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Abstract

Recently, a cooling scheme for ultracold atoms in a bilayer optical lattice has been proposed

[A. Kantian et al., arXiv:1609.03579]. In their scheme, the energy offset between the two layers is

increased dynamically such that the entropy of one layer is transferred to the other layer. Using

the full-Hilbert-space approach, we compute cooling dynamics subjected to the scheme in order

to show that their scheme fails to cool down two-component fermions. We develop an alternative

cooling scheme for two-component fermions, in which the spin-exchange interaction of one layer is

significantly reduced. Using both full-Hilbert-space and matrix-product-state approaches, we find

that our scheme can decrease the temperature of the other layer by roughly half.
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I. INTRODUCTION

Thanks to their unprecedented controllability and cleanness, ultracold atom systems have

been utilized as analog quantum simulators. Such simulators allow one to tackle some im-

portant problems in quantum many-body physics that can not be addressed with classical

computers because of the requirement of too large computational resources [1, 2]. Thus far,

they have been successfully applied for revealing, e.g., thermodynamic [3–6] and dynam-

ical [7–9] properties of strongly interacting two-component Fermi gases in the superfluid

phase with s-wave pairing, Pomeranchuk cooling of the SU(6) Hubbard model [10], far-

from-equilibrium dynamics of the Hubbard model [11, 12], the Bose-Hubbard model [13–15]

and the Ising model [16].

Quantum-simulation technology for the Hubbard model, which is naturally realized with

two-component fermions in optical lattices [17–27], has been highly demanded. In the Hub-

bard system, it is expected that spin fluctuations mediate several nontrivial properties, such

as frustrated magnetism [28, 29] and d-wave superconducting phase [30, 31]. Hence, the

Hubbard model is considered to be essential for understanding strong correlation effects on

electrons in solids, especially, mechanisms of high-Tc superconductivity. However, accurate

large-scale numerical simulations of this model are not feasible at present except in some

limited spatial geometry or parameter regions, e.g., on a one-dimensional chain [32] or at

half filling [33, 34].

The most severe bottleneck for quantum simulations of the Hubbard model is to re-

duce the temperature of the systems to be much lower than the spin-exchange interaction

J = 4t2/U so that the above-mentioned interesting physics emerges. Here, t and U denote

the hopping integral and onsite interaction of the Hubbard model. For instance, the crit-

ical temperature of the d-wave superconducting phases is estimated to be on the order of

0.1J/kB with the use of the dynamical cluster approximation [31]. Since the lowest temper-

ature achieved in ultracold-atom quantum simulators is 0.45J/kB [17], one needs to develop

techniques for further cooling.

Recently, Kantian et al. [35] have proposed a cooling scheme using a bilayer optical lattice.

In this scheme, the entropy of one layer is transferred to the other layer in the following

way. Gases in both layers are initially prepared in a gapless phase, such as superfluid. The

energy offset between the layers is adiabatically increased such that one of the layers takes
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a commensurate filling rate, at which the gas is in a gapped insulating phase, e.g., Mott

insulator, while the other layer remains in the gapless phase. Since the energy scale set

by the excitation-energy gap in the insulating layer is much larger than that in the gapless

layer, the entropy flows from the former to the latter. In other words, the insulating layer

is cooled down. A remarkable advantage of this cooling scheme is that it can be combined

with other cooling methods that have been used previously [36, 37], such as evaporative

cooling [38, 39], sympathetic cooling [40, 41], and optimization of confinement potentials

[17, 21, 42, 43].

However, it is still unclear whether or not the proposed scheme is effective for two-

component fermions because quantitative numerical evaluation of this scheme is lacking.

In contrast to the case of one-component bosons, the Mott insulator of two-component

fermions, whose particle excitations are gapped, has gapless spin excitations such that the

entropy does not necessarily flow from to the Mott-insulator layer to the other. Since this

cooling scheme may be potentially able to decrease experimentally available temperature

down to the order of 0.1J/kB, it is important to examine the validity and the performance

of the scheme for the Hubbard systems with the use of accurate numerical methods.

In this paper, by means of the full-Hilbert-space (FHS) approach, we compute time

evolution of the bilayer Hubbard model in one dimension at finite temperatures subjected to

the dynamical parameter change corresponding to the cooling scheme of Kantian et al. [35].

We evaluate the performance of the scheme of Kantian et al. for two-component fermions

and indeed find it ineffective. Alternatively, we propose a modified cooling scheme that is

effective for two-component fermions in layered optical lattices. In our scheme, the system

is initially prepared to be the Mott insulator at half filling. The spin-exchange interaction

of one layer, which acts as a coolant, is adiabatically decreased such that the entropy of

the other layer is absorbed to the coolant layer. We show that the system can be cooled

down to roughly half of the initial temperatures. We also improve a way for describing a

thermal mixed state at low temperatures within a matrix-product-state (MPS) approach

and use it to confirm that our cooling scheme is effective for a system with larger size that

is compatible with experiments.

