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We study the structure and stability of vortex lattices in two-component rotating Bose-Einstein
condensates with intrinsic dipole-dipole interactions (DDIs) and contact interactions. To address ex-
perimentally accessible coupled systems, we consider 164Dy-162Dy and 168Er-164Dy mixtures, which
feature different miscibilities. The corresponding dipole moments are µDy = 10µB and µEr = 7µB,
where µB is the Bohr magneton. For comparison we also discuss a case where one of the species
is non dipolar. Under a large aspect ratio of the trap, we consider mixtures in the pancake-shaped
format, which are modeled by effective two-dimensional coupled Gross-Pitaevskii equations, with a
fixed polarization of the magnetic dipoles. Then, the miscibility and vortex-lattice structures are
studied, by varying the coefficients of the contact interactions (assuming the use of the Feshbach-
resonance mechanism) and the rotation frequency. We present phase diagrams for several types
of lattices in the parameter plane of the rotation frequency and ratio of inter- and intra-species
scattering lengths. The vortex structures are found to be diverse for the more miscible 164Dy-162Dy
mixture, with a variety of shapes, whereas for the less miscible case of 168Er-164Dy, the lattice
patterns mainly feature circular or square formats.

PACS numbers: 67.85.-d, 03.75.-b, 67.85.Fg

I. INTRODUCTION

In Bose-Einstein condensates (BECs), quantized vor-
tices emerge above a certain critical rotation fre-
quency [1], which may be imposed by techniques such
as rotating traps, laser stirring, and the addition of an
oscillatory excitation to the trapping potential [2]. Ex-
periments for vortices have also been performed with
multicomponent BECs. In this regard, we can mention
Ref. [3], as well as works cited in the recent review by
Martin et al. [4]. In particular, the study on vortices in
binary condensates are interesting due to the fact that
inter-species interactions produce diverse vortex struc-
tures in addition to the fundamental Abrikosov’s trian-
gular lattice, such that squared-shaped, coreless, with
domain walls, droplets, as well as isolated density peaks
in the two-component mixtures [5–8].

Recent experiments with 168Er and 164Dy condensates
also stimulate interest to properties of quantum droplets
that can be created in dipolar BECs [9–11]. These stud-
ies have revealed that the droplets are self-trapped as
many-body states in bosonic gases, supported by the
balance between attractive and repulsive forces in these
settings. With the attractive forces being provided by
dipole-dipole interactions (DDIs), the repulsive cases are
induced by the beyond-mean-field quantum fluctuation
effects, known as Lee-Huang-Yang corrections (LHY).
LHY corrections are also used to predict stable droplets
in non-dipolar two-component systems [12–14], which
have been created very recently in experiments [15–17].

The objective of this paper is to study rotational

regimes of two-component dipolar BECs. Previous stud-
ies dealing with vortices in dipolar BECs have explained
the role of dipole-dipole interactions (DDI) in the forma-
tion of vortices, as reported in the review [4]. In particu-
lar, the theoretical analysis dealt with the calculation of
the critical rotation frequency and vortex structures un-
der the action of the DDI [18–20]. In the two-component
setting with one dipolar component and the other one
carrying no dipole moments, the dipolar component fea-
tures a smaller critical rotation frequency than its non-
dipolar counterpart, and the dipolar component produces
a larger number of vortices than the non-dipolar one, at
the same rotation frequency [21].

In general, vortex states in binary BECs are strongly
affected by the (im)miscibility. Completely miscible set-
tings feature triangular, square-shaped, and rectangular
vortex lattices, depending on the rotation frequency. On
the other hand, immiscible binary condensates support
bound states of vortices, stripes, and vortex sheets (do-
main walls) [5, 6]. In this regard, to explore vortex struc-
tures in binary condensates, we rely on results obtained
in a previous study, reported in Ref. [22], for the misci-
bility of two-component dipolar systems. In this refer-
ence, by considering stability requirements and miscibil-
ity properties, it was found more appropriate to consider
pancake-shaped symmetry for the trap, varying the inter-
and intra-species contact interactions to modify the mis-
cibility properties.

