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Chiral Bloch oscillation and nontrivial topology in a ladder lattice with magnetic flux

Yi Zheng, Shiping Feng, and Shi-Jie Yang∗

Department of Physics, Beijing Normal University, Beijing 100875, China

Bloch oscillations in a tilted ladder lattice are studied in the presence of artificial magnetic flux.
The oscillations exhibit chiral characteristics which may be used to distinguish the Meissner phase
and the vortex phase. By incorporating the diagonal hopping into the ladder, the dynamical evolu-
tion reveals a phase transition as the diagonal hopping rate exceeds a critical value. The pseudospin
polarization rotates a full circle in a Bloch oscillating period which implies nontrivial topology of
the system. At the critical point, the lowest band gap is closed and the wave packet propagates
alternatively in the two bands that leads to a doubled Bloch period. Edge states arise in the re-
gion of nontrivial band topology even in the absence of chiral symmetry. Our study may provide a
dynamical way to identify the quantum phases and topological transitions in the condensed matter
physics.

PACS numbers: 67.85.-d, 03.65.Vf, 03.75.Lm

I. INTRODUCTION

The experimental realization of tunable artificial gauge
fields in optical lattices have enabled the quantum sim-
ulation of Hofstadter-Harper Hamiltonian with ultracold
atoms[1–3]. A quantized magnetic flux penetrating a
two-dimensional (2D) lattice system can be mimicked
by applying laser-assisted tunneling effect[4–6]. In fi-
nite systems, such model has intrigued the exploration
of topological insulating states[7], quantum Hall chiral
edge states[8], and spin-orbit (SO) coupling[9], etc[10].

A two-leg ladder lattice subjected to a synthetic
magnetic field shares the basic properties of the 2D
Hofstadter-Harper Hamiltonian, which has attracted ex-
tensive theoretical and experimental investigations[11–
21]. Regarding the left-right leg degrees of freedom as
a pseudospin, this model has been shown to possess the
essence of SO coupling, which locks the spin and the
momentum[16, 17]. The energy band structure of the
ladder is analogous to that of a one-dimensional (1D) SO
coupled system[22]. The ground state properties in the
non-interacting region reveal the chiral Meissner currents
in the presence of an artificial magnetic field. A satura-
tion of the current occurs at the quantum phase tran-
sition point between the Meissner phase and the vortex
phase[16, 17].

Most previous studies concerning the ladder systems
in the presence of a synthetic magnetic field are focused
on the ground state or low-energy excitations. Dynami-
cal features have attracted less attentions. When a small
gradient field is applied along the legs of the ladder sys-
tem, we expect a wave packet evolve as Bloch oscillation
(BO). The dynamics of BO have been shown to be dis-
tinctive in the presence of SO coupling[23]. Thus the BOs
should be strongly influenced by the synthetic magnetic
field.

In this paper, we study the dynamical processes of the
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bosonic ladder system which is subjected to a synthetic
magnetic field and a static linear force. It shows that
the BOs exhibit chiral currents. We also demonstrate
that the quantum phase transition between the Meiss-
ner phase and the vortex phase can be clearly identified
by this dynamical way. In the presence of diagonal tun-
nelings, band crossing at the edges of the Brillouin zone
(BZ) appears at a particular condition and a topological
phase transition occurs. The total pseudospin polariza-
tion rotates a full circle in a BO period and the BO period
doubles at the critical point. We explicitly examine the
underling physics of the topological transition.

The paper is organized as follows. In section II, we
describe formulism of the ladder system with artificial
gauge field and a linear force. The chiral Bloch oscilla-
tions with and without diagonal tunneling are presented
in section III and IV, respectively. In section V, we anal-
yse the evolution of an eigenstate in momentum space.
The band topology, as well as edge states with and with-
out chiral symmetry are demonstrated in section VI. The
discussion and summary are included in section VII.

