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We consider a mobile impurity immersed in a Bose gas at finite temperature. Using perturbation
theory valid for weak coupling between the impurity and the bosons, we derive analytical results for
the energy and damping of the impurity for low and high temperatures, as well as for temperatures
close to the critical temperature Tc for Bose-Einstein condensation. These results show that the
properties of the impurity vary strongly with temperature. In particular, the energy exhibits a
non-monotonic behavior close to Tc, and the damping rises sharply close to Tc. We argue that this
behaviour is generic for impurities immersed in an environment undergoing a phase transition that
breaks a continuous symmetry. Finally, we discuss how these effects can be detected experimentally.

I. INTRODUCTION

The experimental realization of highly population-
imbalanced atomic gases has dramatically improved our
understanding of the properties of mobile impurities in
a quantum medium. Using Feshbach resonances [1] to
tune the interaction between the impurity and the reser-
voir, cold-atom experiments have systematically explored
the properties of impurities first in fermionic [2–4] and
recently also in bosonic [5, 6] reservoirs. While there
are many similarities between impurities in fermionic and
bosonic reservoirs (termed the Fermi and Bose polaron,
respectively), there are also important differences. For
instance, whereas the Fermi polaron has a sharp transi-
tion to a molecular state with increasing attraction [7–
15], the Bose polaron exhibits a smooth crossover in-
stead, either to a molecular state [16] or the lowest Efi-
mov trimer [17] depending on the value of the three-body
parameter. The Bose polaron has also been proposed to
be unstable towards other lower lying states [18, 19].

Here, we investigate a unique feature of the Bose po-
laron (polaron from now on): The medium exhibits
a phase transition between a Bose-Einstein condensate
(BEC) and a normal gas. The effect of such a transition
on the quasiparticle properties has not been explored be-
fore in previous finite-temperature studies of the Bose po-
laron [20, 21]. Using perturbation theory valid for weak
coupling, we show that this transition gives rise to several
interesting effects. Both the energy and the damping of
the polaron depend strongly and in a non-trivial way on
the temperature in the region around the critical tem-
perature Tc. More generally, these effects are relevant
to the behavior of quasiparticles near a phase transition
that breaks a continuous symmetry of the system. We
discuss how these effects can be measured. Very recently,
the temperature dependence of the polaron was investi-
gated for strong coupling [22]. Our present study focuses
instead on the weak-coupling regime where rigorous re-
sults can be derived.

The paper is organized as follows. In Sec. II we de-

scribe the model and introduce the perturbative frame-
work. Our main results are presented in Sec. III. Here we
describe the polaron properties in three different temper-
ature regimes: at low temperature, in the region close to
the critical temperature for Bose-Einstein condensation,
and all the way to high temperature. We conclude in
Sec. IV.

II. MODEL AND METHODS

We consider an impurity of mass m in a gas of bosons
with mass mB. The Hamiltonian is

H =
∑
k

εBk b
†
kbk +

gB

2

∑
k,k′,q

b†k+qb
†
k′−qbk′bk

+
∑
k

εkc
†
kck + g

∑
k,k′,q

c†k+qb
†
k′−qbk′ck, (1)

where the operators b†k and c†k create a boson and the im-
purity, respectively, with momentum k and free disper-
sions εBk = k2/2mB and εk = k2/2m. The boson-boson
and the boson-impurity interactions are short range with
coupling strengths gB and g, respectively, and we work
in units where the volume, ~, and kB are 1.

The Bose gas is taken to be weakly interacting, i.e.,
na3

B � 1, where n is the boson density and aB > 0 is the
boson-boson scattering length. As we are interested in
deriving rigorous results, we use Popov theory to describe
the Bose gas. Below the BEC critical temperature Tc '

2π
[ζ(3/2)]2/3

n2/3

mB
, we have the usual Bogoliubov dispersion

Ek = [εBk (εBk + 2TBn0)]1/2, where n0 is the condensate
density, and TB = 4πaB/mB the boson vacuum scattering
matrix. Below Tc, we have the normal and anomalous
propagators for the bosons in the BEC,

G11(k, iωs) =
u2
k

iωs − Ek
− v2

k

iωs + Ek

G12(k, iωs) = G21(k, iωs) =
ukvk

iωs + Ek
− ukvk
iωs − Ek

. (2)
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FIG. 1: (a-b) First and (c-h) second order diagrams for the
impurity self-energy. The impurity propagator is shown as
the bottom red lines, and the external impurity propagators
attach to the red dots. The boson normal and anomalous
propagators are shown as the upper solid black lines, while
dashed lines are condensed bosons. The wavy vertical lines
denote the impurity-boson scattering matrix Tv.