In the present work, we report manifestations of
the miscibility-immiscibility transition in dipolar mix-
tures in terms of vortex-lattice configurations. We ad-
dress vortex-lattice states in two-component BECs un-
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der the action of the DDI, by considering the same dipo-
lar systems previously studied in Ref. [22]. Following
that, our analysis is performed for a pancake-shaped
trap configuration, in which the underlying system of
three-dimensional (3D) coupled Gross-Pitaevskii equa-
tions (GPEs) can be reduced to a two-dimensional (2D)
form.

First, we consider the system with parameters corre-
sponding to a nearly symmetric (with respect to the two
components) 164Dy-162Dy mixture, where both compo-
nents have equal dipole moments, thus supporting the
balance between intra- and inter-species DDI. In the ab-
sence of contact interactions, this mixture is miscible.
Its miscibility-controlling parameter is the ratio between
scattering lengths of contact inter- and intra-species re-
pulsion, if it is added to the DDI. Next, we consider the
setting with parameters of the asymmetric 168Er-164Dy
mixture, with unequal dipole moments in the two species,
which gives rise to imbalance of the inter- and intra-
species DDI. This dipolar mixture produces immiscible
states, in the absence of contact interactions. In this
case too, mixing-demixing transition is controlled by the
ratio of the scattering lengths of intra- and inter-species
contact interactions, if they are present. The miscibility
of these binary dipolar condensates determines vortex-
lattice structures which can be created in them. We also
consider briefly another binary system, in which only one
component carries dipole moment. The latter system fa-
vors the miscibility, in comparison with the symmetric
and asymmetric mixtures of two dipolar components.

The paper is organized as follows. In Sec. II, we present
the 2D mean-field model for the trapped two-component
dipolar BEC under rotation, and numerical methods used
in this work. In Sec. III, we report numerical results
for phase diagram of vortex-lattice patterns, varying the
strength of inter- and intra-species contact interactions
versus the rotation frequency, for different dipolar mix-
tures. Some analytical results, based on the Thomas-
Fermi approximation for the immiscible system, are pre-
sented too. The paper is concluded by Sec. IV.

II. COUPLED DIPOLAR CONDENSATES
UNDER ROTATION

The system of coupled GPEs for the binary conden-
sate with the DDI, for the two component wave-functions
Ψj=1,2 ≡ Ψj(r, t), can written as [23, 24]

i~∂Ψj

∂t
=

[
− ~2

2mj
∇2 + Vj(r)− Ω~Lz +

2∑
k=1

GjkNk|Ψk|2

+

2∑
k=1

Nk
4π

∫
d3r′V

(d)
jk (r− r′)|Ψ′k|2

]
Ψj , (1)

where Ψ′k ≡ Ψk(r′, t). The masses, number of atoms and
trapping potentials for the two species j are, respectively

given by mj , Nj and Vj(r). Further, V
(d)
jk (r− r′) are

the kernels of the DDI, Ω a common rotation frequency

of both components, with ~Lz = −i~(x∂/∂y − y∂/∂x)
being the angular-momentum operator. The strengths
of the contact interactions are Gjk ≡ (2π~2/mjk)ajk,
wheremjk = mjmk/(mj+mk) are the respective reduced
masses, while ajk are the corresponding intra- (ajj) and
inter-species (a12) two-body scattering lengths. Trapping
is provided by Harmonic-oscillator (HO) potentials with
frequencies ωj ,

Vj(r) =
1

2
mjω

2
j (x2 + y2 + λ2z2), (2)

and common aspect ratio λ for both components, such
that the trap is spherically symmetric for λ = 1, cigar-
shaped for λ < 1, and pancake-shaped for λ > 1. The
DD-interaction kernels in Eq. (1) correspond to the con-
figuration with dipole moments polarized (by an external
magnetic field) perpendicularly to the (x, y) plane:

V
(d)
ij (r− r′) = Dij

1− 3 cos2 θ

|r− r′|3 , (3)

where θ is the angle between the polarized magnetic mo-
ments and (r− r′), and Dij ≡ µ0µiµj , with the free-
space permeability µ0.

