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Recent experiments on macroscopic quantum tunneling reveal a non-exponential decay of the
number of atoms trapped in a quasibound state behind a potential barrier. Through both exper-
iment and theory, we demonstrate this non-exponential decay results from interactions between
atoms. Quantum tunneling of tens of thousands of 87Rb atoms in a Bose-Einstein condensate is
modeled by a modified Jeffreys-Wentzel-Kramers-Brillouin model, taking into account the effective
time-dependent barrier induced by the mean-field. Three-dimensional Gross-Pitaevskii simulations
corroborate a mean-field result when compared with experiments. However, with one-dimensional
modeling using time-evolving block decimation, we present an effective renormalized mean-field
theory that suggests many-body dynamics for which a bare mean-field theory may not apply.

I. INTRODUCTION

Quantum tunneling, first studied in α-decay, is one of
the most significant and earliest effects observed in quan-
tum mechanics [1]. Tunneling provided a basis for the the-
ory of molecular spectra in the 1920s, when it was demon-
strated that transitions between chiral isomers occurred
at measurable rates [2]. This applies to biological sys-
tems, where the transition rate between isomers is slow
enough to allow stable life, and even to cosmology, where
the transition for polar molecules such as ammonia shows
a measurable rate [3]. Tunneling has applications in many
different systems, from two-proton decay and double beta
decay in nuclear physics to the interdisciplinary study of
tunneling in enzymes [4], with roots in biology, chemistry,
and physics. As electronic devices reach the nanoscale,
quantum tunneling will play a larger and larger role in un-
derstanding and developing nanoelectronics, such as tun-
neling diodes [5]. Moreover, with the advent of Josephson
junctions, the epitome of macroscopic quantum devices
based on tunneling, we can now measure voltage with un-
precedented accuracy [6].

The definitions and details of macroscopic quantum tun-
neling (MQT), quantum tunnelling at macroscopic scales,
is discussed in Section II A. Studying MQT in the context
of Bose-Einstein condensates (BECs) presents many ad-
vantages in terms of both fundamental explorations and
future MQT device design. First, BECs offer a high degree
of controllability: interactions can be tuned over seven
orders of magnitude using Feshbach resonances [7]. Sec-
ond, experimental advances in radio-frequency (RF) mag-
netic traps [8], as well as optical trapping [9], allow for
greater access to controllable experiments needed to study
MQT. Third, BECs enable manipulation of many-body
states [10] that are inaccessible in other experimental set-
tings. Many-body simulations, which we discuss next, elu-
cidate the importance of this point. Fourth, BECs have

controllable statistics and spatial dimensions. Fifth, BECs
allow site-resolved microscopy in the context of optical
lattices in 1, 2, and 3 dimensions. Sixth, atomic inter-
ferometry now permits observation of up to tenth order
correlators for quasi-1D systems [11].

To complement experimental advances, numerically ex-
act simulations of bosonic Josephson junctions using the
Bose-Hubbard model demonstrate a substantial devia-
tion from mean-field theory [12]. However, until re-
cently MQT has largely been treated with semiclassi-
cal approximations, such as in a double well [13, 14],
in Landau-Zener tunneling [15], and in escape tun-
neling [16–18]. Theoretical methods for these semi-
classical estimations include Jeffreys-Wentzel-Kramers-
Brillouin (JWKB) and instanton approaches, along with
the nonlinear Schrödinger equation (NLS) and hydro-
dynamic formulations thereof. Beyond these mean-field
and instanton techniques, matrix product state meth-
ods such as time-evolving block decimation (TEBD) and
multi-configurational time-dependent Hartree for bosons
(MCTDHB) theory both provide numerical solutions of
many-body dynamics. For example, the use of TEBD
to simulate the Bose-Hubbard model for superfluid de-
cay, has confirmed numerical limits on instanton computa-
tions [19, 20]. Non-Hermitian quantum mechanics, which
is frequently used in scattering problems and now applied
to tunneling problems as an effective model, is broadening
the view of tunneling phenomena, such as its use in asym-
metric tunneling and interchain pair tunneling [21, 22].
Another possible many-body method, the time-adaptive
MCTDHB, was used in our Josephson example above [12].
MCTDHB has also been applied to the quantum escape
problem [23, 24]; though this work examined depletion,
the method has not yet produced predictions for entangle-
ment. Measures such as entropy, entanglement, and cor-
relations help illustrate when semiclassical or lower-order
mean-field approximations fail [25].
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FIG. 1. Macroscopic Quantum Tunneling Experiment. (a)
Schematic of experimental time sequence to obtain MQT in
a BEC. (b) Experimental 3D potential with a barrier height
of 190 nK (peak height) in the weak configuration. The dis-
tance between saddle points to the potential minimum is
x0 = 18(1)µm. Sketched is a BEC trapped in the local mini-
mum of the potential (purple ellipse) escaping via the weakest
part of the potential (purple arrows). (c) Experimental data, in
number of trapped atoms N , exhibits a non-exponential decay,
in contrast to the exponential background decay due to atomic
losses (pink nearly-horizontal dashed line). The vertical dashed
lines divide the experimental dynamics into the three dominant
regions of classical spilling, MQT, and background decay.