II. FORMULISM

The non-interacting bosonic ladder system is described
by the tunneling terms of the Bose-Hubbard model. With
a magnetic flux Φ = 2φ per plaquette piercing the system
as well as a small gradient field applying along the legs,
the Hamiltonian is

H0 = − t‖
∑
j

(e−iφa†j+1aj + eiφb†j+1bj)

− t⊥
∑
j

a†jbj + H.c. + F0

∑
j

jnj . (1)

Here aj (bj) represents the bosonic annihilation opera-
tor acting on site j in the left (right) leg. The first two
terms are the tunnelings along the legs and the third term
is the tunneling across the rung, with hopping rates t‖
and t⊥, respectively. F0 is the gradient caused by the
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static linear force. nj = a†jaj + b†jbj is the number op-
erator for site j. Here a Landau gauge is chosen, which
ensure a translation symmetry along the leg direction.
The choice of gauge does not affect observable quanti-
ties such as the chiral current in the ground state[21],
the quench dynamics[24], etc. Regarding the left-right
leg degree of freedom as a pseudo-spin, Eq.(1) is mapped
onto a SO coupled system. By making a Fourier trans-

form o†j = 1√
L

∑
k e
−ikjo†k with o†j(k) = [a†j(k), b

†
j(k)] and

L the number of sites along the legs, we arrive at the
Hamiltonian in momentum space

H0(k) = −t‖
∑
k

o†kH(k)ok, (2)

where

H(k) =

[
ε(k)− κ(k) τ

τ ε(k) + κ(k)

]
+ iF

[
− d
dk

− d
dk

]
.

(3)
The first matrix describes an effective SO coupling in-
duced by the nonzero flux[25]. Here we have set ε(k) =
2 cosφ cos k, κ(k) = 2 sinφ sin k, τ = t⊥/t‖ and F =
F0/t‖. When k → 0, ε(k) represents the kinetic en-
ergy plus an energy shift, both multiplied by a coefficient
which is related to the flux. κ(k) approaches the momen-
tum k multiplied by 2 sinφ which can be viewed as the
coupling strength.

We assume F = 0 to get some basic features about the
system. A two-band spectrum yield (in unit of t‖),

E±(k) = −ε(k)±
√
κ2(k) + τ2, (4)

which are symmetric about k = 0 [16, 26, 27] and do not
cross each other unless t⊥ = 0 . The two local minima
of E−(k), locating at sin kc± = ± sinφ

√
1− τ2/τ2c , can

merge at k = 0 when τ = τc = 2 sin2 φ/ cosφ. Only one
minimum E−(k = 0) exists for τ ≥ τc or equivalently,

φ ≤ φc = arccos
[
−τ/4 +

√
τ2/16 + 1

]
. In such case,

the ground state exhibits a Meissner phase which is char-
acterized by the chiral current resembling the Meissner
current to screen the magnetic field[11].

The presence of nonzero F breaks the discrete trans-
lation symmetry and the ground state properties for a
finite size system become intricate. To avoid significant
modification of the band dispersion, we assume a small
linear force F � 1 which supports the BO. Eq.(2) is
diagonalized as

H0(k) =
∑
k

α†k(E− + iF
d

dk
)αk + β†k(E+ + iF

d

dk
)βk,

(5)
where we have defined the creation operators of quasi-
particles

α†k = cos θka
†
k + sin θkb

†
k, β

†
k = sin θka

†
k − cos θkb

†
k, (6)

with θk satisfying

cos 2θk · τ + sin 2θk · κ(k) = 0. (7)

FIG. 1: (Color online) Oscillatory mode of a Gaussian wave
packet under the influence of magnetic flux in the regime of
the Meissner phase. (a-c) The density evolution in the left
leg |cLj(t)|2, the right leg |cRj(t)|2 and the sum |ctotj(t)|2, re-
spectively. (d) displays the temporal evolution of the density
fraction in the left (blue solid curve) and the right (red dotted
curve) legs. The system parameters are τ = 2, Φ = 0.4π and
F = 0.2. The initial Gaussian wave packet is characterized
by λ = 10, k0 = 0 and j0 = 55.

Eq.(5) represents two BO modes which correspond to the
separating bands E∓(k) respectively. Regarding to the
lower band, the quasi-momentum of an eigenstate follows
the classical equation of motion[28, 29]

k(t) = k0 − Ft, (8)

with k0 the momentum of an initial state.

At the center (edges) of the BZ, α†0(±π) =
√
2
2 a
†
0(±π) +

√
2
2 b
†
0(±π) (as reflected from Fig.1(d)), which can also be

deduced from the σxP and σxT symmetry of Eq.(1),

where σx gives rise to the mapping a†j(aj) ↔ b†j(bj), P
and T are respectively the parity operator (Pa†j = a†−j)

and the time reversal operator (T a†j = aj). By perform-

ing the Fourier transform, we arrive at Pa†k = T a†k =

a†−k. Thus when k = 0,±π, σxP(c1a
†
k + c2b

†
k)|0〉 =

(c1b
†
k + c2a

†
k)|0〉 = (c1a

†
k + c2b

†
k)|0〉, which means c1 = c2.

