαβ , (7)

where α, β = x, y, z label the polarization components,
and δαβ is the Kronecker delta. Here ξαβ and χαβ stand
for the components of the complex matrices accounting
for the magnetic field and the atom-atom interactions,
respectively, and take the form

ξαβ = −iµB(δαxδβy − δαyδβx), (8)

and

χαβ =
3πΓ0c

ωA

∑
R 6=0

eikB ·RGαβ(R). (9)

The matrix M captures how the energy levels, decay
rates, and internal level couplings of a single atom are
affected by the magnetic field and the presence of all the
other atoms in the periodic lattice for a given Bloch vec-
tor kB . For example, the matrix element χxy captures
how the |x〉 state of an individual atom is affected by the
couplings to the |y〉 states of all the other atoms in the
lattice. The diagonalization of M yields three complex
eigenvalues for each value of the Bloch vector kB of the
form EkB = ωkB − iγkB , where the real part ωkB cor-
responds to the energy of the Bloch eigenmode and the
imaginary part γkB characterizes the overall decay rate
of the mode.

C. Non-Bravais lattices

For an infinite periodic non-Bravais lattice, with m
sites per unit cell, the single excitation eigenmodes of
Eq. (4) are Bloch modes of the form [31]

|ψ〉 =
∑
n

m∑
b=1

eikB ·Rn

(
cb+|σb+,n〉+ cb−|σb−,n〉+ cbz|zbn〉

)
,(10)

where b labels the different atoms within the unit cell. In
this case, the eigenmodes of the system are obtained by
diagonalizing a 3m× 3m matrix.

For simplicity, we focus on non-Bravais lattices with
two sites per cell, but the formalism can be extended
in a straightforward way to include more sites per cell.
For m = 2, the non-Bravais lattice can be thought of as
a lattice arising from the union of two sublattices {R1}
and {R2}, which are shifted with respect to each other by
the basis vector b that points from one site to the other
within the periodic unit cell. With this notation, the
matrix components of the relevant 6× 6 complex matrix
M are given by

Mαµ,βν =
(
ω

(1)
A − iΓ0/2

)
δαβδ1µδ1ν + ξαµ,βν

+
(
ω

(2)
A − iΓ0/2

)
δαβδ2µδ2ν + χαµ,βν , (11)

where ω
(1)
A and ω

(2)
A are the transition frequencies of the

atoms located on the two sublattices, while µ and ν are
sublattice labels than run over µ, ν = 1, 2. The terms
accounting for the magnetic field interaction are given
by

ξαµ,βν = −iµB(δαxδβy − δαyδβx)(δ1µδ1ν + δ2µδ2ν), (12)

and the terms describing the atom-atom interactions take
the form

χαµ,βν =
3πΓ0c

ω
(1)
A

[ ∑
R1 6=0

eikB ·R1Gαβ(R1)δ1µδ1ν

+
∑
R1

eikB ·R1Gαβ(R1 + b)δ1µδ2ν

+
∑
R2 6=0

eikB ·R2Gαβ(R2)δ2µδ2ν

+
∑
R2

eikB ·R2Gαβ(R2 − b)δ2µδ1ν

]
, (13)

where we have used the fact that |ω(1)
A − ω

(2)
A |/ω

(1)
A � 1

to replace all occurrences of ω
(2)
A with ω

(1)
A in χαµ,βν and

factor out a common prefactor. In Eq. (13) the first term
on the right-hand side describes how atoms in sublattice
{R1} affect each other, whereas the second term describes
how atoms in sublattice {R1} are affected by atoms in
sublattice {R2}. The third and fourth terms can be in-
terpreted similarly.

In principle, the eigenmodes of the lattice can be di-
rectly calculated from Eqs. (7) and (9) for Bravais lat-
tices, and Eqs. (11) and (13) for non-Bravais lattices for
arbitrary lattice geometries using the expression for the
Green’s function in real space and summing over all lat-
tice sites. However, in the presence of long range in-
teractions, as for example in free space, the summation
over the lattice sites converges very slowly, making accu-
rate numerical computations difficult. Furthermore, in
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certain geometries, e.g. near planar surfaces (see Sec-
tion IV), no closed form expression exists for the Green’s
function in real space. Below we describe a method to
perform the relevant summations in momentum space,
where convergence is fast and the expression for the
Green’s function in momentum-space can be used for the
calculation, which is typically easier to obtain than the
equivalent expression in real space.

D. Dyadic Green’s function

The dyadic Green’s function Gαβ that appears in
Eqs. (3), (4), (9) and (13) is the solution of the dyadic
equation [32]

ε(ω, r)
ω2

c2
Gαβ(r, r′)

− (∂α∂ν − δαν∂η∂η)Gνβ(r, r′) = δαβδ(r− r′), (14)

where r = xx̂ + yŷ + zẑ and r = |r|. Summation
is implied over repeated indices. The dielectric per-
mittivity ε(ω, r) is potentially spatially inhomogeneous
and frequency-dependent and we assume a non-magnetic
medium with magnetic permeability µ(ω, r) = 1. Physi-
cally, the Green’s function describes the electromagnetic
radiation at position r emitted by a point-like dipole os-
cillating at frequency ω at position r′.

In free space, the permittivity is ε = 1 and Eq. (14) has
a closed-form solution for the free-space dyadic Green’s
function G0,αβ (see Appendix A). The components of the
Green’s function with radiating boundary conditions are
given by [32, 33]

G0,αβ(r) = −e
ikr

4πr

[(
1 +

i

kr
− 1

(kr)2

)
δαβ

+

(
− 1− 3i

kr
+

3

(kr)2

)
xαxβ
r2

]
+
δαβδ

(3)(r)

3k2
, (15)

where k = ω/c and we have used the fact that the Green’s
function only depends on r− r′ to write it with a single
argument. This is the well-known expression describing
dipole-dipole interactions in free space, which can also be
derived using conventional quantum optical techniques
[34, 35].

In the presence of planar interfaces, the expression
for the dyadic Green’s function gets more complicated
and the components can be evaluated in a closed form
only in momentum space. The explicit expressions for
the momentum-space components of the Green’s function
near planar surfaces are described in detail in Appendix
D.