In this Article, we present a combined theoretical and
experimental study of MQT. Single-particle quantum tun-
neling can be modeled with the Schrödinger equation, with
well-known exponential decay in the number of atoms
trapped over time [1]. However, we have performed a
macroscopic experiment exhibiting non-exponential decay
of BEC tunneling from a single trapping well to unbound
space [26]. Figures 1(a) and 1(b) sketch the experimental
process and the single well trap. Figure 1(c) displays raw
data from the experiment, presenting an example of the
observed non-exponential decay. The experimental data
demonstrates that atomic interactions have participated
in the tunneling process. Inspired by this result, we de-
velop an alternative theoretical model in which the inter-
actions cause the barrier to change dynamically, leading
the decay to deviate from the single-particle exponential
case. Subsequently we suggest an alternate interpretation
in terms of an effective or renormalized mean-field the-
ory drawn from TEBD simulations and accounting for the
effects of condensate fragmentation and depletion, which
can be tested in future MQT experiments.

This Article is organized in the following manner. We
offer a brief discussion covering the nuances and regimes of
quantum tunneling in Section II, including four subtopics:
statistical properties, the role of interactions, type of trap-
ping potential, and dimension of the system. The aim of
this discussion is to briefly touch on the vast tunneling
landscape and spark interest and ignite ideas for other
physicists intrigued by the many open questions in MQT
research. Next, the details of the MQT experiment are
covered in Section III, with its experimental settings, re-
sults, and a 3D mean-field simulation. Furthermore, we
present a case study analysis that exhibits excellent agree-
ment with the experimental non-exponential decay result
and further verifies the assumption of mean-field dynam-
ics. In Section IV we then address the question of simpler
effective 1D models. The experiment proceeds through
three distinct regimes: initial transient classical spilling,
quantum tunneling, and decay dominated by background
loss; we model the tunneling and decay regimes, the main
subject of this Article. We use a modified JWKB method
in which the inter-particle interaction is taken into ac-
count via an effective mean-field interaction parameter,
and we include the background loss in the tunneling rate.
The model contains two fitting parameters which help to
illuminate the experimental findings. In Section V, we
propose an explanation for the effective mean-field used
in the JWKB model. Motivated by advances in nonlinear
optics, we demonstrate how a mean-field model can effec-
tively reproduce many-mode many-body dynamics of the
quantum tunneling process of a meta-stable state. Finally,
we summarize our conclusions and future research avenues
in Section VI.
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FIG. 2. Novel Considerations Beyond Single-particle Tunnel-
ing. (a) Interatomic interaction reforms a square barrier, cre-
ating an effective potential (dashed lines). (b) Statistical prop-
erties of particles in Tonks-Girardeau gas, fermion (upper red
curve) vs boson (lower blue curve), produce different short-time
deviations in particle number from single-particle exponential
decay. (c) Trajectories of atoms in the trapping potential can
become chaotic for many geometries including ours. Despite
these complications, effective 1D models can still be useful, as
we demonstrate in this Article.

II. REGIMES OF MACROSCOPIC QUANTUM
TUNNELING

There are several factors that can affect the behavior
of quantum tunneling, which may push the tunneling pro-
cess into distinct tunneling regimes. These factors include,
but are not limited to, the following. First, the statistical
properties of the trapped particles are a primary concern,
e.g. whether exploring bosonic, fermionic, or anyonic tun-
neling [27, 28], and whether the system can be treated
as few-body or macroscopic. Second, interaction between
particles – varying from zero to non-zero [29–33], weak to
strong [34–36] and attractive to repulsive [25, 37] – may
suppress or enhance tunneling, or even reform the bar-
rier [38]. Third, the shape of the potential well and as-
sorted lattice and other geometries induce and alter quan-
tum phases, such as in spin chains and disordered sys-
tems [39, 40]. Fourth, the dimension of the system can
give rise to extra degrees of freedom which can for instance
introduce chaos in the tunneling dynamics [41, 42].

These factors, together with the notion of macroscop-
icity, delineate the extensive territory of MQT into dis-
tinct tunneling behaviors. The term macroscopic may
connect to an intuitive concept of “large” objects. In fact
the “macroscopic” in MQT has abundant aspects beyond
one’s first impression. In the following, we lay out some
of these possibilities, as a motivation for our own partic-
ular investigation, and to inspire future experiments and
theory on the plethora of MQT phenomena, mostly still
unexplored.