A Gaussian wave packet |ψ〉 centering at j0 performs an
oscillating mode with negligible inter-band coupling. We

set the initial wave packet |ψ(t = 0)〉 =
∑
j cj(a

†
j + b†j)|0〉

with cj = g exp
[
−(j − j0)2/λ2 + ik0j

]
, where g is the

normalizing factor, λ represents the width of the wave
packet and k0 = 0,±π. Since the group velocity is ex-
pressed as vg = [∂E−(k)/∂k]k(t), the center of the wave
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FIG. 2: (Color online) (a-c) The same as in the fig.1 in the
regime of the vortex phase with τ = 2, Φ = 0.8π and F = 0.2.
There appears a rollback in each Bloch period in the total
density evolution (c). (d) The density fraction in the left
(blue solid curve) and the right (red dotted curve) legs.

packet evolves as[23]

jc(t) = j0 +
1

F
[E−(k0)− E−(k0 − F · t)] , (9)

which has the period of TB = 2π/F .

III. CHIRAL BLOCH OSCILLATION

The evolving wave packet can be depicted by the state

|ψ(t)〉 =
∑
j

[
cLj(t)a

†
j + cRj(t)b

†
j

]
|0〉. The features of the

motion are captured by the probability amplitudes cLj(t)
and cRj(t). We define |ctotj(t)|2 = |cLj(t)|2 + |cRj(t)|2
to describe the total density distribution of the two
distinguishable chains. The number fraction in each
chain is characterized by |CL(t)|2 =

∑
j |cLj(t)|2 and

|CR(t)|2 =
∑
j |cRj(t)|2. Figure 1 shows the evolving

trajectories of the density distributions for parameters
favoring the Meissner phase, e.g., τ = 2 and Φ = 0.4π,
the wave packet is initialized by λ = 10 and k0 = 0.
All of |cσj |2 (σ = L,R, tot) exhibit the oscillating mode
of BO (Fig.1(a)(b)(c)). We formulate the trajectory of
the wave packet center with jc(t) =

∑
j j|ctotj |2 as dis-

played in Fig.3(a). The Bloch oscillation exhibits dis-
tinct chiral characteristics: the wave packet mainly pop-
ulates the left leg when moving downward in the first
half of BO period and tunnels to the the right leg when
moving upward in the second half of BO period (see
Fig.1(d)). This chiral current characteristics results from

FIG. 3: (Color online) (a,b) Dissimilar trajectories of the cen-
ter of the Gaussian wave packet in fig.1 and fig.2, respectively.
(c) The lowest energy spectra of the Meissner phase (black
solid) for τ = 2 and Φ = 0.4π and the vortex phase (red
dotted) for τ = 2 and Φ = 0.8π. In the latter case there is
a hump near k = 0 which leads to the rollback in the curve
of (b). The blue dashed curve is the energy spectrum at the
transition point.

the spin-momentum locking of the SO coupling effect.
From Eq.(2) and Eq.(3), the states with positive (nega-
tive) momentum tends to occupy the right (left) leg to
lower the total energy.

On the other hand, when the parameters are in the vor-
tex phase region, the initial direction of motion differs to
the Meissner phase case, as shown in Fig.2 and Fig.3(b).
At time t = nTB (n = 0, 1, 2...), the state returns to
|k(t) = 0〉 with vg = 0, implying that the acceleration for
the two cases have opposite signs. From Eq.(8) and the
expression of vg, we get the acceleration

ac(t) ≡
∂2jc(t)

∂t2
= −F

[
∂2E−(k)

∂k2

]
k(t)

, (10)

which is proportional to the curvature of the band E−
at k(t). Figure 3(c) shows that the curvatures at k = 0
for the bands corresponding to the Meissner phase (black
solid curve) and the vortex phase (red dotted curve) have
different signs. At the transition point (τ = 2, Φ =

2 arccos(
√
5−1
2 )), the curvature vanishes, as specified by

the dashed blue curve.

By making use of the relation (10), one can identify
the phase diagram by the dynamical process. In Fig.4,
we scan the values of |ac(t = TB)| in the parameter space
to obtain the phase boundary where ac(t = nTB) = 0
(n = 0, 1, 2...). ac < 0 corresponds to the Meissner phase
whereas ac > 0 the vortex phase. Our dynamical identi-
fication of the phase boundary is in agreement with the
theoretical result τ = τc, as indicated by the red dashed
curve in Fig.4.