E. Summation in momentum space

From Eq. (15) it is clear that the Green’s function de-
cays as ∼ 1/r in the far-field limit. In the presence of

such long-range interactions between atoms it is desir-
able to perform the summations in Eq. (9) and Eq. (13)
in momentum space, where all sums converge rapidly as
previously noted. The summation in position space is
transformed to a summation in momentum space using
the following form of Poisson’s identity∑
R

ei(px-y+kB)·R =
1

A
∑
G

(2π)2δ(2)(px-y + kB −G), (16)

where px-y = pxx̂ + py ŷ, A is the area of the unit cell
and the reciprocal lattice vectors {G} are related to the
lattice vectors {R} by G ·R = 2πm for integer m [36].
Making use of Eq. (16), we obtain∑

R 6=0

eikB ·RGαβ(R) =
∑
R

eikB ·RGαβ(R)−Gαβ(0)

=
1

A
∑
G

gαβ(G− kB ; 0)−Gαβ(0), (17)

where we have used the Weyl decomposition of the
Green’s function in terms of 2D plane waves [37], which
is defined via

Gαβ(r) =

∫
dpxdpy
(2π)2

gαβ(px-y; z)ei(pxx+pyy). (18)

In free space the Weyl decomposition is given by (see
Appendix A)

gαβ(px-y; z) =

∫
dpz
2π

eipzz
1

k2

k2δαβ − pαpβ
k2 − p2

, (19)

where p = p2
x + p2

y + p2
z. Following similar reasoning, we

also obtain∑
R

eikB ·RGαβ(R± b)

=
1

A
∑
G

gαβ(G− kB ; 0)e±ib·(G−kB). (20)

F. Green’s function regularization and quantum
fluctuations

In order to evaluate the right-hand side of Eq. (17),
special care has to be taken. While the left-hand side of
Eq. (17) is finite and physically meaningful, the two terms
on the right-hand side diverge individually — only their
difference is finite. An established technique to avoid
such divergences is to take into account the quantum
fluctuations of the particles [5, 6]. These fluctuations
‘smear out’ the divergent part of the Green’s function at
r = 0 over a finite volume, making it finite. In practice,
this can be achieved by averaging the free-space Green’s
function with respect to the ground state wavefunction
of a harmonically trapped atom [5, 6]

G∗αβ(r) =

∫
d3q G0,αβ(r− q)|ψ0(q)|2, (21)
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where ψ0(q) is the ground state wavefunction of a quan-
tum harmonic oscillator of frequency ωho = ~/(2ma2

ho)
given by

|ψ0(q)|2 =
1

(
√

2πaho)3
e−q

2/2a2ho . (22)

Performing this integral with r = 0 yields the following
non-divergent, closed-form expression for the fluctuation-
averaged Green’s function at the source [5]

G∗αβ(0) =
k

6π

[(
erfi(kaho/

√
2)− i

e(kaho)2/2

)
− (−1/2) + (kaho)2

(π/2)1/2(kaho)3

]
δαβ , (23)

where erfi(b) = 2/
√
π
∫ b

0
dy exp(y2) is the imaginary error

function.
The regularization techniques of Refs. [5, 6] can be

specialized to the two-dimensional lattice to derive the
fluctuation-averaged Weyl decomposition of the Green’s
function g∗αβ(px-y; 0) in the z = 0 plane (see Appendix

B for details of the derivation). The components of the
resulting expression are given by

g∗xx(px-y; 0) = (k2 − p2
x)I0,

g∗yy(px-y; 0) = (k2 − p2
y)I0,

g∗zz(px-y; 0) = (k2I0 − I2),

g∗xy(px-y; 0) = g∗yx(px-y; 0) = −pxpyI0

g∗xz(px-y; 0) = g∗zx(px-y; 0) = 0,

g∗yz(px-y; 0) = g∗zy(px-y; 0) = 0. (24)

where

I0(px, py) = C πe
−a2hoΛ2/2

Λ

[
−i+ erfi

(
ahoΛ√

2

)]
, (25)

and

I2(px, py) = C
(
−
√

2π

aho

+e−a
2
hoΛ2/2πΛ

[
−i+ erfi

(
ahoΛ√

2

)])
. (26)

The functions C and Λ depend on px and py and their
explicit form is given by

C(px, py) =
1

2πk2
e−a

2
ho(p2x+p2y)/2. (27)

and

Λ(px, py) = (k2 − p2
x − p2

y)1/2 ≥ 0. (28)

We note that the last two lines in Eq. (24) are identically
zero, since the polarization of the radiation emitted by a
dipole is always parallel to the dipole orientation in the
plane perpendicular to the dipole.

After substituting the regularized expressions from
Eq. (23) and Eq. (24) into Eq. (17) and Eq. (20), we
may use Eq. (7) and Eq. (9) (or Eq. (11) and Eq. (13))
to obtain the eigenmodes of any Bravais (or non-Bravais)
2D lattice in the presence of atomic fluctuations.

Furthermore, the eigenmodes for point-like atoms
(that are pinned to their lattice sites) can also be ob-
tained through the simple modification of the fluctuation-
averaged expressions for the Green’s function. In partic-
ular, it can be shown (see Ref. [5] and Appendix C) that
the expression

ek
2a2ho/2

1

A
∑
G

g∗αβ(G− kB ; 0)−G∗αβ(0) (29)

approaches an aho-independent value as the limit aho → 0
is taken. Therefore, when aho � 1/k, the following ap-
proximation holds∑

R6=0

eikB ·RGαβ(R)

≈ ek
2a2ho/2

A
∑
G

g∗αβ(G− kB ; 0)−G∗αβ(0). (30)

Using this approximation in Eq. (9) or Eq. (13), we ob-
tain the eigenmodes for arbitrary 2D lattice geometries
made up of point-like atoms.

The regularized expressions given above provide a
straightforward, efficient and accurate way of calculating
the eigenmodes of any 2D lattice composed of point-like
or fluctuating atoms. Since we perform the summations
in momentum space, only a few dozens of reciprocal lat-
tice sites have to be included for full convergence. This
contrasts sharply with performing summations in real
space, where convergence often remains an issue even af-
ter tens of thousands of lattice sites have been included.
To illustrate our formalism, we analyze below particular
examples of 2D atomic lattices in free space and near
planar metallic surfaces.

III. ATOMIC LATTICES IN FREE SPACE

As an application of our formalism, we study 2D
atomic lattices in free space. We focus on two exam-
ples – a non-Bravais square lattice of three-level atoms
and a triangular lattice of three-level atoms – and discuss
their topological properties.