where u2
k = 1 + v2

k = [(εBk + TBn0)/Ek + 1]/2 are the
coherence factors, and ωs = i2sT is a boson Matsubara
frequency with s integer. The condensate density is then
found self-consistently from the condition

n = n0 − T
∑
ωs,k

eiωs0+G11(k, iωs)

= n0 +
8n0

3
√
π

(n0a
3
B)1/2 +

∑
k

εBk + TBn0

Ek
fk. (3)

where fk = [exp(Ek/T ) − 1]−1 is the Bose distribution
function for temperatures T < Tc. Popov theory provides
an accurate description except in a narrow critical region
determined by |T − Tc|/Tc . n1/3aB [23].

A. Perturbation theory

We use perturbation theory in powers of the impurity-
boson scattering length a to analyze the impurity prob-
lem. At T = 0, this approach has yielded impor-
tant information. For instance, the impurity energy
was shown to depend logarithmically on a at third or-
der [24], similarly to the energy of a weakly interact-
ing Bose gas beyond Lee, Huang, and Yang [25, 26].
The first order self-energy in Fig. 1(a,b) gives the mean-
field energy shift Σ1 = Tvn, where Tv = 2πa/mr is the
boson-impurity scattering amplitude at zero energy, with
mr = mBm/(mB + m) the reduced mass. This shift is
independent of temperature, and in order to get a non-
trivial T -dependence, we need to go to second order.

The six possible second order diagrams are shown in
Fig. 1. Diagrams (c-f) yield the “Fröhlich” contribution

ΣF2 (p, ω) = n0(T )T 2
v

∑
k

[
1

εBk + εk

+
εBk
Ek

(
1 + fk

ω − Ek − εk+p
+

fk
ω + Ek − εk+p

)]
, (4)

where the frequency ω is taken to have an infinitesimal
positive imaginary part. The first term in the integrand
comes from replacing the bare boson-impurity interac-
tion g with the scattering matrix Tv (see, e.g., Ref. [24]).
These diagrams are non-zero only for T ≤ Tc, as they

FIG. 2: (a) Second order energy shift and (b) decay rate for

m = mB. The lines are for n1/3aB taking the values 0.04
(solid), 0.1 (dashed), and 0.25 (short dashed). In (a) we also
show the T = T−

c prediction (12) for the three interaction
values (dots), as well as the low-temperature prediction to
fourth order in T/Tc (thin, black). The shaded region illus-
trates where Popov theory is expected to fail.

correspond to the scattering of a boson into or out of the
condensate. The term ΣF2 can also be obtained from the
Fröhlich model [27–29].

The “bubble” diagrams (g-h) of Fig. 1 give

ΣB2 (p, ω) = T 2
v

∑
k

[v2
k(1 + fk)Π11(k + p, ω − Ek)

−ukvk[(1 + fk)Π12(k + p, ω − Ek)− ukvkfk
×Π12(k + p, ω + Ek) + u2

kfkΠ11(k + p, ω + Ek) (5)

where the pair propagators Π11 and Π12 are given in
Appendix A. The bubble diagrams have not previously
been evaluated, as they require particles excited out of
the condensate and consequently are suppressed by a fac-
tor

√
n0a3

B for T � Tc compared with the Fröhlich di-
agrams. Their magnitude, however, increases with T as
particles get thermally excited out of the BEC, and ΣB2 is
indeed the only non-zero contribution to second order for
T > Tc. Note that the Fröhlich model does not include
ΣB2 and therefore cannot describe the polaron correctly
for finite T [24].
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III. BOSE POLARON AT FINITE
TEMPERATURE

The polaron energy Ep for a given momentum p is
found by solving Ep = εp +Re[Σ(p, Ep)]. Here, we focus
on an impurity with momentum p = 0. To second order
in a, it is sufficient to evaluate the self-energy for zero
frequency [24], and the equation for the polaron energy
therefore simplifies to

E = Re[Σ(0, 0)] = Tvn+ Re[ΣF2 (0, 0) + ΣB2 (0, 0)]. (6)

The broadening of the polaron is given by Γ =
−Im[ΣF2 (0, 0) + ΣB2 (0, 0)]. To simplify the notation, we
will suppress the momentum and energy arguments of
the self-energy, as these are zero. Instead, we will write
Σ(T ) to focus on the T -dependence.