IV. DYNAMICS WITH DIAGONAL COUPLING

We turn to investigate the effect of diagonal tunneling
which couples the two chains with one site shifted. The
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FIG. 4: (Color online) The phase diagram obtained by scan-
ning the value of |ac(TB)| in unit of 1/T 2

B. The phase bound-
ary is determined by ac(TB) = 0 which coincides with the
theoretical prediction (red dashed curve).

total Hamiltonian is H = H0 +Hd, where

Hd = −td
∑
j

[
(a†jbj+1 + a†j+1bj) + H.c.

]
. (11)

By replacing τ with τ̃(k) = τ + 2τd cos k (τd = td/t‖), we
obtain the Hamiltonian matrix and the band structure
with respectively the same form of Eq.(3) and Eq.(4).
The quasi-particle creation operators also remain the
same as in Eq.(6) while θk is determined by

tan 2θk = −τ + 2τd cos k

κ(k)
. (12)

The boundary between the Meissner phase and the vor-
tex phase is then shifted to

τ ′c = 2

(
sin2 φ

cosφ+ τd
− τd

)
, (13)

which recovers the former case at τd = 0. The vortex
phase shrinks with the increase of τd as displayed in Fig.5.
For positive τ , the vortex phase disappears as long as
τd ≥ 1.

The presence of diagonal coupling induces a topo-
logical transition in the ladder system[16] which can
be definitely revealed by the dynamical evolution. By
defining the total pseudospin polarization S =

∑
j Sj ,

where the local pseudospin Sj(t) = ψ†j (t)σ̂ψj(t) with

ψ†j (t) =
[
c∗Lj(t), c

∗
Rj(t)

]
, one can map the evolving states

to a moving point on the Bloch sphere. Since the BO
represents a quasi-momentum state evolving along the
band, such mapping also reflects the information about
the band structure. For separated two bands, σxP|k〉 =
σx|k〉 = |k〉 is satisfied when k = 0,±π, which indicates
Sz = 0 in such cases. However, band crossing occurs at

FIG. 5: (Color online) Solid curves: theoretical phase bound-
aries between the Meissner phase and the vortex phase cal-
culated by Eq.(13) for τd = 0, 0.3, 0.6, 1 as labeled in the
diagram. Dashed lines (τ = 2τd): the topological trivial,
nontrivial boundaries for different values of τd (black (lower)
for τd = 0, red (middle) for τd = 0.3, blue (upper) for
τd = 0.6). The left (right) side of the solid curves correspond
to the Meissner (vortex) phase. The upper (lower) area of
the dashed lines correspond to the topological trivial (non-
trivial) phase. The case for τd =

√
2/2 is labeled by the gray

solid curve and the gray dotted line, where the trivial vortex
phase starts to vanish. The entire vortex phase disappears as
τd > 1.

k = ±π when τd = τ/2. The eigenstates with quasi-
momentum k = ±π become distinguishing and hence
σxP|k〉 = σx| − k〉 = |k〉 which means Sz(k) = −Sz(−k).
As a result, the wave packet switches to the second band
from |k = (−π)+〉− to |k = π−〉+ when reaching one
edge of the BZ (see section V). The subsequent motion
in the second band lasts TB until it arrives at the other
edge of the BZ and switches back to the lower band from
|k = (−π)+〉+ to |k = π−〉−. Consequently, the period
of such BO doubles as shown in Fig.6(a-d). On the other
hand, such effect can be understood by the doubling of
the BZ, which stem from the halving of the original unit
cell. This point will be emphasized in sectionVI. Note
that |CL,R|2 can reach the maximum 1 at respectively
t = (2n+ 1/2)TB and t = (2n+ 3/2)TB (n = 0, 1, 2, ...).

For τd > τ/2, the bands reopen and the BO period re-
covers TB (see Fig.6(f, g)). However, |CL,R(t)|2 = 1 can
still be reached at t = (n + 1/2)TB ∓ arccos(τ/2τd). In
our situations, |Sx,y| � |Sy|. The pseudospin dynamics
in the (x, z) plane reveals a topological phase transition.
Fig.7(a) shows an example of topological trivial band
with τd < τ/2, where the vector S(t) = (Sx(t), Sz(t))
swings periodically around the Sx direction. At τd = τ/2
[Fig.7(b)], S(t) rotates a full circle in a couple of Bloch
periods. For τd > τ/2, Fig.7(c) shows that S(t) rotates a
full circle in a single BO period, reflecting the nontrivial
topology of the energy bands. In the phase with non-
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FIG. 6: (Color online) (a-c) The same as in fig.1(a-c) in the
presence of diagonal tunneling which equals half of the inter-
chain tunneling (τd = τ/2 = 0.6) for magnetic flux Φ = 2φ =
0.5π. (d) The temporal evolution of the density fraction in
the left (blue solid curve) and the right (red dotted curve)
legs. The oscillating period is doubled. (e) is the lowest two
bands E± where the gap is closed at the BZ edges. As a
comparison, (f) displays a typical case for τd > τ/2 (τ = 1.2
and τd = 0.9) where the oscillating period again equals the
BO period. (g) shows that the band gap is reopened.