A. Non-Bravais Square lattice of three-level atoms

As our first example, we consider a non-Bravais square
lattice of closely spaced (a ≈ λ/20) atoms in free space
as shown schematically in Fig. 2(a). The properties of
a non-Bravais honeycomb lattice in free space was stud-
ied previously in Ref. [10], where long-lived topological
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FIG. 2. (a) Non-Bravais square lattice of atoms in free
space. Atoms marked in red (green) have resonant frequency

ω
(1)
A (ω

(2)
A = ω

(1)
A +δω). Each atom has two excited states |σ+〉

and |σ−〉 that are Zeeman shifted by ±µB in the presence of
an out-of-plane magnetic field B. (b) Part of the photonic
band structure of the lattice for B = 0. Green dashed lines
mark the edges of the light cone. Modes that have quasi-
momentum kB < ωkB (green shaded region) can couple to
free-space modes of the same momentum, making them short-
lived. Modes that have quasi-momentum kB > ωkB cannot
couple to free-space modes and are long-lived. Decay rates
of the modes are color coded. Bands are degenerate near the
mid-point of the line joining the X and Γ points. (c) An out-
of-plane magnetic field (µB = 20Γ0) opens a gap (∆ = 7Γ0)
between the bands (grey shaded region). The bands acquire
non-trivial Chern numbers (purple numbers). Relevant pa-
rameters are λ = 790nm, δω = 30Γ0, Γ0 = 2π × 6MHz and
a = 0.054λ.

edge states were shown to exist on the system boundaries.
Here, we show that a non-Bravais square lattice also sup-
ports long-lived topological edge excitations. These re-
sults demonstrate that these topological phenomena are
not confined to any particular non-Bravais lattice geom-
etry. Later, we will also see that these results stand in
contrast with those obtained in Bravais lattices, where
edge excitations are short-lived.

The atomic non-Bravais square lattice lies in the x-y
plane with the quantization axis set along the z-axis and
the interatomic spacing is a. Each atom is assumed to
have two excited states |σ+〉 and |σ−〉, which can be ex-
cited by σ̂+ and σ̂− polarized light, respectively. Note
that the atoms could also have a transition to the |z〉
state, but from Eq. (15) (see also Eq. (24)) it follows that

Gxz = Gzx = Gyz = Gzy = 0 in the x-y plane and, there-
fore, the σ± transitions are decoupled from the transition
to the |z〉 state and we can ignore the latter. The lattice
is assumed to consist of atoms of two different resonant
transition frequencies ω

(1)
A (red atoms in Fig. 2(a)) and

ω
(2)
A = ω

(1)
A + δω (green atoms), where δω is a non-zero

energy shift that may originate from having two differ-
ent atomic species or a position-dependent Stark-shift.
Here we assume that the atoms are point-like and their
position is fixed.

First, we consider the atomic lattice in the absence of a
magnetic field. After substituting Eq. (20) and Eq. (30)
into Eq. (13), we diagonalize the matrix in Eq. (11) to
obtain the complex eigenvalues EkB = ωkB − iγkB for
each Bloch vector kB inside the Brillouin zone. Fig. 2(b)
shows the resulting band structure along the lines join-
ing the high symmetry points Γ, M and X inside the
irreducible Brillouin zone (see inset of Fig. 2(b)).

The decay rates of the modes (γkB ) are shown using
a color code. The edges of the light cone are marked
by green dashed lines at kB = 2π/λ. These lines cor-
respond to free space modes propagating in the x-y
plane with maximal in-plane momentum kB = ωkB/c.
All other free-space modes have an in-plane momentum
component that satisfies kB < ωkB/c (green shaded re-
gion in Fig. 2(b)). The hybridized atom-photon modes
of the atomic lattice with quasi-momentum kB < ωkB/c
can couple to free-space modes with matching momen-
tum and energy, making these lattice modes short-
lived. In contrast, lattice modes with quasi-momentum
kB > ωkB/c cannot couple to any of the free-space modes
due to the momentum mismatch (since 〈k|k′〉 = δkk′ in
the momentum eigenbasis) [10, 15]. Therefore, lattice
modes with kB > ωkB/c are decoupled from free-space
modes and do not decay when the lattice is infinite.

This distinction between short-lived modes inside the
light cone and long-lived modes outside the light cone
is well-known in the literature of photonic crystal slabs,
where periodic subwavelength dielectric structures are
used to confine light in quasi-2D structures [38]. We also
note that even though the edges of the light cone indeed
trace out a conical shape in k-space, the dashed green
lines in Fig. 2(b) appear vertical as we are only look-
ing at a small energy range of a few linewidths around
the atomic transition frequency and Γ0 � ωA at optical
frequencies.

Due to the underlying symmetries of the lattice, the
bands in Fig. 2(b) form Dirac cones along the paths join-
ing the Γ point with the four X points and there is a
quadratic degeneracy at the Γ point. These degeneracies
arise due to the degeneracy of the |σ+〉 and |σ−〉 transi-
tions in the absence of a magnetic field. When a magnetic
field B = Bẑ is switched on, the energy levels of the |σ±〉
transitions are shifted by ±µB due to Zeeman splitting.
Breaking the degeneracy of the |σ+〉 and |σ−〉 transitions
lifts the degeneracy of the bands and a complete band
gap forms across the Brillouin zone (grey shaded band in
Fig. 2(c)).
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We investigate the topological character of the bands
by calculating their Chern numbers [39], which are de-
fined via the integral

C =
1

2π

∫
∇kB ×A(kB) · dkB . (31)

The integral is performed over each band inside the ir-
riducible Brillouin zone and the integrand is curl of the
‘Berry curvature’, which is defined via

A(kB) = 〈ψkB | i∇kB |ψkB 〉 , (32)

where ψkB is the wavefunction of the Bloch mode with
Bloch momentum kB . We use the discretization method
in Ref. [40] to numerically obtain the Chern numbers for
the bands. The resulting non-zero Chern numbers for the
bands above and below the gap are shown in Fig. 2(c).
The four Dirac points between the two middle bands con-
tribute +2 and -2 to the Chern numbers of the upper and
lower bands respectively. At the same time, the quadratic
degeneracy between the top two bands contributes +1
and -1 to the upper and lower bands respectively. Thus
the three bands, from top to bottom, acquire Chern num-
bers +1, (+2-1)=+1 and -2.