The remainder of the paper is organized as follows. In Sec. II, we describe the details

of two dynamical cooling schemes simulated in this paper. In Sec. III, numerical methods

used for simulations are explained. The improved MPS approach is also introduced in this
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section. Simulated data are shown in Sec. IV. We also discuss the performance of the cooling

schemes deduced from the simulated data. Conclusions are given in Sec. V.

II. MODEL AND DYNAMICAL PROCESSES FOR COOLING

In order to numerically examine the cooling schemes for two-component fermions in

bilayer optical lattices, we specifically analyze the Hubbard model on a two-leg ladder lattice

[44–47]. The Hamiltonian of this system at time τ is given by

Ĥ(τ) = ĤA(τ) + ĤB(τ) + Ĥ⊥(τ)

+ E(τ)

Nr
∑

i=1

∑

σ=↑,↓

n̂Biσ, (1)

ĤX(τ) =− tX(τ)
Nr−1
∑

i=1

∑

σ=↑,↓

(ĉ†Xiσ ĉXi+1σ +H.c.)

+ UX(τ)

Nr
∑

i=1

(

n̂Xi↑ −
1

2

)(

n̂Xi↓ −
1

2

)

, (2)

Ĥ⊥(τ) =− t⊥(τ)
Nr−1
∑

i=1

∑

σ=↑,↓

(ĉ†Aiσ ĉBiσ +H.c.). (3)

Each layer consists of a 1D Hubbard chain whose Hamiltonian is denoted by ĤX . Here,

X ∈ {A,B} represents the chain index, Nr denotes the number of sites in each chain, tX(τ)

and UX(τ) are the hopping integral and the onsite interaction in chain X , E(τ) is the energy

offset between the two chains, ĉXiσ annihilates a fermion with spin σ on site i in chain X ,

and n̂Xiσ = ĉ†Xiσ ĉXiσ. The two chains are coupled by the interchain hopping t⊥(τ). At initial

time τ = 0, these parameters are set to be tX(0) = t⊥(0) = t, UX(0) = U , and E(0) = 0. We

treat chains A and B as the target and coolant subsystems, respectively. The optical lattice

of two-leg ladder geometry can be created in experiments, e.g., by means of double-well

optical lattice [48–51]. Hereafter, we set kB = h̄ = 1 except in the figures and their captions.

We choose the specific two-leg ladder geometry because it allows for computing real-time

dynamics of the quantum many-body system with accurate numerical methods, namely, FHS

approaches for system with small size (we specifically takes Nr = 4) and MPS approaches

for those with relatively large size (Nr = 10). Since the working mechanism of the analyzed

cooling scheme does not rely on any specific properties of 1D systems, we believe that the
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(a) (b)

FIG. 1. (Color online) (a) The time sequences of the parameters varied in the EOV scheme. (a)

The time sequences of the parameters varied in the SEV scheme.

A

A

B

B

(a)

(b)

FIG. 2. (Color online) (a) Schematic picture of the EOV scheme. Initially, the filling of a system

is lower than half filling. By increasing the energy offset up to U/2 and decreasing the interchain

hopping, the system is separated to one metallic chain and one half-filled insulating chain. (b)

Schematic picture of the SEV scheme. Initially, a system is in the Mott insulating state at half

filling. By decreasing the hopping integral of chain B down to αt and also decreasing the interchain

hopping to zero, the system is separated to two half-filled insulating chains. The energy scale of

spin excitations in chain B is much smaller than that of chain A.

conclusions drawn from our analysis should be applied to the Hubbard systems at higher

dimensions at least qualitatively.

In the dynamical cooling scheme proposed in Kantian et al. [35], which we shall call the

energy-offset-variation (EOV) scheme, the system is initially prepared in a gapless phase

with delocalized particles such as superfluid or metal. One slowly increases the energy offset

E such that the target subsystem changes to a gapped insulating state while the coolant one

remains in a gapless phase. One next decreases the interchain hopping t⊥ down to zero in

order to isolate the target from the coolant. If there is no remaining gapless excitation in the

Mott insulating target, its local temperature significantly exceeds that in the gapless coolant

such that the entropy flows from the target to the coolant. In terms of thermodynamics, the
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increases of the energy offset can be interpreted as compression of the target in the sense that

it leads to the increase of the energy scale set by low-lying excitations in the target. Kantian

et al. [35] have confirmed that this scheme is effective for the one-component Bose-Hubbard

system.

However, in the case of the two-component fermions, the required condition for the cooling

scheme is unsatisfied, i.e., the spin excitations remain gapless in the Mott insulating phase

at half filling . Moreover, the bandwidth of the spin-excitation branch, which is on the

order of the spin-exchange interaction J , is smaller than that of particle-excitation branch

of the metallic phase so that the entropy may possibly flow from the coolant to the target

in contrast to what we desire.