zero winding number, the pseudospin can be polarized
to the positive (negative) Sz direction when |CL(t)|2 = 1
(|CR(t)|2 = 1), which is essentially distinct from the
topological trivial phase where |CR,L(t)|2 < 1. Defining
Cmax = |CR,L(t)|2max and ãc = ac(t = nTB), the Bloch
oscillation process can signify the phases in Fig.5. Above
(below) the dashed lines, Cmax = 1 (Cmax < 1), corre-
sponding to the topological nontrivial (trivial) phase. On
the left (right) side of the solid lines, ãc < 0 (ãc > 0),
corresponding to the Meissner (vortex) phase.

V. EVOLUTION IN THE MOMENTUM SPACE

The broad wave packet in the real space signifies an
eigenstate with quasi-momentum k in a semiclassical de-
scription. By referring to Ref.[29], the system exhibits
features of the Wannier-Stark ladder when a linear force
F is applied, with the eigen equation,

E±ψm(k) + iF
dψm(k)

dk
= Emψm(k). (14)

Here the eigen energies are Em = mF (m = 0,±1, ...) due
to the periodic boundary condition ψm(k± 2π) = ψm(k)

FIG. 7: (Color online) Temporal evolutions of the pseu-
dospin polarization in the chiral BOs for fixed τ = 1.2,
Φ = 2φ = 0.5π and different diagonal hoppings within the
Meissner region. (a) τd = 0.3. (b) τd = 0.6. (c) τd = 0.9.
The color of the arrows indicate the value of Sz. (a) shows a
trivial topology with no spin winding as τd < τ/2. (b) reveals
that the spin polarization rotates a full circle (the spin wind-
ing once) in two BO periods at the critical point of τd = τ/2,
where the band gap is closed (fig.6(e)). (c) exhibits the spin
winding once in each BO period in the regime of τd > τ/2,
where the band gap is reopened (fig.6(g)).

for a Wannier-Stark state under the quasi-momentum ba-
sis. The corresponding eigenstates are

ψm(k) = 〈k|ψm〉 =
1√
2π
e−i[mk−

1
F

∫ k
0
E±(k0)dk0]. (15)

The Bloch oscillation can be derived from the time
evolution operator

Uk′k(t) = 〈k′|e−iHt|k〉
=
∑
m

〈k′|ψm〉e−iEmt〈ψm|k〉

= e−
i
F

∫ k′
k
E±(k

′′)dk′′ · δ(k′ − k + Ft), (16)

By replacing k with the initial momentum k = k0, we
arrive at the dynamics of the quasi-momentum k(t) ≡ k′
given by Eq.8.

This result is independent of the band index. Given a
positive F , the propagating direction of |k〉 in the Bril-
louin zone (BZ) is always from π to −π. The density dis-
tributions in the two chains rely on the time-dependent
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FIG. 8: (Color online) (a,c,e) The values of θk versus k from
Eq.(12) for three typical cases: (a) τd < τ/2, (c) τd = τ/2
and (e) τd > τ/2, respectively. The corresponding bands
are shown in the right panels. The parameters are τ = 1.2,
Φ = π/2. The initial state with k0 = 0 are labeled by A

to represent the state |k〉 =
√

2/2(a†k + b†k)|0〉. The labels

B indicate (a) |k〉 =
√

2/2(a†k + b†k)|0〉, (c) |k〉 = a†k|0〉 and

(e) |k〉 =
√

2/2(a†k − b
†
k)|0〉. The labels C indicate (a) |k〉 =√

2/2(a†k + b†k)|0〉, (c) |k〉 = b†k|0〉 and (e) |k〉 =
√

2/2(−a†k +

b†k)|0〉. The labels D, E in (e) represent the same state as
B, C in (c). All above states are restricted to their lower
bands. The arrows indicate the evolution of k(t) according
to Eq.(8). The evolution for the first and second half of the
BO period are specified by black (solid) and red (dashed)
arrows, respectively. The band crossing occurs in (d), where
the state |k = (−π)+〉− in the lower band connects with the

upper band state |k = π−〉+ = a†k|0〉. Similarly, the state

|k = (−π)+〉+ = −b†k|0〉 is connected to |k = π−〉−.

coefficients | cos θk|2 and | sin θk|2 defined by Eq.(12).
Figure 8(a,c,e) display the values of θk versus k. The
arrows indicate the propagating direction of k while the
values of k are folded into the first BZ.