Band gaps between topological bands are associated
with edge states [39]. We investigate the spectrum of
edge states by finding the eigenmodes of a periodic strip
of the atomic lattice (see Fig. 3(a)). The calculation pro-
ceeds by defining an MxN lattice of atoms in real space,
where the lattice has periodic boundary conditions along
the first direction (Fig. 3(a)). The interactions between
atoms is calculated using Eq. (4) and the range of the
interactions is truncated after M/2 sites [41]. The wave-
functions of the resulting eigenmodes are then Fourier-
analyzed to find kx, the component of the Bloch quasi-
momentum along the x-axis, associated with each mode.

Fig. 3(b) shows the spectrum of Heff for such a configu-
ration, where the eigenergies are plotted versus kx. Edge
modes on the lower and upper boundaries of the strip
are marked by diamonds and squares respectively. The
edge states cross the gap connecting the two bulk bands.
Since the sum of the Chern numbers above and below the
band gap is +2 and -2 respectively, there are two sets of
edge modes on each boundary. Note that both sets of
edge modes on the lower boundary carry energy to the
right, whereas both sets of modes on the top boundary
carry energy to the left. Since energy flow is unidirec-
tional on each boundary, these edge states carry energy
forward without backscattering. Crucially, we find that
the edge modes cross the gap outside the light cone with
quasi-momenta kB > ωkB/c. Therefore, these edge states
do not couple to free-space modes due to the momentum
mismatch, making them long-lived with decay rates much
smaller than Γ0/2. This suppression of losses is the key
result, which leads to long-lived edge excitations. Such
edge excitations can carry energy around the boundaries
of the lattice with minimal losses.

Fig. 4 shows a snapshot of the excitation probabil-
ities during the no-jump time evolution of the sys-

FIG. 3. (a) Periodic strip of atoms in a non-Bravais square
lattice. Each edge has edge modes propagating only in a single
direction. (b) Modes that propagate on the upper (lower)
edge are marked by squares (diamonds) in the band structure
diagram. Extended bulk modes are marked with dots. There
are two sets of edge modes on each boundary. Decay rates
of modes are color coded. The edge modes cross the gap
with quasi-momentum kB > ωkB and thus are long-lived.
Parameters are the same as in Fig. 2(c). The spectrum was
obtained for a 80x40 lattice of atoms with periodic boundary
conditions along one direction. A state is classified as an
edge state on the (upper) lower boundary if the excitation
probability on the top (bottom) four rows is at least 15 times
the excitation probability on the bottom (top) four rows.

tem when a single atom is continuously excited by a
laser on the boundaries of the lattice. If the driving
field is weak, the dynamics are essentially captured by
the single excitation description introduced above. We
add to Eq. (10) the ground state component +cg|g∗〉
of the driven atom and |g∗〉 is coupled to the ex-
cited states |σ+,∗〉 and |σ−,∗〉 of the atom by adding
the driving terms Ω(t) (|σ+,∗〉〈g∗|+ |σ−,∗〉〈g∗|+ h.c.) to
the effective Hamiltonian Heff. We obtain the time-
evolved wavefunction at time t by numerically find-
ing |ψ(t)〉 = exp (−iHeff/~t)|ψ(0)〉, where the excitation
is initially in the ground state of the driven atom
(|〈g∗|ψ(0)〉|2 = 1). The laser is resonant with the edge
states inside the band gap and is switched on adiabati-
cally to avoid exciting non-resonant modes. We find that
approximately 96% of the excitation emitted by the atom
is coupled into the edge modes carrying energy in the
clockwise direction, while coupling into modes circulating
anti-clockwise and into the bulk modes is strongly sup-
pressed due to the gap and topology. Given the absence
of channels for backscattering and highly suppressed cou-
pling to free space modes, the excitation routes around
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FIG. 4. Snapshot of the time evolution (at t = 11.1Γ−1
0 )

of a finite non-Bravais square lattice in free space with an
irregular defect. An atom on the edge (marked by the red
star) is driven by a laser (see inset). The color code depicts
the excitation probability |〈ψ(t)|σi

+

〉
|2 + |〈ψ(t)|σi

−
〉
|2 at each

site. Approximately 96% of the emitted excitation is cou-
pled into the forward direction. Emission into bulk modes
and the backward edge modes is suppressed. The excitation
goes around the corners and routes around the large, irregular
defect, which demonstrates the robustness of the topological
excitation to disorder. Relevant parameters are N = 1576,
λ = 790nm, δω = 30Γ0, Γ0 = 2π × 6MHz, a = 0.054λ
and µB = 20Γ0. The strength of the drive is Ω = 0.1Γ0

and the driving frequency is ωL = ωA + 18Γ0. The driving
laser is adiabatically switched on with a Gaussian profile
Ω(t) = Ω exp(−[t− 4.5Γ−1

0 ]2/[1.35Γ−2
0 ]) for t < 4.5Γ−1

0 .

corners with approximately 97% efficiency as well as
around the irregular defect with approximately 86% ef-
ficiency. We emphasize that these results illustrate the
key point that topological quantum optical systems are
protected against both losses into free space and large
defects in the lattice. We also note that qualitatively
similar results were obtained in the non-Bravais honey-
comb lattice in Ref. [10].

B. Triangular lattice of three-level atoms

Topological photonic bands in atomic lattices can also
be obtained when a ≈ λ/2 — a trapping regime that
is routinely explored in cold atom laboratories world-
wide [42]. Fig. 5(a) shows a triangular Bravais lattice
of atoms in the x-y plane in free space with a = λ/2 and
quantization axis along the z-axis. As in the case of the
non-Bravais square lattice, each atom is assumed to have
two excited states |σ+〉 and |σ−〉.

FIG. 5. (a) Triangular lattice of atoms with interatomic
spacing a in free space. Each atom has two excited states |σ+〉
and |σ−〉 with Zeeman-splitting ±µB due to an out-of-plane
magnetic field B. (b) Photonic band structure for B = 0 and
point-like atoms pinned to their lattice sites. Green dashed
lines mark the light cone edges. Modes with quasi-momentum
kB < ωkB (green shaded region) couple to free-space, making
them short-lived. Modes with quasi-momentum kB > ωkB

are long-lived. Decay rates of the modes are color coded.
Bands are degenerate at the Γ and K points. (c) A transverse
magnetic field (µB = 0.5Γ0) opens a small gap (∆ = 0.5Γ0)
between the bands (grey shaded region). The bands acquire
non-trivial Chern numbers (purple numbers). (d) When the
atoms fluctuate around the lattice sites, the size of the gap
is reduced. Here the amplitude of fluctuations is aho = 0.4a.
Relevant parameters for all three plots are λ = 790nm, Γ0 =
2π × 6MHz and a = λ/2.