For the pancake-shaped dipolar BEC (λ � 1), we as-
sume the usual factorization of the wave function into the
ground state of the transverse HO trap and a 2D wave
function, as

Ψj(r, t) =
1

(πd2z)
1/4

exp

(
− z2

2d2z

)
Φj(x, y, t), (4)

where dz ≡
√

1/λ is the trap’s HO length [24–27]. To
derive the effective coupled GPEs in 2D, we insert the
ansatz (4) in Eq. (1), multiplying the equation by an-
other power of the HO ground-state wave function, per-
forming integration over z. The coupled equations are
cast in a dimensionless format by measuring the energy
and length in units of ~ω1 and l ≡

√
~/(m1ω1), respec-

tively. By taking x, y variables in units of l (x→ lx and
y → ly), the accordingly rescaled quantities are

ρ ≡ xê1 + yê2; τ ≡ ω1t,

gjk ≡
√

2πλ
m1

mjk

ajkNk
l

, σ ≡ m2ω
2
2

m1ω2
1

,

a
(d)
jj ≡

Djj

12π

mj

m1

1

~ω1l2
, a

(d)
12 = a

(d)
21 =

D12

12π

1

~ω1l2
, (5)

djk =
NjDjk

4π

1

~ω1 l3
(j, k = 1, 2),

with the corresponding 2D wave function for the compo-
nents j = 1, 2 given by

ψj(ρ, τ) ≡ lΦj(x, y, t). (6)

In terms of this notation, for ψj ≡ ψj(ρ, τ) and ψ′j ≡
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ψj(ρ
′, τ) the coupled GPEs in 2D take the form of

i
∂ψ1

∂τ
=

[
− 1

2
∇2

ρ +
ρ2

2
− ΩLz + g11|ψ1|2 + g12|ψ2|2

+

∫
dρ′V (d)(ρ− ρ′)

(
d11|ψ′1|2 + d12|ψ′2|2

) ]
ψ1,

(7)

i
∂ψ2

∂τ
=

[
− m1

2m2
∇2

ρ +
σ ρ2

2
− ΩLz + g22|ψ2|2 + g21|ψ1|2

+

∫
dρ′V (d)(ρ− ρ′)

(
d22|ψ′2|2 + d21|ψ′1|2

) ]
ψ2,

where the common rotation frequency of the two com-
ponents was written in terms of ω1, such that Ω = Ω/ω1.

In Eq. (7) the DD-interaction terms can be expressed
by means of the convolution theorem,

2∑
j=1

∫
dρ′V (d)(ρ− ρ′)|ψ′j |2 = F−1

2D

[
Ṽ (d)(kρ)ñj(kρ, τ)

]
, (8)

where F−12D is the inverse 2D Fourier-transform operator,

with kρ ≡
√
k2x + k2y,

ñj(kρ, τ) =

∫
dρeikρ.ρ|ψj |2, ñj(kz) = e−k

2
zd

2
z/4, (9)

and

Ṽ (d)(kρ) ≡
1

2π

∫ ∞
−∞

dkz

(
3k2z
k2
− 1

)
|ñj(kz)|2 (10)

=
1√

2πdz

[
2− 3

√
π√
2
kρdz exp

(
k2ρd

2
z

2

){
1− erf

(
kρdz√

2

)}]
.

For the numerical solution of Eq. (7), we employed
the split-step Crank-Nicolson method, as in Refs. [27–
29], combined with the standard method for evaluating
DD-interaction integrals in the momentum space [23, 27].
To look for stable solutions, numerical simulations were
carried out in imaginary time on a grid with 512 points
in x and y directions, spatial steps ∆x = ∆y = 0.05 and
time step ∆t = 0.0005. Both component wave functions
are renormalized to one,

∫
dρ|ψj |2 = 1, at each time step.

To calculate stationary vortex states, Eq. (7) was
solved with different initial conditions. From the tests,
we choose the following suitable initial conditions in the
form of a combination of angular harmonics [30],

ψj(ρ, 0) =

L∑
m=0

(x+ iy)m e(−ρ
2/2)√

π(L+ 1)m!
exp (2πiRm) , (11)

where Rm is a randomly generated number distributed
uniformly between 0 and 1, with arbitrary integer value
for L that we have consider up to L = 40. In addition,
we checked the convergence of the solutions with inputs
as considered in Ref. [31].