We first focus on the critical case of τd = τ/2, where
there are two saltation points k = 0 and k = −π in one
Bloch period TB = 2π/F . The Bloch period correspond
to the ergodicity of quasi-momentum k in the BZ. At
k = 2nπ with n = 0,±1, ..., the values of tan 2θk are
decided by the sign of k so that

tan 2θk =

{
∞, k = 0−

−∞, k = 0+.
(17)

At k = −π + 2nπ, we have

tan 2θk =
2τd sin k

2 sinφ cos k
|k=−π+2nπ =

{
0+, − sin k = 0+

0−, − sin k = 0−.

(18)
Note that |k = 0+〉 and |k = 0−〉 should be the same state
as labeled by A in Fig.8(c). It means that the scale of θk
is bounded to the regime [0, π/2]. The variation of θk is
represented by arrows in Fig.8(c,d). In our consideration,
the wave packet is initialized by |k = 0〉− in the lower
band (with the subscript indicating the band index), i.e.,

θk = π/4, thus α†k =
√
2
2 a
†
k +

√
2
2 b
†
k. The wave packet

evolves in the lower band for t ∈ [0, TB/2] as shown by
the black solid arrows in Fig.8(c). When the eigenstate
|k〉− in quasi-momentum space arrives at |k = (−π)+〉−,

then tan 2θk = 0+, leading to α†k = a†k. It means that
the wave packet completely populates the left chain in
real space. Subsequently, the transition for tan 2θk from
0+ to 0− in Eq.(18) occurs. Such transition corresponds
to a saltation for θk from 0 to π/2 (k: (−π)+ → π−).

However, θk = π/2 (k = π−) implies that α†k = b†k and

β†k = a†k from Eq.(6). To keep the state in the lower band
the wave packet need to be suddenly flipped to the right
chain, which is just impossible.

We come to the conclusion that the state jumps to the
state |k = π−〉+ without altering the density distribution.
Hence in the second half of BO t ∈ [TB/2, TB], the state
begins to propagate in the upper band as indicated by
the red dashed solid arrows in Fig.8(d). At t = TB ,
the state reaches |k = 0〉+ with tan 2θk encountering the
saltation from −∞ to ∞ in Eq.(17) and hence we have
θk = π/4, again. The value of θk completes a cycle in
a Bloch period. However, the state is now in the upper
band. An additional Bloch period is needed for |k = 0〉+
to return to the initial state |k = 0〉−. It means that
the full period of the BO doubles that of τd < τ/2. The
subsequent evolution of the state is again indicated by
the black solid arrows in the upper band and the red
dashed arrows in the lower band. For |k = (−π)+〉+, we

have θk = 0 and thus β†k = −b†k, while for |k = π−〉−,

θk = π/2, thus α†k = b†k and β†k = a†k. In spite of a phase
jump of π which has no effect on the physical observable,
the state |k = (−π)+〉+ is connected to |k = π−〉−.

For the case of τd > τ/2, the crossing bands reopen, re-
sulting in topologically nontrivial band structure in con-
trast to that of τd < τ/2. To get insights into the topo-
logical transition, we compare the values of θk versus k
in Fig. 7(a) and (e). For τd < τ/2, θk can reach neither
0 nor π/2, which means the density always distributes in
both chains and the total pseudospin can not be fully
polarized. In Fig.8(a) points B and C are the same

state |k〉 =
√

2/2(a†k + b†k)|0〉. For τd > τ/2, however,
θk reaches 0 and π/2 at k = ∓ arccos(−τ/2τd). As indi-
cated by D and E in Fig.8(e). The corresponding states

are |k〉 = a†k|0〉 and |k〉 = b†k|0〉, respectively. The states
labeled by B and C are now different. Since they are
states at |k = ∓π〉, the physical observable should be the
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same. The only distinction they preserve is a global phase

of π. We have state B: |k = (−π)+〉 =
√

2/2(a†k − b
†
k)|0〉

and state C: |k = π−〉 =
√

2/2(−a†k + b†k)|0〉. The lower
band in such case is analogous to the Mobius band since
there is a phase jump of π between the two states B
(|k = (−π)+〉), C (|k = π−〉).