Initially, we assume point-like atoms in zero magnetic
field. After substituting Eq. (30) into Eq. (9), we di-
agonalize the matrix in Eq. (7) to obtain the complex
eigenvalues. Fig. 5(b) shows the band structure along
lines joining the high symmetry points Γ, K and M of
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the Brillouin zone (see inset of Fig. 5(b)).

The decay rates of the modes γkB are encoded using a
color code and the light cone edges are marked by green
dashed lines. Given the a = λ/2 spacing of the atoms, the
boundaries of the irreducible Brillouin zone are close to
the light cone edges. Therefore, the modes are decoupled
from free-space modes only in a small region near the
perimeter of the irreducible Brillouin zone.

The bands in Fig. 5(b) form a Dirac cone at the K
point and a quadratic degeneracy at the Γ point. When
a magnetic field B = Bẑ is switched on, the degeneracies
are lifted and a small gap forms across the Brillouin zone
(shaded band in Fig. 5(c)). The bands acquire non-zero
Chern numbers (purple numbers) indicating the topolog-
ical nature of the bands.

Fig. 5(d) shows the band structure in the presence of
a magnetic field when the fluctuations of the atoms are
taken into account. The plot is obtained by substituting
the regularized expressions from Eq. (23) and Eq. (24)
into Eq. (17) and diagonalizing Eq. (7) with a = λ/2
and aho = 0.4a. Since fluctuations smear out the relative
phases between sites, the band gap becomes smaller rel-
ative to the case when atoms were assumed to be point-
like. For even larger fluctuations the gap closes. We note
that the band structure is not significantly affected by
fluctuations as long as aho . 0.15a.

The presence of the gap between the topologically non-
trivial bands implies that for a finite lattice, edge states
appear on the system boundaries. However, since the
boundaries of the light cone are very close to the bound-
aries of the irreducible Brillouin zone, all edge states will
fall within the light cone. Therefore, all edge states cou-
ple to the free-space modes, making them short-lived.
This makes energy transfer with these edge states im-
practical. The spacing of the atoms can be reduced
slightly to increase the size of the Brillouin zone and es-
tablish larger areas that are outside the light cone. How-
ever, as the spacing between atoms is reduced, the gap
size gradually decreases and closes before the edge states
cross the edges of the light cone. This stands in contrast
with the case of a honeycomb lattice of atoms, where the
gap size increases as ∼1/a3 with decreasing interatomic
distance [10].

Qualitatively similar results can be obtained in a
square Bravais lattice of atoms with a ≈ λ/2 and identi-
cal atomic level structure. In this case, quadratic degen-
eracies form both at the Γ and M points. A magnetic
field lifts the degeneracies, opening a gap. The size of the
gap varies with interatomic spacing and is non-negligible
(∆ ∼ 0.5Γ0) only when a ≈ λ/2. The maximum gap size
is generally smaller in the square lattice than for a tri-
angular lattice with similar parameters, as the Brillouin
zone of the square lattice is less circular than that of the
triangular lattice [43].

IV. ATOMIC LATTICES NEAR A METALIC
PLANAR SURFACE

The study of dipole-like atomic emitters near metallic
surfaces has received significant attention lately as part
of recent research efforts into plasmonics [18–25]. The
technique developed so far can be extended in a straight-
forward way to describe atomic lattices in the vicinity of
planar metal surfaces as long as the plane of the atomic
lattice is parallel to all surfaces, thus ensuring that trans-
lational invariance is preserved in the x-y plane. Here,
we analyze atoms placed near a single metal-dielectric in-
terface. In Appendix D, we also discuss how our method
generalizes to describe atomic lattices in the presence of
arbitrarily layered planar media.

We assume that the plane of the atomic lattice lies at
z = 0 and the metal-dielectric interface is located at a
distance h below the dipoles at z = −h. The eigenmodes
of the atomic lattice are then obtained form Eq. (7) and
Eq. (11) by substituting Gαβ into Eq. (9) and Eq. (13),
where Gαβ is the solution of Eq. (14) with the following
spatially inhomogeneous and frequency-dependent per-
mittivity

ε(ω, r) =

{
εd, if z > −h
εm(ω) < 0, if z < −h

, (33)

where εd is the permittivity of the dielectric and εm(ω)
is the frequency-dependent permittivity of the metal. In
the presence of a planar interface, there is no known
closed-form solution for Gαβ in position space. In con-
trast, it is possible to exactly solve for the Weyl de-
compositon gαβ(px-y; z) in momentum space in the pres-
ence of arbitrarily layered planar media (see Appendix
D for more details), which allows us to efficiently per-
form the band structure calculations using the expres-
sions Eq. (17) and Eq. (20) [44].

For illustration, below we analyze two examples of
atomic lattices near plasmonic surfaces – a square lat-
tice of four-level atoms featuring a non-topological gap
and a triangular lattice of three-level atoms giving rise
to topological gaps.

A. Square lattice of four-level atoms

As our first example, we consider a square lattice of
atoms in free space (εd = 1) near a silver surface as
shown in Fig. 6(a). Each atom is assumed to have three
excited states |σ+〉, |σ−〉 and |π〉, which are excited by
σ̂+, σ̂− and ẑ polarized light. The atoms are assumed
to be very close to the surface h � λ, such that cou-
pling to plasmons is strong at optical frequencies. For
the frequency-dependent dielectric permittivity of metal
we use the material properties reported for single-crystal
silver in Ref. [25], which were experimentally shown to
give rise to propagation distances on the order of 150-
200λ for plasmons at optical frequencies. Therefore, we



10

FIG. 6. (a) Square lattice of atoms with interatomic spac-
ing a and distance h from a silver surface. Each atom has
three transitions to the |σ+〉, |π〉 and |σ−〉 states. (b) Band
structure of the lattice. Green dashed lines mark the edges of
the free-space light cone (green shaded region), purple dashed
lines show the plasmonic dispersion of the metal surface. De-
cay rate of the modes is color coded. Due to the strong cou-
pling of the |π〉 state to the plasmons, a non-topological gap
opens in the spectrum (grey shaded region). Relevant pa-
rameters are λ = 737nm, Γ0 = 2π × 0.95MHz, a = λ/3 and
h = λ/10.

disregard the imaginary part of the permittivity with the
understanding that the propagation distance of the hy-
brid atom-plasmon modes of the lattice is eventually lim-
ited by ohmic losses. For a discussion of the notion of
band gaps in the presence of losses see Ref. [1].