Since it is unclear at this stage whether or not the EOV scheme is effective for the Hubbard

system, we examine the performance of this scheme on the basis of quantitative numerical

calculations. Specifically, we set the two-leg Hubbard system initially at 3/8 filling, and

each parameter is linearly varied as shown in Fig. 1(a), where τs denotes the sweep time. In

this process, the initial metallic state on a two-leg ladder is separated into a half-filled Mott

insulating chain and a metallic chain as depicted in Fig. 2(a). At the end of this process, we

estimate the temperature of the target subsystem from the internal energy and the static

spin structure factor as discussed in Sec. IVA. We will indeed see that the EOV scheme is

ineffective for the Hubbard system.

We propose an alternative cooling scheme for two-component fermions in a bilayer optical

lattice, which we shall call the spin-exchange-variation (SEV) scheme. In this scheme,

we assume that the initial state is the Mott insulating state at half filling in the two-leg

ladder such that the particle excitations are largely gapped and hardly involved in the

cooling dynamics. In the coolant subsystem (chain B), one slowly decreases the hopping

integral tB or increases the onsite interaction UB, implying that the spin-exchange interaction

JB = 4t2B/UB is decreased. The decrease of JB shrinks the bandwidth of the spin-excitation

branch in the coolant. In terms of thermodynamics, the decrease of the spin-exchange

interaction can be interpreted as expansion of the coolant, which should lead to entropy

flow from the target to the coolant. At the same time, one decreases the interchain hopping

t⊥ down to zero in order to isolate the target from the coolant. The specific time sequences

of tB(τ) and t⊥(τ) are illustrated in Fig. 1(b), where, α < 1 is a parameter characterizing

the reduction of the hopping tB(τ). After this process, the initial Mott insulating state on
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the two-leg ladder is separated into two independent Mott insulating chains as depicted in

Fig. 2(b). Notice that one does not change any parameters in chain A.

III. NUMERICAL METHODS

In this section, we explain the two numerical methods, namely, the FHS approach and

the MPS approach, which allow us to accurately compute real-time evolution of the density

matrix of a quantum many-body system on a lattice. We use the FHS approach for simulat-

ing both EOV and SEV schemes at a small system, say Nr = 4. Since the FHS calculations

will eventually show that the SEV scheme is effective, we will double-check whether or not

this is also the case for a larger system (Nr = 10) by means of the MPS approach. For

this purpose, we make a little improvement on a MPS approach for representing a thermal

mixed state at low temperature by changing the alignment of MPS via swap operations.

When Nr = 4, the dimensions D of the full Hilbert space of the symmetry blocks that

we are interested in are not so large: D = 3136 for (N↑, N↓) = (3, 3) sector corresponding to

3/8 filling and D = 4900 for (N↑, N↓) = (4, 4) sector corresponding to half filling. Here, Nσ

is the number of particles with spin σ. Thus, we can explicitly construct the Hamiltonian

matrix and take the matrix exponential of it to obtain a density matrix at temperature

T = 1/β given by

ρ̂ =
exp(−βĤ)

Tr exp(−βĤ)
. (4)

The time evolution of the density matrix is described by the von-Neumann equation,

i
∂ρ̂(τ)

∂τ
= Ĥ(τ)ρ̂(τ)− ρ̂(τ)Ĥ(τ). (5)

We numerically solve Eq. (5) by using the fourth order Runge-Kutta method with the time

step ∆τ = 0.025t−1.

For the larger system (Nr = 10), the dimensions of the symmetric subspaces are too large

to perform the FHS calculation. Hence, we use MPS [52], in which unnecessary states in the

Hilbert space are efficiently truncated. In the MPS representation, a state |ψ〉 in a N -site

system is represented as

|ψ〉 =
∑

σ

A
σ1

1 A
σ2

2 · · ·AσN

N |σ〉 , (6)

where σi is the state of the local Hilbert space at i-th site, e.g., σi ∈ {|0〉 , |↑〉 , |↓〉 , |↑↓〉} for

two-component fermion systems, |σ〉 = |σ1, σ2, · · · , σN 〉, and
∑

σ
means the summation over
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all possible configurations of σi. The dimension of matrices Aσi

i , which is often called bond

dimension, needs to be exponentially large with respect to the system size N for representing

arbitrary states. However, for certain classes of states, including ground states, low-lying

excited states, and slow dynamics starting with them, the required bond dimension scales

only polynomially with N , allowing for an efficient representation of these states with a

MPS.

For representing a thermal mixed state given by Eq. (4) within the MPS framework, there

are major two options: a sampling approach [53, 54] and an ancilla-site approach [55, 56].