Our main results for the second-order polaron energy
shift, ∆E ≡ E − Tvn, and broadening Γ are shown in
Fig. 2 for m = mB. We observe a strong temperature
dependence, along with an intriguing non-monotonic be-
havior across the phase transition. We discuss the various
regimes and limiting cases in the following. For concrete-
ness, we mainly discuss the case of equal masses mB = m,
with the equations for mB 6= m relegated to the appen-
dices.

A. Low-temperature behavior

The term ΣF2 (T ) can be evaluated analytically for T =
0, giving [24, 28, 29]

ΣF2 (0) =
32
√

2

3

a2n0

mξ0
, (7)

where ξ0 is the healing length ξ = 1/
√

8πn0aB evaluated
at zero temperature. An analytic expression for general
mass ratio is given in Ref. [28].

When evaluating ΣB2 , we find that it contains terms
that diverge logarithmically at large momentum. This
is similar to the third order logarithmic divergence in
the polaron energy at T = 0 [24]. The divergence can
be cured by including the momentum dependence of the
scattering matrix, which provides an ultraviolet cut-off
at the scale 1/k = a∗ ∼ max(a, aB). Since the healing
length sets the lower limit in the momentum integral, we
find

ΣB2 (0) ' 4
√

6πa2n0

mξ0

(
2π

3
√

3
− 1

)√
n0a3

B ln(a∗/ξ), (8)

where we ignore terms of order (n0aaB)2. Equation (8) is
suppressed by (n0a

3
B)1/2 compared with ΣF2 (0), and we

thus ignore the terms in ΣB2 that give rise to this diver-

gence and focus on the remainder, denoted Σ̃B2 (T ) (see
Appendix B for details). Note that a divergent term of
the form (8) in the self-energy is to be expected, since

at a = aB the polaron ground state energy must corre-
spond to the chemical potential of a weakly interacting
Bose gas, i.e., E = ∂EWS/∂n, with EWS the energy of
the weakly interacting Bose gas including the correction
by Wu and Sawada [25, 26]. From this argument, we
also conclude that there must be a similar contribution
arising from the Fröhlich type diagrams if we treat the
excitations of the BEC beyond Bogoliubov theory. Such
an investigation is beyond the scope of this work.

To proceed, we take advantage of how the self-energy
below Tc simplifies into a product of a T -dependent pref-
actor and a function of ξ/λ, where λ = (2π/mBT )1/2 is
the de Broglie wavelength. Specifically

ΣF2 (T ) = ΣF2 (0)

(
n0(T )

n0(0)

)3/2

[1 + IF (ξ/λ)]. (9)

Here IF is a dimensionless form of the integral appearing
in (4), see Appendix B for details. It vanishes at T = 0
and its imaginary part at low temperature is only non-
zero when m < mB (Appendix C). Similarly to Eq. (9),

an expression for Σ̃B2 (T ) which explicitly contains the
additional suppression factor (n0a

3
B)1/2 is given in Ap-

pendix B.

Due to the suppression factor, at low temperature we
neglect Σ̃B2 and focus on ΣF2 . Here, the superfluid density
n0(T ) decreases as T 2 for T � Tc [23, 30], which from
Eq. (9) gives a T 2 decrease in the polaron energy. Indeed,
expanding Eq. (3) at low temperature yields

n− n0(T )

n
' π3/2 (T/Tc)

2

6ζ( 3
2 )4/3(na3

B)1/6
− π7/2 (T/Tc)

4

480ζ( 3
2 )8/3(na3

B)5/6
,

(10)

where at each order in T/Tc we keep only the lead-
ing order contribution in na3

B. However, we find that

IF (ξ/λ) ∝ (na3
B)−4/3(T/Tc)