For the parameters, we follow the ones used in a previ-
ous study on miscibility in coupled dipolar condensates,
given in Ref. [22], for these atomic mixtures with Er-
bium (168Er) and Dysprosium (162,164Dy) isotopes. In

terms of the Bohr magneton µB , the corresponding as-
sumed dipole moments are, respectively, µ = 7µB and
µ = 10µB . In the harmonic axial traps, defined in
Eq. (2), the assumed angular frequencies confining each
species were such that ωj = 2π×60s−1 for the 168Er and
ωj = 2π × 61s−1 for the 162,164Dy, such that σ defined
in Eq. (5) is close to one. The time and space units are
such that 1/ω1 = 2.65 ms and l = 1µ m (= 104Å =
1.89×104a0). As found appropriate for experimentally
realistic settings, in all the following analysis and results
we are taking a pancake-shaped trap, with an aspect ratio
λ = 20, and fix the number of atoms to be equal for both
species with N1 = N2 = 104. The contact and dipole-
dipole interactions, expressed in terms of the Bohr radius
a0, are being varied by considering several conditions of
interest in view of miscibility properties of the binary
mixtures. In particular, as considering the corresponding
dipole moments, the strengths of the DD interaction are

given as a
(d)
11 = a

(d)
22 = 131 a0 and a

(d)
12 = a

(d)
21 = 131 a0, for

the 164Dy-162Dy mixture; and a
(d)
11 = 66 a0, a

(d)
22 = 131 a0

and a
(d)
12 = a

(d)
21 = 94 a0, for the 168Er-164Dy mixture.

Further, in order to explore various families of vortex
patterns, we varied the rotation frequency Ω.

As transitions between vortex-lattice structures are de-
termined by the miscibility, it is appropriate to consider a
parameter to measure the overlapping between densities
of the components, as the one defined in Ref. [22]:

η =

∫
|ψ1||ψ2|dρ ≡

∫ √
|ψ1|2|ψ2|2 dρ. (12)

As ψ1 and ψ2 are both normalized to 1, a complete over-
lap between the species have η = 1, with indications
of partial overlapping for smaller values of η. Results
reported in the following are suggesting that values of
η . 0.5 correspond to almost clear demixing, as the max-
ima for the densities are located at well-separated points.
In the interval of 0.5 < η < 0.8, the system may be cat-
egorized as a partially miscible, as one can notice that
the peaks of the densities are approaching each other.
The density maxima are nearly overlapping for η & 0.8,
such that we can identify the system as a miscible one.
The applicability of these definitions was checked for all
settings considered in this work.

III. RESULTS

The numerical results presented in this section are or-
ganized in four subsections, considering possible nonlin-
ear effects due to the interplay of the contact and dipo-
lar interactions. We start by considering a pure-dipolar
case (subsection A). Next, in other subsections, we vary
the strength of contact interactions, considering a nearly
symmetric dysprosium-dysprosium mixture (subsection
B); a non-symmetric erbium-dysprosium mixture (sub-
section C); and, finally, a mixture of dipolar and non-
dipolar species (subsection D). As mentioned above,
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the harmonic-trap aspect ratio and number of atoms in
both components are fixed, respectively, to λ = 20 and
N1 = N2 = 104, which are adjusted to the previous stud-
ies of stability and miscibility of binary dipolar conden-
sates [22]. All the following results are produced with
parameters of the the contact and dipolar interactions
given in units of the Bohr radius a0. Adopting the length
unit as l = 1.89 × 104a0, the coordinates and densities
are presented as dimensionless quantities.

A. Vortex structures in dipolar binary condensates
in the absence of contact interactions

To illustrate the miscible/immiscible states in the ab-
sence of the contact interactions (ajk = 0, for j, k = 1, 2),
we display stable solutions for densities and phases, cor-
responding to the dipolar mixtures 164Dy-162Dy (Fig. 1)
and 168Er-164Dy (Fig. 2). In both the cases, we apply
the same rotation frequencies Ω = 0.6 and aspect ratios
λ = 20. As defined by Eq. (12), the miscibility param-
eter is much larger for the 164Dy-162Dy BEC mixture,
η = 0.81, corresponding to almost completely miscible
state. On the other hand, for the 168Er-164Dy system,
we have a smaller value of η = 0.19, implying in an al-
most immiscible mixture. The predicted lattice patterns
for the vortices, considering these miscible and immisci-
ble binary dipolar condensates, are presented in Figs. 1
and 2, respectively. The patterns may be naturally clas-
sified as from squared- to striped-shaped lattices in the
more miscible case, whereas as having finite segment of
a hexagonal lattice in one component, surrounded by a
ring in the other component in the immiscible mixture.