In this work, we adopt the latter approach because we also needs to compute real-time

evolution starting with a thermal mixed state and the latter approach has been shown to

be more efficient for this purpose [57]. In the ancilla-site approach, one introduces ancilla

sites, which are copies of physical sites consisting of all possible states with equal weight and

are maximally entangled with them, to represent a mixed state at infinite temperature as a

“wave function” |ψ∞〉. Using |ψ∞〉, one can write down a MPS at temperature T as [56]

|ψT 〉 = exp

(

−
β

2
Ĥ

)

|ψ∞〉 . (7)

Notice that the operator exp(−βĤ/2) is applied only to matrices on the physical sites. With

this MPS, we can evaluate the thermal expectation value of an operator Ô as

〈Ô〉 =
〈ψT |Ô|ψT 〉

〈ψT |ψT 〉
. (8)

In this work, we use the exact MPS representation to prepare the infinite temperature state

of the canonical ensemble [58].

In the ancilla-site approach, entanglement between the ancilla and physical states is inter-

preted as thermal fluctuations. The price to pay for the inclusion of the thermal fluctuations

is that the size of the entire Hilbert space is squared. In return for the enlargement of the

Hilbert space, we can treat a mixed state as a pure state such that all convenient techniques

for MPS are available [59–61].

We compute the thermal MPS of Eq. (7) via the imaginary-time evolution, in which

−iβ/2 is interpreted as the propagation time. The time evolution operator U(τ +∆τ, τ) for
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small time step ∆τ is approximated as

U(τ +∆τ, τ) = T exp

[

−i

∫ τ+∆τ

τ

Ĥ(s)ds

]

≃ exp

[

−i

∫ τ+∆τ

τ

Ĥ(s)ds

]

= exp

[

−iĤ

(

τ +
∆τ

2

)

∆τ

]

, (9)

where T denotes the time ordering operator and the last equality follows from the linear

dependence of Ĥ(τ) on τ . This approximation is equivalent to replacing the Hamiltonian

within a short time span [τ, τ+∆τ ] with H(τ+∆τ/2). The application of the time evolution

operator on a MPS is implemented with the truncated Taylor expansion up to 10th order

(See Appendix A for details). Notice that the Hamiltonian is independent of time in the

imaginary time evolution while Eq. (9) is expressed in a more general form that is applicable

to the Hamiltonian dependent linearly on time.

The efficiency of a MPS representation depends strongly on how we align sites in the

MPS representation. Specifically, if two strongly entangled sites are more distant from each

other in the MPS representation, it requires the bond dimension to be larger. In this sense,

the MPS at infinite temperature is efficiently represented by the alignment of alternating

physical and ancilla sites as shown in Fig. 3(a) [52], because each local physical state is

maximally entangled with the corresponding ancilla state. When temperature decreases,

thermal fluctuations become weaker so that entanglement between the physical and ancilla

sites becomes weaker as well. In contrast, the entanglement among physical sites grows. At

zero temperature, for instance, thermal fluctuations are absent so that only the entanglement

among the physical sites is important. This means that the alignment of sites shown in

Fig. 3(a) unnecessarily increases the required bond dimension at low temperature. A recent

study, in which the sampling approach and the ancilla-site approach are compared [62], has

indeed reported that the ancilla-site approach is less efficient in a low temperature region.

We overcome this inefficiency at low temperature by rearranging the MPS in the form

illustrated in Fig. 3(b), where all the physical (ancilla) sites are assembled on the left (right)

side of the MPS. With this alignment, the required bond dimension for a thermal mixed

state is comparable to that for the ground state without ancilla sites at least near zero

temperature, i.e., the ancilla-site approach is efficient for low temperature systems. The

detailed procedure for the rearrangement is given in Appendix B. With such an approach,
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(a)

(b)

FIG. 3. (Color online) (a) The alignment of alternating physical and ancilla sites. Squares and

circles represent physical and ancilla sites. A vertical line represents a physical index σi or a copy

of it for ancilla site σ̄i. (b) The efficient alignment for low temperatures.

one practical question arises: when do we rearrange the MPS? In this work, we choose an

extreme option: we do it immediately after we operate the first time-evolution operator on

the infinite-temperature MPS. This option is not optimized for describing high-temperature

systems but suited for describing low-temperature systems, which we are interested in.

In order to corroborate that the MPS approach with the alignment of Fig. 3(b) is more

efficient at low temperatures, we compare the temperature dependence of the internal energy

obtained with the two alignments in Fig. 4. We also use several maximum bond dimensions

of the MPS m to see convergence properties of these approaches. At sufficiently large bond

dimension, e.g., m = 500, the internal energies computed by the MPS approach with the

alignment of Fig. 3(a) (green dash-dot line) agree well with those given by the FHS approach

(blue solid line) in the entire temperature region. However, the agreement is rather poor for

relatively small bond dimensions (m = 50, 100). In contrast, the internal energies computed

by the MPS approach with the alignment of Fig. 3(b) (orange dashed line) agree with the

FHS results in a low temperature region even at the small bond dimensions.