4 for T � Tc, and since this

increase is proportional to (na3
B)−4/3, it quickly domi-

nates for a weakly interacting BEC. As a result, we ob-
tain

E(T ) ' E(0) +
π2

60

a2

a2
B

T 4

nc3
, (11)

where we have introduced the speed of sound in the BEC:
c = (4πaBn)1/2/m. Interestingly, the low T dependence
of the polaron energy (11) can be related to the free en-
ergy of phonons in a weakly interacting BEC for T � Tc:
Fph = −π2T 4/(90c3) [31]. Indeed, setting a = aB we find
that (11) exactly matches the change in the BEC chem-
ical potential due to the thermal excitation of phonons,
i.e. ∆µ = −∂Fph/∂n|T,V . To our knowledge, this T 4 in-

crease in the chemical potential of a weakly interacting
BEC has never been measured. Our result thus suggests
a way to measure this effect using for instance radio-
frequency (RF) spectroscopy on the impurity [5, 6].
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B. Behavior close to Tc

We now turn our attention to temperatures close to
Tc. From Eq. (4) it follows that ΣF2 (T ) ∝ n0(T ) and one
would at first sight expect that it vanishes as T → T−c .
This is in fact not the case when m = mB. Expanding
Eq. (4) to lowest order in n0 yields

ΣF2 (T−c ) =
T 2
v

TB

∑
k

fk = 4π
na2

maB
. (12)

Thus, ΣF2 (T ) has a non-zero value∝ 1/aB when T → T−c .
Since ΣF2 obviously is zero for T > Tc, this means that it
is discontinuous at Tc. The origin of this surprising result
is that the low energy spectrum of the Bose gas changes
from linear to quadratic in momentum at Tc, increas-
ing the density-of-states dramatically. Consequently, the
diagram given by Fig. 1(d), describing the scattering of
the impurity on a thermally excited boson, develops an
infrared divergence for n0 → 0 when m = mB . For
m 6= mB , we on the other hand find ΣF2 (T−c ) = 0 so that
ΣF2 is continuous across Tc, see Appendix B.

Above Tc, Σ̃B2 (T ) is the only non-zero second-order
term and Eq. (5) simplifies considerably since vk = 0 and
Ek becomes εBk+TBn−µ; i.e. Popov theory corresponds to
the Hartree-Fock approximation for T > Tc. The boson
chemical potential is therefore µ = µid + TBn, with µid

the chemical potential of an ideal Bose gas. We obtain

Σ2(T > Tc)

ΣF2 (T = 0)
= − 1√

n
1/3
0 (0)aB

[
IN (T/Tc)

+i
3
√
π[Li2(z) + 1

2 log2(1− z)]
16ζ4/3(3/2)

(
T

Tc

)2
]
, (13)

where we have used the ideal Bose gas relation nλ3 =
Li3/2(z), with Li the polylogarithm and z ≡ exp(µid/T )
the fugacity. The dimensionless function IN (T/Tc) is
given in Appendix D. It follows from Eq. (13) that the
imaginary part of the self-energy diverges as log2(1− z)
when z → 1 for T → T+

c . This comes from infrared diver-
gences in the integrals containing the Bose distribution
function. Physically, it means that the polaron becomes
strongly damped close to Tc. The real part of Σ2(T ) can
also be shown to diverge when T → T+

c as outlined in
Appendix D.

C. High-temperature behavior

Finally, we consider the limit T � Tc. Expanding the
self-energy to lowest order in the fugacity z yields

ΣB2 (T )

ΣF2 (0)
' −κ

[
0.315

Tc
T

+ i
3
√
π

16ζ(3/2)1/3

√
T

Tc

]
(14)

with κ = [n0(0)a3
B]−1/6. Thus, whereas the energy shift

of the polaron decreases with increasing temperature, the
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FIG. 3: Polaron energy as a function of interaction strength.
(a) m = mB and n1/3aB = 0.003 as in the Aarhus experi-
ment [5] for T = 0 (solid line) and T = Tc/10 (dashed). (b)

m/mB = 40/87 and n1/3aB = 0.03 as in the JILA experi-
ment [6] with T = 0 (solid line) and T = Tc/2 (dashed). The
lines are thinner in the regime a2 > aBξ0 where the polaron
ceases to be a well-defined quasiparticle [24], and they are
only plotted in the range where the finite-temperature 2nd
order shift is smaller than the mean-field energy. Note that
our perturbative results are reliable at a higher temperature
in the JILA experiment since the gas parameter n1/3aB is
larger than in the Aarhus experiment.

polaron becomes increasingly damped as the impurity
collides with more and more energetic bosons.