B. The nearly symmetric 164Dy-162Dy mixture
under the action of contact interactions

To drive the mixing-demixing transition in the dipolar
mixtures in the presence of contact interactions, we use
the scattering lengths as tuning parameters. For that, the
intra-species scattering lengths are assumed to be equal,
a11 = a22, with the ratio between inter- and intra-species
scattering lengths being defined by

δ =
a12
a11

. (13)

Therefore, stable vortex states are explored by varying
this ratio δ and the rotation frequency Ω, which is given
in units of the trap frequency ω1. This parameter for the
rotation we consider in the interval 0.4 < Ω < 0.9, as
this interval adequately represents various types of vor-
tex patterns which the system can generate. In this work
we restrict the analysis to the case of equal intra-species
scattering lengths, a11 = a22, as effects produced by the
variation of the inter/intra-interaction ratio δ, defined by
Eq. (13), are essentially stronger (and more interesting)
than what may be controlled by the variation of a22/a11.
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FIG. 1. The 2D density (left frames) and phase (right frames)
patterns for the miscible 164Dy-162Dy system with no-contact
interactions are shown by the upper (component j = 1) and
lower (component j = 2) panels. The parameters are: ajk =

0, a
(d)
jk = 131a0, Ω = 0.6, λ = 20, and Nj = 104 (j, k = 1, 2).

Systematic analysis of the latter effects may be consid-
ered separately, to keep the length of the present paper
in reasonable limits.

A commonly known result for spatially uniform states
in the absence of DD interactions is that the miscibility
and immiscibility take place at δ < 1 and δ > 1, respec-
tively [32]. Stable vortex structures found in different
domains of the (δ,Ω) plane for parameters of the 164Dy-
162Dy mixture (assuming that a12 can be adjusted by
means of the Feshbach resonance) are summarized in the
phase diagram exhibited in Fig. 3, with typical examples
of different stable patterns shown in Fig. 4 for Ω = 0.4.

In the well-miscible state, at δ < 0.9, triangular and
square-shaped vortex lattices are found as stable pat-
terns. With the onset of immiscibility, positions of vor-
tices in one component shifted with respect to the other,
which leads to a transition in the respective lattice struc-
ture. Namely, at 0.9 < δ < 1.02 the square-shaped lat-
tice is transformed into the rectangle one, as the vortices
in each component tend to get closer and form stripes.
Therefore, in this regime, the system produces rectan-
gular and double-core vortices. Thus, in the immiscible
state at δ > 1, we observe vortex stripes, and also pat-
terns that may be called domain wall, see the panels (fj)
of Fig. 4. Actually, the phase diagram displayed in Fig.
3 is similar to its counterpart produced for non-dipolar
BEC in Ref. [6], as well as to the phase diagram for non-
dipolar condensates produced in Ref. [5] on the basis of
the lowest-Landau-level approximation. This similarity
is explained by the fact that, in the nearly-symmetric
164Dy-162Dy binary system, with equal dipole moments
of both species, effects of equal intra- and inter-species
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FIG. 2. The 2D density (left frames) and phase (right frames)
patterns, for the immiscible 168Er-164Dy system, with no-
contact interactions are shown by the upper (component
j = 1) and lower (component j = 2) frames. The parameters

are: ajk = 0, a
(d)
11 = 66a0, a

(d)
22 = 131a0, a

(d)
12 = a

(d)
21 = 94a0,

Ω = 0.6, λ = 20 and Nj = 104 (j, k = 1, 2).

FIG. 3. The phase diagram of vortex patterns in the plane
defined by the angular velocity Ω and the ratio between inter-
and intra-species scattering length δ ≡ a12/a11, for the 164Dy-
162Dy mixture. The symbols for the observed patterns are:
triangles for triangular lattices; squares for squared lattices;
double circles inside a rectangle for rectangular or double-core
vortices; circles for striped vortices; crossed circles for domain
walls. Typical examples are displayed in Figs. 4-6.

DDI on the miscibility almost cancel.