Fig. 6(b) shows the band structure of the atomic lattice
near the metal surface with a = λ/3 and h = λ/10. Due
to the proximity of the metal surface, the in-plane com-
ponents of the electromagnetic field are small. Therefore,
the bare resonant energy ωA of the |σ+〉 and |σ−〉 tran-
sitions of the individual atoms is not strongly affected
by the presence of the other atoms, resulting in the two
nearly flat bands near ωA. In contrast, the |π〉 transition
couples strongly to plasmons, which are predominantly
polarized along ẑ. The strong interaction splits the ẑ
polarized band into two bands (top and bottom band
in Fig. 6(b)), resulting in a (non-topological) band gap.
At energies inside the band gap no plasmonic modes can
propagate.

The edges of the light cone are marked by green dashed
lines in Fig. 6(b). For frequencies far away from the
plasma frequency, the plasmonic modes fall just outside
the edges of the light cone. These plasmonic modes are
marked by magenta dashed lines in Fig. 6(b). Modes
within the light cone couple strongly to free space modes,
whereas modes outside the light cone do not decay.

FIG. 7. (a) Triangular lattice of atoms with transitions to
the |σ+〉 and |σ−〉 states near a metal surface. (b) Band struc-
ture of the lattice for B = 0. Green dashed lines mark the
edges of the free-space light cone (green shaded region), pur-
ple dashed lines show the plasmonic dispersion of the metal
surface. Decay rate of the modes is color coded. Bands are
degenerate at the Γ and K points. (c) A transverse magnetic
field (µB = 0.5Γ0) opens two small gaps between bands that
have non-trivial Chern numbers. The relevant parameters are
λ = 437nm, Γ0 = 2π × 0.95MHz, a = λ/1.95 and h = λ/15.

B. Triangular lattice of three-level atoms

Hybridized atom-plasmon-photon bands may also have
topological character in the proximity of the metal sur-
face. Fig. 7 shows a triangular lattice of three-level atoms
with V-level structure near a metal surface, where the
transition to the |π〉 state is not included since it decou-
ples completely from the transition to the |σ+〉 and |σ−〉
states (see discussion in Section III A). The |σ+〉 and |σ−〉
transitions are assumed to be near-UV (λ = 437nm).
Such transitions are favorable, since at higher frequen-
cies the plasmons get more tightly confined to the metal
surface and the in-plane components of the plasmonic
fields increase, making interactions with the |σ±〉 tran-
sitions stronger. Fig. 7(b) shows the band structure in
the absence of a magnetic field. A quadratic degener-
acy forms at the Γ point and a Dirac point is found at
the K point, just as in free space. Applying a magnetic
field lifts the degeneracies and opens up two small gaps
in the spectrum (grey shaded bands in Fig. 7(c)) and the
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bands acquire non-trivial Chern numbers (purple num-
bers). The bands remain topological even if atoms with
longer transition wavelength are used. However, in this
case the interactions will be weaker, making the ‘avoided
crossings’ of bands smaller and the gap disappears. Note
that the band structures in Fig. 7(b) and (c) are qual-
itatively similar to the band structures obtained for a
triangular lattice of atoms in free space (Fig. 5(b) and
(c)). The key difference is that in Fig. 7 the uppermost
band asymptotically approaches the unperturbed plas-
monic modes of the metal surface (purple dashed lines)
for ωkB � ωA, whereas in Fig. 5 the decay rate of the
uppermost band diverges as the edges of the light cone
are approached, effectively dissolving the band [10].

V. CONCLUSIONS

We have described a general method for calculating
the photonic band structure for infinite two-dimensional
atomic lattices in free space and near planar surfaces
with arbitrary Bravais and non-Bravais geometries. This
method takes into account the full radiation pattern
emitted by individual atoms, which gives rise to long-
range interactions that scale as ∼ 1/r. By performing
the required summations in momentum space rather than
in real space, calculation of collective energy shifts and
decay rates can be performed efficiently. This method
makes it possible to account for atomic position fluctu-
ations and can be extended to describe atomic lattices
near metallic surfaces.

As applications of our method, we studied non-Bravais
square lattices and triangular Bravais lattices in free
space and investigated their topological properties, in-
cluding topological edge states in the band gap. We
also obtained the band structure of an atomic square
lattice near metallic surfaces and studied the topologi-
cal bands that arise when a triangular lattice of atoms
is placed near the metal surface. Given the generality
of our method, we expect that it will pave the way for
further studies of two-dimensional atomic lattices both
in free space and near planar surfaces and will facilitate
finding experimentally accessible parameter regimes for
the realization of topological quantum optics and other
intriguing phenomena.
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APPENDIX

Appendix A: Green’s function expressions

In free space the permittivity is ε = 1 and Eq. (14) can
be solved using Fourier techniques to obtain the following
momentum-space representation of the dyadic Green’s
function [37]

G0,αβ(r) =

∫
d3p

(2π)3
eip·r

1

k2

k2δαβ − pαpβ
k2 − p2

, (A1)

where p = pxx̂+py ŷ+pz ẑ, p = |p| and k = ω/c. Eq. (14)
also has a closed-form solution in position space [37] given
by

G0,αβ(r) = −
(

1

k2
∂α∂β + δαβ

)
eikr

4πr
. (A2)

After evaluating the derivatives [45, 46], we obtain the
following Green’s function components [32, 33]

G0,αβ(r) = −e
ikr

4πr

[(
1 +

i

kr
− 1

(kr)2

)
δαβ

+

(
− 1− 3i

kr
+

3

(kr)2

)
xαxβ
r2

]
+
δαβδ

(3)(r)

3k2
. (A3)

Appendix B: Green’s function regularization

We regularize the Green’s function by inserting a Gaus-
sian momentum cut-off of the form [5]

R̃(aho,p) = e−a
2
hop

2/2 (B1)

into the Fourier integral of the Green’s function (Eq. A1),
which yields

G∗0,αβ(r) =

∫
d3p

(2π)3
eip·r

k2δαβ − pαpβ
k2(k2 − p2)

e−a
2
hop

2/2. (B2)

The momentum cut-off removes the high-frequency con-
tributions that are associated with momenta p� 1/aho.
Eq. (B2) is a convolution between the Green’s function
and the momentum cut-off and, therefore, by the convo-
lution theorem we obtain

G∗0,αβ(r) =

∫
d3q G0,αβ(r− q)R(aho,q), (B3)
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where R(aho,q) is the Fourier transform of the momen-

tum cut-off function R̃(aho,p) given by

R(aho,q) =

∫
d3p

(2π)3
eip·qe−a

2
hop

2/2

=
1

(
√

2πaho)3
e−q

2/2a2ho

= |ψ0(q)|2, (B4)

where ψ0(q) is the ground state wavefunction of a quan-
tum harmonic oscillator of frequency ωho = ~/(2ma2

ho).
Eq. (B3) thus represents the averaging over the ground
state fluctuations of a harmonically trapped atom, where
aho is the amplitude of the ground state fluctuations [5].
Substituting Eq. (15) into Eq. (B3), setting r = 0 and
evaluating the integral gives Eq. (23).