D. Validity of perturbation theory

At T = 0, the small parameter of perturbation the-
ory is a/ξ and we additionally require a2/aBξ � 1 for
the polaron to be well-defined [24]. In general, we ex-
pect perturbation theory to be valid provided Σ2 < Σ1.
From this, we derive the condition |a| � aB valid close
to Tc, by comparing (12) with the first order shift Tvn.
For a small gas parameter, n1/3aB, this condition is
much stricter than the T = 0 conditions. We there-
fore expect perturbation theory to break down earlier
for temperatures close to Tc. Above Tc, perturbation
theory is accurate when n−1/3, λ � |a|. Note also that
perturbation theory breaks down in the critical region
|T − Tc|/Tc . n1/3aB [23, 32], which is the origin of the
infrared divergences as T → Tc. However, the critical
region is narrow for a weakly interacting BEC, making
our results reliable except very close to Tc.



5

E. Numerical results

In Fig. 2, we plot the second-order self-energy Σ2 as
a function of T , evaluated numerically using Eq. (9) for
various values of the gas parameter. We see an intriguing
non-monotonic temperature dependence of both the po-
laron energy shift and damping. For T < Tc, the energy
shift increases and the numerical results recover our pre-
dicted T 4 behavior in Eq. (11) for T � Tc. In particular,

the rate of the increase scales with a
−7/2
B so that there is

a strong temperature dependence when the gas param-
eter of the BEC is small. The damping of the polaron,
Γ = −Im Σ2, also increases with T as more thermally
excited bosons scatter on the impurity. Both the energy
shift and the damping vary strongly close to Tc. This
reflects both the logarithmic divergences discussed above
as well as the discontinuous jump in the Fröhlich self-
energy at Tc given by Eq. (12), which is indicated by •’s
in Fig. 2. Since perturbation theory breaks down close
to Tc, we do not plot the numerical results in this region.
For T > Tc, the energy shift of the polaron decreases
and it vanishes as T →∞. The predicted increase in the
damping rate for T � Tc in Eq. (14) is not visible in the
range of temperatures shown in Fig. 2 which focuses on
the phase transition region.

In Fig. 3, we plot the total polaron energy Σ1 + Σ2 as
a function of the interaction parameter 1/n1/3a for zero
and finite temperature. We consider both the Aarhus 39K
experiment and the JILA 40K-87Rb experiment, where
the latter corresponds to the case of a light impurity. In
the region where we expect perturbation theory to be
reliable, we see that the polaron energy for the equal-
mass Aarhus case is shifted significantly higher by tem-
perature, even when T � Tc. Moreover, we find a small
decay rate Γ� ∆E in this regime. Thus, the polaron en-
ergy shift should be measurable, as we discuss below. On
the other hand, the light impurity in the JILA case has
a finite-temperature energy shift that is negative rather
than positive. The reason is that — contrary to the equal
mass case — ΣF2 (T ) is now continuous across Tc where it
goes to zero, as discussed in Sec. III B. Its positive contri-
bution to the polaron energy is therefore much smaller,
and the overall temperature shift becomes negative. The
decay rate Γ on the other hand, is comparable to |∆E|
in the regime where |∆E| is significant for the JILA pa-
rameters. This can be traced to the fact that ΣF2 (T )
develops a pole and corresponding imaginary part when
m < mB — see Appendix C for an analytic expression
for ImΣF2 . Physically the pole originates from processes
where thermally excited Bogoliubov modes scatter res-
onantly on the polaron. These scattering are possible
since the equation εk = Ek has a solution for m < mB ,
and they lead to decay.

IV. DISCUSSION AND CONCLUSION

The non-trivial temperature dependence of the impu-
rity properties close to Tc is due to quite generic physics
and is not limited to the specific system at hand. It orig-
inates from the change of the dispersion from quadratic
to linear at Tc, which is a consequence of the U(1) sym-
metry breaking resulting from the formation of a conden-
sate. This dramatically changes the low-energy density
of states of the Bose gas, which impacts the excitations
that couple strongly to the impurity. Thus, similar ef-
fects should occur in other systems involving impurities
coupled to a reservoir that undergoes a phase transition
where a continuous symmetry is broken. This includes
impurities in helium mixtures [33], conventional or high
Tc superconductors [34], magnetic systems [35], and nu-
clear matter [36].