In Figs. 4 and 5, by considering the 164Dy-162Dy mix-
ture, we display typical density plots for vortex lattices
with different patterns, such as triangular, squared, rect-
angular, stripes and with domain walls, according to val-
ues of δ, which can correspond to miscible or immiscible
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FIG. 4. 2D component densities, |ψj |2 [(aj) to (fj), with
j =1,2], for the 164Dy-162Dy mixture in different patterns of
stable vortices, following phase diagram Fig. 3 for δ vary-
ing from 0.5 to 1.65, as indicated. The lattices are trian-
gular (aj=1,2), squared (bj=1,2), rectangular (cj=1,2), striped
(dj=1,2), and with domain walls [(ej=1,2) and (f1,2)]. Other
parameter are: Nj=1,2 = 104, λ = 20, a12 = 50a0, and
Ω = 0.4.

cases. In Fig. 4, with Ω = 0.4, one can observe that the
stripe pattern forms overlapping lines of vortices in both
component. In the double-core structure, vortex lattice
in the second component is formed by pairs of vortices
with the same circulation, and vortices in the first com-
ponent surrounded by those pairs. In the strongly phase-
separated regime, at δ > 1, vortices in one component are
located very closely, merging into the domain wall, with
the walls in the two components being mutually inter-
laced. In the Fig. 5 we consider the same parameters as
in Fig. 4, except that the rotation frequency is changed
to Ω = 0.6, in order to verify how the lattice shapes are
being affected by Ω. In Fig. 6, further examples for the
164Dy-162Dy mixture are displayed of striped vortices and
domain walls, with δ > 1, by considering a large value
Ω = 0.8 of the rotation frequency.

The Thomas-Fermi (TF) density distribution for the
overlapping binary BECs subject to the solid rotation
was verified in Ref. [6] to be a good approximation
to the corresponding total density distribution nT =
|ψ1|2 + |ψ2|2. Due to the repulsion between the species, a
vortex in one component corresponds to a density peak
in the other, and vice versa. In the present work, we have
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FIG. 5. The 2D component densities, with same parameters as in Fig. 4, by changing the rotation frequency to Ω = 0.6.
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FIG. 7. Miscibility parameter η [Eq. (12)] is ploted in terms
of δ for the 164Dy-162Dy mixture at different values of the
rotation frequency Ω.

FIG. 8. The phase diagram of vortex patterns in the plane
defined by δ and the rotation frequency Ω plane, for the asym-
metric 168Er-164Dy mixture. The symbols for the observed
lattice patterns are: triangles for triangular-shaped, squares
for squared-shaped, concentric circles for circular lattices.

confirmed that the TF expression, given in Ref. [6], which
can also be derived by following the lines of Ref. [33],

nTF (ρ) = 2
√
α/π − αρ2, holds also for the parame-

ter regimes we are considering in the presence of DDI,
with α ≡ (1− Ω2)/(g11 + d11 + g12 + d12). The agree-
ment was confirmed for different miscible dipolar BEC
mixtures.

In Fig. 7, the miscible structure of the binary system is
illustrated by the dependence of parameter η, defined by
Eq. (12), on the ratio between inter- and intra scattering-
lengths as defined by Eq. (13), for different values of Ω.

C. The asymmetric 168Er-164Dy mixture under the
action of contact interactions

The phase diagram of vortex patterns for parameters
corresponding to the 168Er-164Dy mixture is displayed in
Fig. 8. Recall that, in the absence of contact interactions,
this system is immiscible, as shown above in Fig. 2. How-
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FIG. 9. Similar as in Fig. 4, for the 168Er-164Dy mixture,
we have the 2D densities |ψj |2, for several values of δ. As in
Fig. 4, we have the rotation frequency Ω = 0.4, with the other
parameters given by Nj=1,2 = 104, λ = 20 and a12 = 50a0.
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FIG. 10. The same as in Fig. 9, with the rotation frequency
changed to Ω = 0.8.

ever, imbalanced inter- and intra-species contact interac-
tions can impose miscibility in this setting. The phase
diagram of the asymmetric system is drastically different
from that for its symmetric 164Dy-162Dy counterpart, due
to the miscibility of the latter in the absence of contact
interactions, cf. Fig. 3. Note that, while the immisci-
bility in non-dipolar binary condensates takes place at
δ > 1, in the 168Er-164Dy system complete immiscibility
commences from δ = 0.9. The shift to δ < 1 is induced
by the imbalance of the DDI.