In this work, in addition to thermal equilibrium states at finite temperature, we compute

real-time evolution of these states subjected to the dynamical variation of the Hamiltonian

mentioned in Sec. II. In Fig. 5, we simulate the SEV scheme and show the real-time evolution

of the internal energies computed by the FHS approach (blue solid line) and the MPS

approach (orange dashed line). There we choose T/t = 0.25, which is the lowest temperature

that has been achieved experimentally in ultracold fermions in an optical lattice [17]. There

is no discernible difference between the two results, corroborating that the MPS approach

accurately captures the real-time dynamics subjected to the cooling scheme.
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(a)

(b)

m = 500

(c)

MPS with Fig. 3(a)

m = 50

m = 100

MPS with Fig. 3(b)

MPS with Fig. 3(a)

MPS with Fig. 3(b)

MPS with Fig. 3(a)

MPS with Fig. 3(b)

FIG. 4. (Color online) The internal energy 〈Ĥ〉 versus the temperature T at τ = 0, where Nr = 4,

(N↑, N↓) = (4, 4), and U/t = 8.0. The blue solid, green dash-dot, and orange dashed lines represent

the results obtained by the FHS approach, the MPS with the alignment of Fig. 3(a), and the MPS

with the alignment of Fig. 3(b). In MPS calculations, we set the time step for the imaginary time

evolution to be ∆τ = −i0.05h̄/t and the maximum bond dimension to be m = 50 (a), 100 (b), and

500 (c).
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FIG. 5. (Color online) The time evolution of the internal energy of chain A 〈ĤA〉 during the SEV

scheme computed by the FHS (blue solid line) and MPS (orange dashed line) approaches, where

Nr = 4, (N↑, N↓) = (4, 4), U/t = 8.0, τst/h̄ = 10.0, α = 0.1, and kBT/t = 0.25. We set the

maximum bond dimension for the MPS to be m = 1000. The time step ∆τ is 0.1h̄/t for the MPS

approach and 0.05h̄/t for the FHS approach.

IV. PERFORMANCE OF DYNAMICAL COOLING SCHEMES IN FERMION

SYSTEMS

A. Thermometers

In order to judge whether or not the target subsystem is actually cooled after the cooling

scheme, we need to measure the temperature of the target, which is not an observable that

can be calculated through Eq. (8). In order to estimate the temperature, we calculate the

internal energy and the static spin structure factor S(k) at k = π/a as functions of the

temperature for thermal equilibrium states of the target subsystem (chain A) at half filling

in the symmetric sector N↑ +N↓ = Nr. Here, S(k) is given by

S(k) =
1

Nr

∑

ij

〈Ŝz
i Ŝ

z
j 〉 e

−ik(ri−rj) (10)

where Ŝz
i = (n̂i↑ − n̂i↓)/2, ri = ia, and a is the lattice spacing. As shown in Fig. 6, both

quantities are monotonic functions of T so that the temperature is uniquely determined from

each quantity.
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Spin structure factor Internal energy

Nr = 4

Nr = 10

Nr = 4

Nr = 10

FIG. 6. (Color online) Numerical data used as thermometers in this work. For Nr = 4, the data

are obtained by the FHS approach. For Nr = 10, whose data are obtained by the MPS approach,

we calculate physical quantities twice with different maximum bond dimensions m. We can use

these data as thermometers in the region kBT/t < 1.0 where the data for two different m converge.

B. Comparison of two schemes

We first examine the performance of the EOV scheme by using the FHS approach for

Nr = 4. Figure 7 represents the time evolution of the internal energy of chain A (target

of the cooling) during the dynamical process based on the EOV scheme with the sweep

time τst = 100. After the cooling process, namely τ = 2τs, 〈ĤA〉 /(Nrt) = −2.203 and

S(π/a)/Nr = 0.102. The temperature estimated from the internal energy is Test/t ≈ 0.29

and that from the spin structure factor is Test/t ≈ 0.31. Both estimated temperatures are

higher than the initial temperature T/t = 0.25. This result clearly shows that chain A is

heated up rather than cooled down with the EOV scheme. we also confirm the transfer

of the entropy from chain B to chain A by comparing the von Neumann entropy from the

reduced density matrix. Thus, the EOV scheme is not effective for cooling of two-component

fermions. As discussed in Sec. II, this failure of the EOV scheme can be attributed to the

presence of gapless spin excitations in the Mott insulating state.

We next simulate the SEV scheme with use of the FHS approach for Nr = 4. Figure 8

represents the time evolution of 〈ĤA〉 under the SEV scheme with τst = 20 and α = 0.1.