In order to find the fluctuation-averaged Weyl decom-
position of the free-space Green’s function in the plane
of the atoms (z = 0), we need to evaluate the following
expression

g∗αβ(px-y; 0) =

∫
dpz
2π

k2δαβ − pαpβ
k2(k2 − p2 + iε)

e−a
2
hop

2/2, (B5)

where, as part of the Sommerfeld prescription to make
the Green’s function causal, we have included an in-
finitesimal imaginary number with ε > 0 in the denomi-
nator to move the poles off from the real axis [37]. The
six independent components are given by

g∗xx = (k2 − p2
x)I0,

g∗yy = (k2 − p2
y)I0,

g∗zz = (k2I0 − I2),

g∗xy = g∗yx = −pxpyI0

g∗xz = g∗zx = −pxI1,

g∗yz = g∗zy = −pyI1 (B6)

where the integrals are given by

I0 = C
∫
dpz

e−a
2
hop

2
z/2

(k2 − p2
x − p2

y) + iε− p2
z

, (B7)

I1 = C
∫
dpz

pze
−a2hop

2
z/2

(k2 − p2
x − p2

y) + iε− p2
z

, (B8)

and

I2 = C
∫
dpz

p2
ze
−a2hop

2
z/2

(k2 − p2
x − p2

y) + iε− p2
z

, (B9)

where

C(px, py) =
1

2πk2
e−a

2
ho(p2x+p2y)/2. (B10)

Using the closed-form solutions for these integrals (see
e.g. [47]), we obtain Eqs. (25) and (26).

Appendix C: Cut-off independence of Green’s
regularization

As described in Ref. [5], in order to demonstrate that
Eq. (29) is independent of aho, we need to differentiate
Eq. (29) with respect to a2

ho and show that the value
of the resulting derivative goes to zero as the aho → 0
limit is taken. To simplify the calculations, we use the
form of the Green’s function as given in Eq. (A2) and the
following observation [32, 37]

eikr

4πr
= −

∫
d3p

(2π)3

eip·r

k2 − p2
. (C1)

We substitute into Eq. (29) the following expression

G∗0,αβ(ω, r)

=

[
δαβ +

∂rα∂rβ
k2

] ∫
d3p

(2π)3

eip·r

k2 − p2
e−a

2
hop

2/2. (C2)

After taking the derivative with respect to a2
ho and per-

forming the resulting Gaussian integral, we obtain

lim
aho→0

∂a2ho

ek2a2ho

∑
R 6=0

eikB ·RG∗αβ(R)

 = lim
aho→0

∑
R6=0

eikB ·R
(
δαβ +

∂rα∂rβ
k2

)
ea

2
hok

2

2

(
2π

a2
ho

)3/2

e
− R2

4a2
ho = 0, (C3)

where the last equality follows from the observation that
exp(−R2/4a2

ho)→ 0 as aho → 0 for R 6= 0.
Appendix D: Green’s function near a flat surface

The Weyl decomposition of the Green’s function in the
presence of flat surface has previously been derived by a
number of authors [32, 48–50]. Assuming the interface is
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located at z = −h, for z > −h the Weyl decomposition
is given by

gαβ(px-y; z) = g0,αβ(px-y; z) + g
(1)
sc,αβ(px-y; z), (D1)

where g0,αβ(px-y; z) is the Green’s function in free space
discussed previously and the term accounting for the
scattering from the surface is given by

g
(1)
sc,αβ(px-y; z) =

−ieikd(2h+z)

2kd

[
rSŜαŜβ + rP P̂−α P̂+

β

]
, (D2)

where the Fresnel coefficients are given by

rS =
kd − km
kd + km

and rP =
εmkd − εdkm
εmkd + εdkm

, (D3)

with

kd =
(
εdk

2 − p2
x − p2

y

)1/2 ≥ 0 (D4)

and

km =
(
εmk

2 − p2
x − p2

y

)1/2 ≥ 0, (D5)

where k = ω/c. The unit vectors for the S- and
P -polarizations are given by:

Ŝ =
1

p
(pyx̂− pxŷ), (D6)

P̂± =
1

k
√
εd

√p2
x + p2

y ẑ ∓ kd
pxx̂+ py ŷ√
p2
x + p2

y

 . (D7)

Using these expressions, we obtain the following matrix
expressions

ŜŜ =


p2y

p2x+p2y
− pxpy
p2x+p2y

0

− pxpy
p2x+p2y

p2x
p2x+p2y

0

0 0 0

 , (D8)

and

P̂−P̂+ =


− k2d
εdk2

p2x
p2x+p2y

− k2d
εdk2

pxpy
p2x+p2y

− kd
εdk2

px

− k2d
εdk2

pxpy
p2x+p2y

− k2d
εdk2

p2y
p2x+p2y

− kd
εdk2

py

kd
εdk2

px
kd
εdk2

py
p2x+p2y
εdk2

 . (D9)

Therefore, the full matrix expression in Cartesian co-
ordinates for the scattered part of the Green’s function
is given by

gsc(px-y; z) = − i

2kd
eikd(2d+z)



p2y
p2x+p2y

rS − k2d
εdk2

p2x
p2x+p2y

rP − pxpy
p2x+p2y

rS − k2d
εdk2

pxpy
p2x+p2y

rP − kd
εdk2

px rP

− pxpy
p2x+p2y

rS − k2d
εdk2

pxpy
p2x+p2y

rP
p2x

p2x+p2y
rS − k2d

εdk2
p2y

p2x+p2y
rP − kd

εdk2
py rP

kd
εdk2

px rP
kd
εdk2

py rP
p2x+p2y
εdk2

rP


.