In case of immiscible states for the 168Er-164Dy system
at δ > 0.9, only circular-shaped lattice are established. In
both the miscible and immiscible states, the squared- and
circular-shaped lattices are shown in Figs. 9 and 10. Due
to immiscibility, the first component is surrounded by
the second component, cf. Fig. 2 which displays a similar
arrangement in the immiscible system of the 168Er-164Dy
type. In such a phase-segregated mixture, vortices in the

0.50 1.00 1.65

δ

0.1

0.3

0.5

0.7

0.9

η

δ = 0.76, Ω = 0.6

Ω = 0.4
Ω = 0.6
Ω = 0.9

FIG. 11. The miscibility parameter η [Eq. (12 )] as a function
of δ = a12/a11 (with a11 = a22 and a12 = 50a0) for the 168Er-
164Dy mixture, is represented for three different values of the
rotation frequency, Ω, as indicated.

second component are arranged into a circular lattice.
A similar situation may also occur in asymmetric non-
dipolar systems with a11 6= a22 and a12 =

√
a11a22, when

unequal intra-species interactions may balance the inter-
species repulsion [8].

In Fig. 11, where the miscibility parameter η is shown
as a function of the scattering-length ratio δ [see Eq.
(13)], one can verify that the behavior obtained for the
asymmetric 168Er-164Dy mixture is quite different from
the nearly-symmetric 164Dy-162Dy mixture shown in Fig.
7. By considering the same scattering lengths for both
species (δ ≈ 1) we have the large miscibility of the dipo-
lar 164Dy-162Dy mixture (with η ≈ 0.8) not too much
affected by the rotation. However, in the same condition
(δ ≈ 1), the miscibility of the dipolar asymmetric 168Er-
164Dy mixture is strongly affected by the rotation: faster
rotation increases the miscibility of the mixture. As a
general trend, for a large range of values for δ, faster
rotations tend to enhance mixing (increasing η) of the
asymmetric dipolar mixture. This behavior is reversed
only for δ ' 1.5. When the inter-species scattering length
a12 is about 1.5a11 or larger, the miscibility decreases for
larger rotations. In Table I, we can better verify the de-
pendence of the miscibility on changes of the rotation
parameter, for different values of δ, considering the two
mixtures we are studying, as well as a case where one
of the species is non-dipolar, which is discussed in the
following sub-section.

D. The mixture of dipolar and non-dipolar species

In this sub-section we comment briefly the coupled
164Dy-85Rb mixture, where the magnetic moment of the
second species (85Rb) is negligible. This type of mixtures
was discussed in Ref. [34], where half-quantum vortex
chains were reported, such that here we just include our
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TABLE I. Miscibility parameter η [Eq. (12)] as a function of
the inter-intra scattering-length ratio, δ ≡ a12/a11, at differ-
ent values of the rotation frequency, Ω, for the mixtures con-
sidered in the paper. For the sake of comparison in our anal-
ysis, a mixture with dipolar and non-dipolar species, 164Dy-
85Rb, is also included.

δ Ω η η η

164Dy-162Dy 168Er-164Dy 164Dy-85Rb

0.5 0.0 1.0 0.86 0.93

0.4 0.95 0.81 0.83

0.9 0.92 0.82 0.82

1.0 0.0 0.99 0.32 0.73

0.4 0.83 0.30 0.69

0.9 0.83 0.48 0.69

1.5 0.0 0.23 0.17 0.59

0.4 0.39 0.15 0.53

0.9 0.46 0.13 0.54

corresponding results in Table I, for the sake of compari-
son with the results we have obtained for the symmetric
and asymmetric dipolar mixtures. We summarize in Ta-
ble I our results for the dependence of the miscibility pa-
rameter η on the relevant control parameters, which have
being considered in the present work; i.e., the scattering-
length ratio δ [Eq. (13)] and rotation frequency Ω.

As a general remark, it is observed from the two com-
ponents mixture of the 164Dy-85Rb type, that the absence
of the DD repulsion between the two components tends
to make the mixture less miscible in the presence of the
rotation. When there is no-rotation, it is clear the strong
role of the ratio between the scattering lengths, with the
miscibility decreasing significantly for larger values of δ.
This trend is attenuated by increasing the rotation of
the coupled systems, as faster rotations tend to enhance
mixing. Another remark is that always the asymmetric
dipolar mixture, 168Er-164Dy, is less miscible than the
others two mixtures.