The temperature dependence of the polaron energy can
be investigated by RF spectroscopy of 39K atoms. In
these experiments, a RF pulse transfers a small fraction
of atoms from a BEC in the |F = 1,mF = −1〉 state into
the |1, 0〉 state, such that they form mobile impurities.
The impurity-BEC interaction is highly tunable using a
Feshbach resonance and thus the polaron energy can be
obtained both for attractive and repulsive interactions.
As shown in Fig. 3, the energy shift due to a finite tem-
perature is sizable in the regime where perturbation the-
ory should be reasonable: at 1/(n1/3a) = 10 the energy
at T = Tc/10 compared to T = 0 corresponds to a RF
frequency shift of ∼ 7 kHz, which is comparable to the
experimental resolution. Since the temperature depen-
dence of the polaron energy scales with ΣF2 (0) ∝ a2n0,
it is favorable to access a given interaction strength by
choosing a large scattering length and accordingly small
density.

To conclude, using perturbation theory valid in the
weak coupling regime, we investigated the properties of
the Bose polaron as a function of temperature. We de-
rived analytical results both for low temperature T � Tc,
T ' Tc, and high temperature T � Tc. These results
show that the superfluid phase transition of the surround-
ing Bose gas has strong effects on the properties of the
polaron. The energy depends in a non-trivial way on T
with a pronounced non-monotonic behaviour around Tc,
and the damping increases sharply as Tc is approached.
We argued that these effects should occur in a wide range
of systems consisting of impurities immersed in an envi-
ronment undergoing a phase transition. Finally, we dis-
cussed how this intriguing temperature dependence can
be detected experimentally.
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Appendix A: Pair propagators

After performing the Matsubara frequency sums, we obtain

Π11(p) =
∑
k

[
u2
k(1 + fk)

z − Ek − εk+p
+

v2
kfk

z + Ek − εk+p
+

2mr

k2

]
(A1)

for the normal pair propagator at four-momentum p = (p, z), and

Π12(p) = −T
∑
ων

G12(−k,−ων)G(k + p, ων + z) =
∑
k

[
ukvk(1 + fk)

Ek + εk+p − z
+

ukvkfk
εk+p − Ek − z

]
, (A2)

Π22(p) = −T
∑
ων

G22(−k,−ων)G(k + p, ων + z) =
∑
k

[
u2
kfk

z + Ek − εk+p
+

v2
k(1 + fk)

z − Ek − εk+p

]
(A3)

for the anomalous and particle-hole propagators.

Appendix B: Self-energy below Tc: Fröhlich and bubble diagram integrals

To find the polaron energy within perturbation theory, we evaluate the Fröhlich diagrams at zero momentum and
frequency, but finite temperature:

ΣF2 (T ) = n0(T )T 2
v

∑
k

[
1

εk + εBk
+
εBk
Ek

(
1 + fk
−Ek − εk

+
fk

Ek − εk

)]

=
2πn0(0)a2

mrξ0
A(α)︸ ︷︷ ︸

ΣF2 (T=0)

(
n0(T )

n0(0)

)3/2 [
1 +

2

π

1 + 1/α

A(α)

∫
f̄k

k2dk√
k2 + 2

(
−1√

k2 + 2 + k/α
+

1√
k2 + 2− k/α

)
︸ ︷︷ ︸

IF (ξ/λ,α)

]
, (B1)

where we have switched to dimensionless variables in the second line, measuring momentum in units of the inverse
healing length. Here α ≡ m/mB is the mass ratio and ξ0 is the BEC healing length evaluated at T = 0. The Bose
distribution in dimensionless units is

f̄k =
1

exp
[
λ2

4πξ2 k
√
k2 + 2

]
− 1

. (B2)

The function defined in the main text for equal masses is IF (ξ/λ) ≡ IF (ξ/λ, 1). For T � Tc we have

IF (ξ/λ) ' π4

1280ζ( 3
2 )8/3(na3

B)4/3

(
T

Tc

)4

. (B3)

The mass-ratio dependent function A was found for general mass ratio in Ref. [29] (see also Ref. [24]) to be

A(α) =
2
√

2

π

1

1− α

[
1− 2α2

1 + α

√
α+ 1

α− 1
arctan

√
α− 1

α+ 1

]
, (B4)

with the definition
√
−1 = i. The function A is well-defined for equal masses, where

A(1) =
8
√

2

3π
, (B5)
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FIG. 4: The functions IF (solid, black) and the real (green, dashed) and imaginary (green, dot-dashed) parts of IB , calculated
for equal masses mB = m. The latter two are negative, therefore we take the absolute values of these.