For completeness, we note that for z < −h the Weyl
decomposition takes the form

gαβ(px-y; z) = g
(2)
sc,αβ(px-y; z), (D10)

where g
(2)
sc,αβ is given by [32, 48–50]

gsc,αβ(px-y; z) =

iei(kdh−km(h+z))

2kd

[
tSŜαŜβ + tP P̂m

α P̂+
β

]
, (D11)

where the Fresnel coefficients are given by

tS =
2kd

kd + km
and tP =

2kd
√
εdεm

εmkd + εdkm
, (D12)

and

P̂m =
1

k
√
εm

(p2
x + p2

y) ẑ − km
pxx̂+ py ŷ√
p2
x + p2

y

 . (D13)

Furthermore, we note that our method can be ex-
tended to describe atoms in the presence of multiple in-
terfaces in a straightforward manner, since the Green’s
function in momentum space can be written down in a
closed form in the presence of arbitrarily layered pla-
nar media. In particular, the above expressions for the
Green’s function depend on the particular planar geome-
try only through the Fresnel coefficients. In order to treat
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a more complicated planar geometry, we simply need to
substitute the relevant Fresnel coefficients into Eq. (D2)
(see Ref. [48] for more details).

In order to perform the summation in momentum
space, it is also necessary to find an expression for
Gsc,αβ(0), which can be expressed in terms of the fol-
lowing integral

Gsc,αβ(0) =

∫
dpx dpy
(2π)2

gsc,αβ(px-y; 0). (D14)

After performing the angular integral in the px-py plane,
only the diagonal terms survive and we are left with the
components

Gsc,xx(0) = − i

8π
k

[
Ixx,s −

1

εd
Ixx,p

]
(D15)

and

Gsc,yy(0) = Gsc,xx(0), (D16)

and

Gsc,zz(0) = − i

4π

1

εd
k Izz,p, (D17)

where the dimensionless contour integrals are given by

Ixx,s =

∫ ∞
0

dx
x

Λd

Λd − Λm
Λd + Λm

eiΛd2kd, (D18)

and

Ixx,p =

∫ ∞
0

dx xΛd
εmΛd − εdΛm
εmΛd + εdΛm

eiΛd2kd, (D19)

and

Izz,p =

∫ ∞
0

dx
x3

Λd

εmΛd − εdΛm
εmΛd + εdΛm

eiΛd2kd. (D20)

The x-dependent functions Λd and Λm are given by

Λd(x) =
√
εd − x2, (D21)

and

Λm(x) =
√
εm − x2, (D22)

where the square root with Re(Λd) ≥ 0, Im(Λd) ≥ 0 and
Im(Λm) ≥ 0, Re(Λm) ≥ 0 is taken to preserve causality.
Note that these integral have previously been obtained
in the context of studying qubit relaxation rates near
metallic surfaces [51–53].
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[7] T. Bienaimé, N. Piovella, and R. Kaiser, Physical Review
Letters 108, 123602 (2012).

[8] M. Antezza and Y. Castin, Physical Review A 88, 033844
(2013).
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Maier, and M. S. Kim, Nature Physics 9, 329 (2013).

[24] A. Delga, J. Feist, J. Bravo-Abad, and F. Garcia-Vidal,
Physical Review Letters 112, 253601 (2014).

[25] A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S.
Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and
H. Park, Nature 522, 192 (2015).

[26] H. Pichler, T. Ramos, A. J. Daley, and P. Zoller, Physical
Review A 91, 042116 (2015).

[27] C. W. Gardiner and P. Zoller, Quantum noise: a
handbook of Markovian and non-Markovian quantum
stochastic methods with applications to quantum optics
(Springer, 2010).

[28] J. Dalibard, Y. Castin, and K. Mølmer, Physical Review
Letters 68, 580 (1992).

https://link.aps.org/doi/10.1103/PhysRevA.52.1394
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.2412
http://link.aps.org/doi/10.1103/PhysRevLett.96.163903
http://link.aps.org/doi/10.1103/PhysRevLett.96.163903
http://link.aps.org/doi/10.1103/PhysRevLett.103.123903
http://link.aps.org/doi/10.1103/PhysRevLett.103.123903
http://link.aps.org/doi/10.1103/PhysRevA.80.013816
http://link.aps.org/doi/10.1103/PhysRevA.80.013816
http://link.aps.org/doi/10.1103/PhysRevLett.108.123602
http://link.aps.org/doi/10.1103/PhysRevLett.108.123602
http://dx.doi.org/10.1103/PhysRevA.88.033844
http://dx.doi.org/10.1103/PhysRevA.88.033844
http://link.aps.org/doi/10.1103/PhysRevLett.116.083601
http://link.aps.org/doi/10.1103/PhysRevLett.116.083601
http://dx.doi.org/ 10.1103/PhysRevLett.119.023603
http://dx.doi.org/ 10.1103/PhysRevLett.119.023603
http://dx.doi.org/10.1103/PhysRevA.96.041603
http://link.aps.org/doi/10.1103/PhysRevLett.116.103602
http://link.aps.org/doi/10.1103/PhysRevLett.116.103602
http://www.nature.com/doifinder/10.1038/ncomms13543
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.113601
http://dx.doi.org/10.1103/PhysRevX.7.031024
http://dx.doi.org/10.1103/PhysRevX.7.031024
https://link.aps.org/doi/10.1103/PhysRevLett.117.243601
https://link.aps.org/doi/10.1103/PhysRevLett.117.243601
http://ieeexplore.ieee.org/document/1305535/
http://ieeexplore.ieee.org/document/1305535/
http://www.nature.com/doifinder/10.1038/35570
http://link.aps.org/doi/10.1103/PhysRevLett.97.053002
http://link.aps.org/doi/10.1103/RevModPhys.79.1267
http://link.aps.org/doi/10.1103/RevModPhys.79.1267
https://link.aps.org/doi/10.1103/PhysRevLett.105.073902
http://dx.doi.org/10.1038/nphys2615
http://link.aps.org/doi/10.1103/PhysRevLett.112.253601
http://www.nature.com/doifinder/10.1038/nature14477
http://link.aps.org/doi/10.1103/PhysRevA.91.042116
http://link.aps.org/doi/10.1103/PhysRevA.91.042116
http://link.aps.org/doi/10.1103/PhysRevLett.68.580
http://link.aps.org/doi/10.1103/PhysRevLett.68.580


15

[29] H. Carmichael, An open systems approach to quantum
optics: lectures presented at the Université libre de Brux-
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