IV. SUMMARY AND CONCLUSION

Stimulated by the current interest from experiments
with dipolar BEC mixtures, we have developed the de-
tailed theoretical analysis for two co-rotating mixtures
of this type; one, nearly symmetric (corresponding to
parameters of the 164Dy-162Dy system), and one asym-
metric, which represents the 168Er-164Dy mixture. The
dynamics of the mixtures is described by the effectively
2D system of coupled GPEs (Gross-Pitaevskii equations),
which was derived from the full 3D system under the
assumption of strong confinement in the transverse di-

rection. For that we consider pancake-type condensates
with aspect ratio given by λ =20. The coupled equa-
tions include both the repulsive dipole-dipole interac-
tions and repulsive contact interactions, with our results
being presented in two-dimensional density plots, com-
plemented by phase diagrams analysis related the two
main parameters found for the miscibility of the species:
the rotation angular parameter Ω and the ratio between
scattering lengths for the inter- and intra-species contact
interactions, given by δ. The phase diagrams display
stability regions for several basic types of binary vortex
lattices. In the absence of the contact interactions, the
symmetric system is miscible, while the asymmetric one
is not. The addition of contact interactions can change
significantly the situation. For the symmetric mixture,
164Dy-162Dy, the phase diagram is similar to those re-
cently found for binary non-dipolar condensates. It in-
cludes regions supporting vortex lattices with triangular,
square-shaped, rectangular-shaped, double core, striped,
and with domain walls. The phase diagram for the asym-
metric mixture, 168Er-164Dy, includes triangular, square-
shaped, and circular lattices.

To understand the origin of the observed vortex pat-
terns, it is relevant to recall a previous work [21], where
vortices in a dipolar-nondipolar mixture were considered.
It was found that the role of the dipolar component is to
create vortices when the long-range dipolar interactions
dominate over the contact nonlinearity. Following the
pattern, we start the presentation of our results by con-
sidering pure dipolar mixtures, with both components
involved in the dipolar interactions. In this case, the
long-range interactions give rise to two distinct kinds of
vortex patterns, displayed in Figs. 1 and 2, the selec-
tion of a particular one being mainly determined by mis-
cibility or immiscibility of the two-component system.
The miscible system favors the square-shaped or striped
lattices, whereas the immiscibility tends to establish a
hexagonal lattice in one component, surrounded by a
ring-shaped structure in the other. It is concluded from
the consideration of the settings which include contact
interactions that, in addition to the rotation frequency,
the shape of the observed patterns is strongly affected by
the (im)miscibility of the coupled system, which may be
effectively shifted by the contribution from the contact
interactions.

By summarizing the net effect of rotation, as well as
contact interactions, in the miscibility of dipolar cou-
pled systems, complementing the analysis presented in
the Figs. 7 and 11, we include the Table I, for three val-
ues of the rotation parameter Ω and three values of the
scattering-ratio parameter δ. In this table, for the sake
of comparison with the dipolar systems we have stud-
ied, we also add results obtained for a non-dipolar cou-
pled system, the 164Dy-85Rb mixture, where the mag-
netic moment of the second species (85Rb) is negligible.
As noticed, by increasing the rotation, the coupled sys-
tem becomes less miscible. The strong role of the ratio
between the scattering lengths δ for the miscibility can be
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clearly verified from the results given in the table, with
the parameter η decreasing significantly as we increase
this ratio. The general trend of the rotation is to attenu-
ate such effect by increasing the rotation of the coupled
systems.

To summarize, we have presented results on vortex-
lattice structures expected to be of general interest in
studies with dipolar mixtures. By considering particular
dipolar mixtures, in specific pancake-type geometry, we
are contemplating dipolar BEC systems in stable config-
urations, which are under active investigations in cold-
atom laboratories, with promising potential realization.
Possible extensions of the present work on rotating bi-
nary condensates could be by including spin-orbit cou-
pling effects, following analysis also studied in Refs. [35].
Another challenging generalization can be by studying

spatially anisotropic quasi-2D configurations, with the
magnetic dipoles oriented not perpendicularly to the sys-
tem’s plane, but rather in the surface, considering that
bright solitons were verified in such a configuration [36].
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