VI. BAND TOPOLOGY AND EDGE STATES

To characterize the band topology, we compute
the topological invariant. By applying the rotation
(σx, σy, σz) → (σx, σz,−σy), we get the one-dimensional
Hamiltonian of the canonical form

H(k) = ε(k) + τ̃(k)σx + κ(k)σy, (19)

where ε(k) = 2 cosφ cos k, τ̃(k) = τ + 2τd cos k κ(k) =
2 sinφ sin k. As mentioned in ref.[16], for Φ = 2φ = π, the
Hamiltonian in Eq.19 is analogous to the Su-Schrieffer-
Heeger (SSH) model[30, 31]. Rigorously, the two hopping
rates in the corresponding SSH model are J = τ , J ′ = 2τd
when k = ±π. Thus τd = τ/2 leads to the halving of the
effective unit cell, resulting in the doubling of the Bloch
period as demonstrated in Fig.6(a-d).

The normalized Bloch wavefunction for the lower band
is

|u(k)〉 =
1√
2

(
q
1

)
, (20)

with q = (−τ̃ + iκ)/λ and λ =
√
τ̃2 + κ2. The winding

number is obtained by

w[q] =
i

2π

∫
BZ

q−1dq = − 1

2π

∫
BZ

κτ̃ ′ − τ̃κ′

κ2 + τ̃2
dk

=
1

2π
arctan(− τ̃

κ
)|BZ, (21)

Where we have used the definition of the winding num-
ber. Since q−1 = q∗, this formula can be expressed as

w[q] =
i

π

∫
BZ

〈u(k)|∂k|u(k)〉dk ≡ ϕZak

π
, (22)

where ϕZak is called the Zak phase which is the Berry
phase of the one dimensional (1D) version[32]. Eq.(22)
shows that w[q] is invariant to a gauge transformation
|u(k)〉 → eiγ |u(k)〉 as long as γ is k independent. The last
expression in Eq.(21) reveals that the winding number is
equivalent to the rotation of θk in the BZ. Thus from
the above analysis (see Fig.8(a,c,e)), we directly come
to the conclusion that w[q] = 0, 1/2 and 1 for τd <
τ/2, τd = τ/2 and τd > τ/2, respectively. We mention
that the topology of a band crossing system is not well-
defined. Since the band structure is partitioned into two
topologically distinct sectors. The system with diagonal
tunnelings is specified by the Z2 class, which can also be

determined by the parity (inversion) symmetry Pa†k =

a†−k and time-reversal symmetry (T a†k = a†−k)[33].

FIG. 9: (Color online) (a,b) The band structure versus τd/τ
for Φ = π and Φ = π/2, respectively. The calculations are
carried out for a system of 50 sites along each legs with open
boundary conditions. Two degenerate edge states appear
when τd/τ > 0.5: (c1,c2) are density distributions for the
two states marked by red dot (τd/τ = 0.7) in (a) and (d1,d2)
are density distributions for the marked states in (b). Note
that the distribution for the left and right legs are the same,
thus only one of the chains is shown.

With open boundary condition, the edge states are al-
ways associated with the 1D nontrivial band topology.
Such edge states are protected by a chiral symmetry of
the bulk Hamiltonian[34], which means the edge states
exist if an operator C can be found such that C anti-
commutes with the bulk Hamiltonian and C2 = 1 in the
meanwhile. However, as demonstrated in Ref.[35], the
existence of edge states is not affected by a term propor-
tional to identity which trivially breaks the chiral sym-
metry. The Bloch Hamiltonian in our concern can be
written as H(k) = ε(k)1̂ + τ̃(k)σx − κ(k)σz. Excluding
the first term, we find the chiral symmetry by defining
C = σy. Thus we expect the appearance of edge states
when τd > τ/2. Figure 9(a,b) demonstrate the energy
bulk and edge states in the open boundary condition.
With Φ = 2φ = π, H(k) persist the the chiral symmetry
since ε(k) = 2 cosφ cos k = 0. The band structure be-
comes symmetric, and the edge states have zero energy as
predicted by the theory in Ref[34]. With Φ = 2φ = π/2,
the ε(k) term induces a shifted dispersion which does not
change the band topology. The density distributions for
The two degenerate edge states are shown in Fig.9(c1,c2)
for the red dot marked in Fig.9(a) and in Fig.9(d1,d2) for
the red dot marked in Fig.9(b). Such result exhibits the
existence of edge states as band topology arises even in
the absence of a chiral symmetry.
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VII. DISCUSSION AND SUMMARY