After the cooling process, namely at τ = τs, 〈ĤA〉 /(Nrt) = −2.252 and S(π/a)/Nr = 0.131,
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FIG. 7. (Color online) The time evolution of the internal energy of chain A during the EOV

cooling scheme with the sweep time τst/h̄ = 100, where Nr = 4, (N↑, N↓) = (3, 3), and U/t = 8.0.

We increase the energy offset linearly during the sweep time τs and next decrease the interchain

hopping linearly during the same sweep time. Temperature after the cooling estimated from the

internal energy at τt/h̄ = 200 is 0.29t/kB, which is slightly higher than the initial temperature

0.25t/kB.

FIG. 8. (Color online) The time evolution of the internal energy of chain A during the SEV scheme

with α = 0.1 and α = 0.01, where Nr = 4, (N↑, N↓) = (4, 4), U/t = 8.0, and τst/h̄ = 20. From the

value of the internal energy after the time evolution (τ = τs), we estimate the cooled temperature

of chain A as 0.15t/kB, which is roughly half of the initial temperature 0.25t/kB.

which correspond to Test/t ≈ 0.15 and Test/t ≈ 0.14, respectively. We recall that the initial

temperature is T/t = 0.25. Thus, the SEV scheme can significantly reduce the temperature

even in the presence of gapless spin excitations. The transfer of the entropy from chain A to

chain B is also confirmed. We also perform the simulation with α = 0.01 and confirm that

further decrease in α makes little differences as shown in Fig. 8.
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FIG. 9. (Color online) The time evolution of the internal energy of chain A with α = 0.1, where

Nr = 10, (N↑, N↓) = (10, 10), U/t = 8.0, τst/h̄ = 20, and kBT/t = 0.25. The estimated temperature

from the internal energy is 0.14t/kB.

In order to check that the SEV scheme is effective also for a system with large size, we

set Nr = 10 and apply the MPS approach for simulating the SEV scheme with the same

τst = 20 and α = 0.1. The resulting time evolution of 〈ĤA〉 is shown in Fig. 9. The

estimated temperatures after the cooling are Test/t ≈ 0.13 from the spin structure factor

and Test/t ≈ 0.14 from the internal energy. Although the Nr = 10 system is more than twice

as large as the Nr = 4 system, the SEV scheme with the same sweep time exhibits almost

the same performance for both systems. Therefore, the sweep time required to perform the

cooling has little dependency on the size of systems so that this cooling scheme is expected

to be effective in much larger systems.

Comparing the simulated data of the EOV and the SEV schemes, we conclude that the

latter scheme is more suited for cooling the Hubbard system than the former. Furthermore,

the SEV is expected to be effective regardless of the system size. In the following subsection,

we investigate the performance of this cooling scheme in greater details.

C. Further performance test of the spin-exchange-variation scheme

Since we have confirmed that the SEV scheme at Nr = 10 gives almost the same perfor-

mance as that at Nr = 4, we further examine the performance of the SEV scheme with the

FHS simulations in the smaller system.

Figure 10 shows the sweep time dependences of the estimated temperatures. For τst > 50,
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FIG. 10. (Color online) The sweep time dependence of the estimated temperatures from the

internal energy and the spin structure factor, where Nr = 4, (N↑, N↓) = (4, 4), U/t = 8.0, and

kBT/t = 0.25.

FIG. 11. (Color online) The estimated temperatures from the internal energy and the spin structure

factor as functions of the initial temperature, where Nr = 4, (N↑, N↓) = (4, 4), U/t = 8.0, and the

sweep time τst/h̄ = 20.

the estimated temperatures almost converge to certain values, which are roughly half of the

initial temperature T/t = 0.25. Since the energy scale of the hopping integral t is on the

order of 1 kHz in experiments [17], the sweep time 50t−1 is on the order of 10 ms. With this

timescale, the SEV scheme can halve the temperature of the Hubbard system.

As explained in Sec. II, the working mechanism of the SEV scheme is based on the as-

sumption that in the initial Mott insulator the particle excitations are largely gapped so

that the relevant degrees of freedom in the cooling dynamics are the gapless spin excita-

tions. Let us check what will happen if the assumption is broken by increasing the initial
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FIG. 12. (Color online) The time evolution of the internal energy of chain A during the SEV

scheme with the increase of UB, where Nr = 4, (N↑, N↓) = (4, 4), U/t = 8.0, and τst/h̄ = 20. We

increase UB linearly from UB/t = 8.0 to 80.0. The blue solid and orange dashed lines represent the

data computed by the FHS approach with the implicit Adams method and the MPS approaches

with ∆τ = 0.01h̄/t.

temperature to be comparable or above the energy gap of the particle excitations. Figure

11 shows the initial temperature dependences of the estimated temperatures after the SEV

cooling scheme with the sweep time τst = 20. The SEV scheme is effective in the tem-

perature regions 0.1 ≤ T/t ≤ 1.0 from the obtained data. For high initial temperatures,

e.g., T/t = 5.0, which is comparable to U/t, excitations other than spin ones are thermally

induced such that the assumption for the cooling scheme is violated. As expected, there the

SEV scheme is ineffective. In this sense, the SEV scheme is useful for the further cooling of

a system already cooled by other cooling schemes.