which leads to ΣF2 (0) = 32
√

2a2n0/(3mξ0).
Similarly to the Fröhlich diagrams, we evaluate the “bubble” contribution. We note that again there is a contribution

which is present even at T = 0. Specifically, this is the term which does not contain a Bose distribution in any of the
momentum summations. This term, however, arises from bosons excited out of the condensate (see Fig. 1), and is

thus suppressed by a factor
√
n0a3

B compared with the Fröhlich diagrams. This suppression only increases at finite
temperature and therefore we ignore this term in the following. Instead, using Eq. (5) we define

Σ̃B2 (T ) =T 2
v

∑
k

{
fk[v2

kΠ11(k,−Ek) + u2
kΠ11(k, Ek)− ukvkΠ12(k, Ek)− ukvkΠ12(k,−Ek)]

+ v2
kΠ̃11(k,−Ek)− ukvkΠ̃12(k,−Ek)

}
=ΣF2 (T = 0)

√
n0(0)a3

B

(
n0(T )

n0(0)

)2
(1 + 1/α)(8π)5/2

2A(α)

×
∫
d3kd3p

(2π)6

{
−f̄kf̄p

[
v̄2
kū

2
p + ūkv̄kūpv̄p

Ēk + Ēp + ε̄k+p
+
v̄2
kv̄

2
p + ū2

kū
2
p + 2ūkv̄kūpv̄p

−Ēk + Ēp + ε̄k+p
+
ū2
kv̄

2
p + ūkv̄kūpv̄p

−Ēk − Ēp + ε̄k+p

]

−f̄k

[
ū2
kv̄

2
p + v̄2

kū
2
p + 2ūkv̄kūpv̄p

Ēk + Ēp + ε̄k+p
+
v̄2
kv̄

2
p + ū2

kū
2
p + 2ūkv̄kūpv̄p

−Ēk + Ēp + ε̄k+p
− ū2

k + v̄2
k

(1 + α)ε̄p

]}

≡ΣF2 (T = 0)
√
n0(0)a3

B

(
n0(T )

n0(0)

)2

IB(ξ/λ, α). (B6)

Here, we made the integral in the first line dimensionless by extracting a factor 2mB/ξ
4, and defining the dimensionless

functions Ēk = k
√

2 + k2, ε̄k = k2/α, ūk =
√

k2+1
2Ek

+ 1
2 and v̄k =

√
k2+1
2Ek
− 1

2 . Π̃ij refers to the pair propagator

including only those terms involving the Bose distribution function fk, as we ignore the term which is suppressed at
zero temperature (see discussion in the main text). Comparing Eq. (B6) with Eq. (B1) explicitly shows that it is
suppressed by a factor (n0a

3
B)1/2.

The bubble diagrams contain several simple poles, which we treat numerically by introducing a small imaginary
part, i.e., by taking z → z+ iδ (in the above, this can be achieved by shifting ε̄k slightly below the real axis), and then
extrapolating our results to δ = 0. We estimate the relative error in the evaluation of the bubble diagrams resulting
from this procedure to remain well below 1% for all ξ/λ considered.

In Fig. 4 we show the result for the dimensionless functions IF and IB for equal masses. In this case, the Fröhlich
diagrams are purely real, and we see that they are larger than the bubble diagrams except at very small (outside the
range shown) or large temperature.

For unequal masses, the main qualitative difference is that the Fröhlich diagram develops a simple pole when
mB > m. This is easily integrated over, and in Fig. 5 we show the resulting functions for the particular case of a 40K
atom immersed in a 87Rb condensate.
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FIG. 5: The dimensionless integrals for a 40K impurity immersed in a 87Rb BEC. We show the real (black, solid) and imaginary
(black, dotted) parts of IF together with the real (green, dashed) and imaginary (green, dot-dashed) parts of IB . These are
all negative within the range shown.

Appendix C: Imaginary part of the Fröhlich self-energy

The imaginary part of the Fröhlich self-energy for zero momentum and frequency is found from Eq. (4) of the main
text to be

ImΣF2 (T ) = −n0(T )T 2
v

∑
k

εBk
Ek

fkδ(εk − Ek). (C1)

It follows that the imaginary part is non-zero only if εk = Ek has a solution, i.e. if m < mB . Doing the integral (C1)
yields

ImΣF2 (T ) = − 2

π

α3

(1− α2)3/2
T 2
v n0(T )3/2m

3/2
B T

1/2
B fk0

(C2)

where k0 is the k vector which solves εk = Ek.