We address some experimental aspects of our work. An
array of decoupled optical ladders can be implemented
with standing waves that constitute a superlattice po-
tential perpendicular to the arrays. The magnetic flux is
readily realized by laser-induced tunnellings[3, 21] while
the linear force by accelerating the lattice[36]. By apply-
ing a bichromatic superlattice to form the ladder legs and
shifting one of the legs along the ladder direction by one
site, the diagonal couplings can be enhanced since the
corresponding sites belong to the same sublattice. Such
ladder configuration resembles the Zeeman field for spin-
1/2 systems. With the single-site resolved techniques in
optical lattice systems[37–39], measurement of the densi-
ties and number fractions in each chain become possible.
In Ref.[40], detecting the dynamics of the BOs as well
as the quantum walks have been enabled by averaging
the densities in parallel 1D lattices. The experiments for
ladders require replacing the 1D lattices with two cou-
pled 1D chains. With diagonal tunnelings, the topologi-
cal phase transition and the period-doubling at transition
point can be detected by measuring the density fractions
of the two legs. The direct observation of edge states may
be implemented with coupled waveguide arrays[41] or in
the synthetic dimensions[8]. In optical lattice, a bound-

ary can be generated by setting τd < τ/2 when j < j0
and τd > τ/2 when j > j0. Such configuration supports
an edge state located at j0.

In summary, we have investigated the chiral Bloch os-
cillations in a bosonic ladder system subjected to an ar-
tificial magnetic flux. Detecting the acceleration of the
center of the wave packet allows one to identify the Meiss-
ner phase and vortex lattice phase. With diagonal cou-
pling, a topological phase transition arises. The Bloch
period doubles at the critical point of the phase bound-
ary τd = τ/2 due to the band crossing at the edges of the
Brillouin zone. The band topology can be reflected from
the dynamical pseudospin texture and the number frac-
tions populated in the two chains. The edge states are
demonstrated in the region with nontrivial band topol-
ogy. Other challenges such as the effect of the linear force
in a finite size system, on-site or inter-chain interactions,
a boundary of the two domains with distinct topological
phases, may require further investigations. We expect
that our dynamical method becomes a practical way to
identify the quantum phases and topological transitions
in condensed matter physics.

This work is supported by the NSF of China un-
der grant Nos. 11774034 and 11374036, and the Na-
tional Basic Research Program of China under grant No.
2012CB821403.
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91, 140406(R) (2015).

[20] S. Kessler and F. Marquardt, Phys. Rev. A 89, 061601
(2014).

[21] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B.
Paredes and I. Bloch, Nature Physics 10, 588 (2014).

[22] Y.-J. Lin, K. Jimenez-Garcia and I. B. Spielman, Nature
471, 83 (2011).

[23] Y. V. Kartashov, V. V. Konotop, D. A. Zezyulin and L.
Torner, Phys. Rev. Lett. 117, 215301 (2016).

[24] W. Tschischik, R. Moessner and M. Haque, Phys. Rev.
A 92, 023845 (2015).

[25] H. Zhai, International Journal of Modern Physics B 26,
1230001 (2012).

[26] B. N. Narozhny, S. T. Carr and A. A. Nersesyan, Phys.
Rev. B 71, 161101(R) (2005).

[27] G. Roux, E. Orignac, S. R. White and D. Poilblanc, Phys.
Rev. B 76, 195105(2007).

[28] M. Holthaus and D. W. Hone, Philosophical Magazine
Part B 74, 105 (1996)

[29] T. Hartmann, F. Keck, H. J. Korsch and S. Mossmann,
New Journal of Physics 6, 2 (2004).

[30] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev.
Lett. 42, 1698 (1979).



9

[31] A. J. Heeger, S. Kivelson, J. R. Schrieffer and W. P. Su,
Rev. Mod. Phys. 60, 781 (1988).

[32] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[33] S. Ryu, A. P. Schnyder, A. Furusaki and A. W. W. Lud-

wig, New Journal of Physics 12, 065010 (2010).
[34] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89,077002

(2002).
[35] P. Delplace, D. Ullmo, and G. Montambaux, Phys. Rev.

B 84, 195452 (2011).
[36] C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini,

O. Morsch, and E. Arimondo, Phys. Rev. Lett. 100,
040404 (2008).

[37] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling and M.
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