Figure 11 indicates that the SEV scheme is also ineffective when low initial temperature

is as low as T/t ≤ 0.05. This ineffectiveness comes from too fast sweep of parameters. In

other words, the inverse of the used sweep time τst = 20 is comparable to or larger than

the initial temperature, and such a nonadiabatic dynamical process heats up the system.

In order to corroborate this interpretation, we perform a numerical simulation with larger

sweep time τst = 50 at the initial temperature T/t = 0.05. The estimated temperature

from the internal energy decreases down to Test/t ≈ 0.033. From the above observations,

it is expected that the SEV scheme with a sweep time τs can cool the system down to a

temperature whose order is 1/(τst).

In the numerical simulations of the SEV scheme performed so far, we slowly decrease
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the hopping integral in chain B tB to decrease JB = 4t2B/UB. However, the SEV scheme

can be accomplished by increasing the Hubbard interaction UB in chain B. In specific, we

increase UB linearly from 8.0t up to 80.0t instead of decreasing tB. Figure 12 shows the time

evolutions of the internal energy during the SEV scheme implemented with the increase of

UBwith the sweep time τst = 20. In this simulation, the fourth order Runge-Kutta method

is numerically unstable due to the large UB. Instead, we adopt the implicit Adams method

[63] and the MPS method with the 10-th order truncated Taylor expansion, which are more

numerically stable. The simulated data from the implicit Adams method are good agreement

with those from the MPS method. Thus, there is no numerical instability in the simulations.

Estimations from the spin structure factor and the internal energy give Test/t ≈ 0.15. This

performance of the cooling is as almost the same as that of the scheme implemented by

decreasing the hopping integral with the same sweep time.

In the viewpoint of the accessibility in experiments, the SEV scheme with the increase

of UB is preferable because one can control the onsite interaction in a spatially dependent

way by means of state-of-art optical techniques, such as the optical Feshbach resonance

[64, 65] and the optically induced magnetic Feshbach resonance [66]. On the other hand,

the spatial control of the hopping integral required for the SEV cooling is relatively more

challenging and has not been realized although such control is possible in principle by using

the optical-lattice microscope techniques with single-site resolution.

Furthermore, this result indicates the effectiveness of controlling the spin-exchange inter-

action J for cooling two-component fermions in optical lattices. Since the expression for the

spin-exchange interaction J = 4t2/U is also valid and low-lying excitations of the Mott in-

sulating phases are also spin excitations in the Hubbard model in higher spatial dimensions,

the SEV scheme is expected to be effective, at least qualitatively, in higher dimensional

systems such as two-dimensional bilayer systems.

We finally note an advantage of the SEV scheme that it can be successively repeated l

times if one starts with a system with 2l layers. Let us assume that the system is initially

at T/J = 0.45, which is the lowest temperature that has ever been achieved experimentally

in two-component fermions [17]. We also anticipate that a single SEV cooling roughly

halves the temperature. Performing the SEV cooling twice will bring the system to a low

temperature on the order of T/J = 0.1, where many interesting properties resulting from

spin fluctuations are expected to emerge.
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V. CONCLUSIONS

We proposed a cooling scheme for two-component fermions in layered optical lattices,

which we call the spin-exchange-variation (SEV) scheme. The SEV scheme may be viewed

as a modified version of the cooling scheme proposed by Kantian et al. [35], which we call

the energy-offset-variation (EOV) scheme. From the exact numerical simulations based on

the full-Hilbert-space (FHS) approach, we confirmed that the EOV scheme cannot cool

two-component fermions because of the presence of gapless spin excitations in the Mott

insulating state. Using the matrix-product-state approach in addition to the FHS approach,

we showed that the EOV scheme is so effective that it can decrease the temperature down to

the roughly half of its initial value. The cooling scheme using layered geometry opens up new

possibilities for ultracold-atom quantum simulators to access physics of the Hubbard model

governed by spin fluctuations, such as high-Tc superconductivity and frustrated magnetism.
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Appendix A: Implementation of the truncated Taylor expansion

Applying the exponential of an operator Ô to a state |ψ〉 is a common task in quantum

mechanics. Here, we consider the situation where the state is given by a MPS form (6) and

the operator Ô is given by a matrix product operator (MPO) form

Ô =
∑

σσ
′

W
σ1,σ

′

1

1 W
σ2,σ

′

2

2 · · ·W
σN ,σ′

N

N |σ〉 〈σ′| , (A1)

where W
σi,σ

′

i

i is a matrix whose coefficient is operators acting on the local Hilbert space at

site i. Within the framework of the MPS and the MPO, there are variant approaches to

achieve this task [67]. In this work, we adopt an approach which is simple, easy to implement,

and applicable to Hamiltonians with long-range interactions: the Taylor expansion.
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In this approach, the exponential of an operator is approximated by the truncated Taylor

expansion up to M-th order as

exp(Ô) |ψ〉 ≃

(

M
∑

n=0

Ôn

n!