Appendix D: Self-energy above Tc

Above Tc, the second order self energy reduces to the term from the bubble diagrams

Σ2(T > Tc) = T 2
v

∑
k

fkΠ11(k, Ek) = T 2
v

∑
k

fk
∑
p

(
1 + fp

εBk − εBp − εk−p + i0
+

1

εBp + εp

)

= T 2
v 8m2

BmrT
2
∑
k

1

ek2/zid − 1

∑
p

[(
1

p2
− 1

p2 − k2/γ2 − i0

)
+

1

e(p+k/(1+α))2/zid − 1

1

k2/γ2 − p2 + i0

]
,

(D1)

where in the second line we shifted p→ p + k/(1 + α) in all terms except the renormalization (last term of the first
line). We also measured momenta in units of

√
2mBT and defined the ratio mB/mr ≡ γ. The quantity zid ≡ eµid/T

is the fugacity of the ideal Bose gas. It is related to the density through

nλ3 = λ3
∑
k

fk = Li3/2(zid), (D2)

and can be further related to T/Tc through the ideal gas expression

T/Tc = [ζ(3/2)]2/3(nλ3)−2/3. (D3)
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FIG. 6: The dimensionless integral appearing in the self-energy for temperatures above Tc. We show the result both for equal
masses (blue, solid), and for a 40K impurity immersed in a 87Rb BEC (red, dashed).

To proceed, we note that the integral over the angle between k and p in Eq. (D1) can be performed analytically:∫ 1

−1

dx
1

ea+bx − 1
=

1

b
log

ea − e−b

ea − eb
, (D4)

assuming a > b > 0. Since the integral over the term in parenthesis in the second line of Eq. (D1) is purely imaginary,
we have

Re[Σ2(T > Tc)]

ΣF2 (T = 0)
=
T 2
v 4m2

BmT
2

ΣF2 (T = 0)

1

8π4

∫ ∞
0

k dk

ek2−µb/T − 1

∫ ∞
0

p dpP
k2/γ2 − p2

log
ep

2+k2/(1+α)2−µb/T − e−2kp/(1+α)

ep2+k2/(1+α)2−µb/T − e2kp/(1+α)

=
−1√

n0(0)1/3aB

√
2

π3

1 + α

A(α)

(T/Tc)
2

ζ4/3(3/2)

∫ ∞
0

k dk

ek2−µb/T − 1

∫ ∞
0

p dpP
p2 − k2/γ2

log
ep

2+k2/(1+α)2−µb/T − e−2kp/(1+α)

ep2+k2/(1+α)2−µb/T − e2kp/(1+α)︸ ︷︷ ︸
IN (T/Tc,α)

,

(D5)

where P indicates that only the principal part of the integral should be evaluated. The prefactor which scales as
1/
√
aB arises from the normalization by ΣF2 (T = 0). The integral IN is evaluated numerically, and the result is shown

in Fig. 6. The function referenced in the main text Eq. (13) is IN (T/Tc) ≡ IN (T/Tc, 1).
For equal masses, the imaginary part of the self-energy can be determined analytically for all T > Tc:

Im[Σ2(T > Tc)]

ΣF2 (T = 0)
= − 3

√
π

16ζ4/3(3/2)

1√
n0(0)1/3aB

(
T

Tc

)2 [
Li2(z) +

1

2
log2(1− z)

]
(D6)

For a 40K impurity in a 87Rb condensate, we evaluate the imaginary part of the self energy numerically, again using
Eq. (D4).

1. Logarithmic divergence of ΣB
2 above Tc

For concreteness, we focus on equal masses. One can rewrite the integral appearing in Eq. (D5) at Tc as:∑
k,p

fkfp
εk − εp − εk−p + i0

= −2T 2m3

(2π)4

∫
dp

∫
dk

pk(
ek2/2 − 1

) (
ep2/2 − 1

) log

[
p+ k − i0
p− k − i0

]
(D7)

' T 2m3

π4

∫
dr

1

r

∫
dφ

1

sinφ cosφ
log

[
cosφ+ sinφ− i0
cosφ− sinφ− i0

]
(D8)

→ −(19.71− 21.78i)
T 2m3

π4
log(r). (D9)
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Here we have made the transformation p = r cosφ, k = r sinφ, and then considered the regime r � 1. Thus, we see
that this integral diverges logarithmically as r → 0.
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