)

|ψ〉 . (A2)

For the M-th order expansion, M times additions of MPSs and M times multiplications of

the MPO to the MPS are required according to the Horner’s method. A crucial point for

an efficient implementation is that one should avoid these additions, because the addition

of MPSs generally increases the bond dimension of a MPS and the extra compressions of

MPSs are required [52]. To avoid the additions, we factorize the truncated Taylor expansion

(A2) as
(

M
∑

n=0

Ôn

n!

)

|ψ〉 =

[

M
∏

i=0

(11− ziÔ)

]

|ψ〉 . (A3)

The fourth order expansion is given in Ref. [67]. In this appendix, we present an explicit

way to construct the MPO for 11−ziÔ and to obtain the expansion Eq. (A3) up to arbitrary

order.

The operation (11 − ziÔ) can be represented by an MPO whose matrix dimension is the

same as that of the MPO of Ô. In general, W
σi,σ

′

i

i whose matrix dimension is di × di+1 can

be represented by block triangular form [68] with a 1× (di+1− 2) matrix Xi, a 1× 1 matrix

Yi, a (di − 2)× (di+1 − 2) matrix Ui, and a (di − 2× 1) matrix Vi as

W
σ1,σ

′

1

1 W
σ2,σ

′

2

2 · · ·W
σN ,σ′

N

N =
(

11 X1 Y1

)











11 X2 Y2

0 U2 V2

0 0 11











· · ·











YN

VN

11











. (A4)

For this representation, an MPO for (11− ziÔ) is given by replacing W
σ1,σ

′

1

1 with

W
σ1,σ

′

1

1 =
(

−zi11 −ziX1 −ziY1 + 11
)

. (A5)

As shown, we can obtain the MPO for (11 − ziÔ) by only modifying W
σ1,σ

′

1

1 and its bond

dimensions are the same as those of the MPO Ô.

The remaining task is to determine the factors zi. To obtain the factors zi, we expand a

polynomial

P (x) =

M
∑

n=0

1

n!
xn (A6)
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FIG. 13. (Color online) The diagrammatic representation of Eq. (B3).

as

P (x) =
M
∏

i=1

(

1−
x

ri

)

. (A7)

Here, ri is i-th root of the polynomial P (x). Since the identity operator 11 and any operator

Ô commute, the same expansion as Eq. (A7) is valid when one replaces 1 and x with 11

and Ô, respectively. From the comparison between Eqs. (A3) and (A7), the factors zi are

given by the inverse of the roots ri and complex in general. Consequently, we can implement

the M-th order truncated Taylor expansion only by M times multiplications of MPOs to a

MPS.

Appendix B: How to rearrange the alignment of matrix product states

In this appendix, we show how a MPS is rearranged from the alignment in Fig. 3(a)

to that in Fig. 3(b). For neighboring sites in a MPS representation, one can swap their

positions by using the fermionic swap gate [69]. The fermionic swap gate is a rank-four

tensor which is defined as

B
σ′

i+1
,σ′

i
σi,σi+1 = δσ′

i,σi
δσ′

i+1
,σi+1

S[P (σi), P (σi+1)], (B1)

with

S[P (σi), P (σi+1)] = 1− 2δP (σi),−1δP (σi+1),−1 (B2)

where δi,j is the Kronecker’s delta, P (σi) is the fermion parity of the state σi, i.e., P (|↑〉) =

P (|↓〉) = −1 and P (|0〉) = P (|↑↓〉) = 1. As depicted in Fig. 13, one can swap the positions

of indices σi and σi+1 by applying the swap gate. After the application of the swap gate, the

local matrices at sites i and i+1 form a rank-four tensor. One can decompose this rank-four
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tensor with the singular value decomposition to two rank-three tensors as

B
σ′

i+1
,σ′

i
σi,σi+1A

σi
ai,ai+1

Aσi+1

ai+1,ai+2
= T

σ′

i+1
,σ′

i
ai,ai+2

≈ A
′σ′

i+1

ai,a
′

i+1

A
′σ′

i

a′i+1
,ai+2

. (B3)

Here, repeated indices are summed over. Consequently, the positions of neighboring sites in

a MPS representation are swapped. The sequence of swaps to produce a required alignment

can be obtained by sorting algorithms implemented with only neighboring swaps such as

the bubble sort.
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