A. Macroscopicity, Statistical Properties, and
Quasiparticles

Macroscopicity, which is a prominent characteristic of
MQT, features at least four facets. First, macroscopicity
separates phenomena in a semiclassical phase space, but
these phenomena are not necessarily describable by clas-
sical mechanics. However, sometimes an extension of the
semiclassical limit is apt. For example, the phase-space
analogy for a driven double-well BEC in a quantum two-
mode approximation suggests that it can be mapped to
a macroscopic superposition state of two pendulum rotor
states [43]. Second, macroscopicity can refer to a large
quantity of particles, can activate many degrees of free-
dom, and can lead to emergent behavior. One example
is ultracold bosons on a ring, where from the weakly in-
teracting semiclassical limit in terms of dark solitons to
the strongly interacting limit in terms of Yrast states,
phase coherence can break down and phase slip enables
continuous winding and unwinding of the system [44–46].
Third, macroscopicity can be associated with the notion
of massive objects, where quantum mechanics meets grav-
ity and may lead toward quantum gravity. One theo-
retical avenue is the Schrödinger-Newton equation, the
Schrödinger equation with an additional gravitational po-
tential term [47–49]. Fourth, macroscopicity may exem-
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plify complexity, which is garnering wider attention. For
instance, recent studies of complex networks relying on
quantum mutual information examine critical points for
transverse Ising and Bose-Hubbard models [50].

Tunneling bears a close relation to transport. Loosely
speaking, transport is above the barrier (often due to a
“push”) whereas tunneling is through the barrier. Thus,
one can consider tunneling of mass, charge, spin, etc.
Quantum tunneling is applicable far beyond the original
concept of particle tunneling. For instance, we may speak
of tunneling of magnetization in ferromagnetic films, or in
a spin-1 BEC. Studies of the transverse spin wave, with
and without superflow, show different conditions for a cer-
tain anomalous tunneling behavior where tunneling occurs
without reflection [51, 52]. We can also consider the tun-
neling between molecular states, such as ammonia and
other pyramidal molecules [3, 53, 54], and the Josephson
junction serves as the simplest possible model of such pro-
cesses [55].

The statistical properties of particles can be divided
into fermions and bosons, and in lower dimensions include
anyons; whether they contain only a single component or
are a mixture of components; and whether the basic ob-
ject exhibiting MQT is best described as emergent quasi-
particles like vortices, solitons, or skyrmions. Most such
possibilities are accessible in cold quantum gases. The
studies of few-particle system have already paved the way
to some of these distinctions, especially between bosons
and fermions. Bose and Fermi Tonks-Girardeau gases
show different deviations from exponential decay at short
times as a direct consequence of different ground state en-
ergies [28], shown in Fig. 2(b). In few-fermion tunneling,
pairing needs to be considered, a distinction from the bo-
son case [27]. The influence of the inter-atomic interaction
in these systems is also investigated, details in Section II B.
Non-exponential decay of ultracold single-atom tunneling
is expected to occur in certain parameter regimes [56].

The tunneling of a BEC mixture or multi-component
BEC also broadens the possibilities for MQT. A mixture
can be divided into several cases: several different atomic
species, each Bose-condensed; different internal states of
the same atomic species, such as different hyperfine states
of 87Rb; or use of different external states of a trap, in for
instance MQT of quantum vortices [57]. For example, a
study of MQT describes the mixing of two weakly-linked
superfluids of interacting fermions, making it possible to
obtain atomic Josephson junction equations describing the
system as a whole [58]. In general the MQT of domain
walls, skyrmions etc. in such mixtures may carry different
information and different decoherence properties from a
bulk BEC.

Understanding the nature of the particles involved is a
vital step in understanding any tunneling regime. Cal-
culations can be remarkably simplified, for instance, if a
quasi-particle representation is valid, or if a many-body
system can be analyzed on a single-particle basis or a
single-particle-like basis. Sometimes, a quasiparticle also
induces new phenomena. For instance, the tunneling of

nonequilibrium quasiparticles through a Josephson junc-
tion brings decoherence and produces energy decay in su-
perconducting qubits and resonators [59, 60]. However,
strongly-interacting systems may not exhibit quasiparti-
cle representations, as we will discuss in the next section.

B. The Role of Interactions

Inter-atomic interaction poses crucial considerations for
quantum tunneling. A well-known example is Josephson
dynamics [30–33], which occurs in systems of weakly cou-
pled macroscopic quantum states. For weak interaction
strengths, tunneling dominated effects such as the AC and
DC Josephson effects [61, 62] and coherent temporal os-
cillations [63] occur, where condensates tunnel between
two wells. When the interaction exceeds a critical value,
the populations become self-trapped [32], where tunnel-
ing is suppressed and condensates are mainly located in
one potential well. Similar effects also happen in exci-
ton and polariton condensates [33]. However, by biasing
a more strongly-interacting system it is still possible to
reduce tunneling times by tens to hundreds of orders of
magnitude [64, 65].

Repulsive and attractive inter-atomic interactions can
lead to different tunneling dynamics. Again, few-body
tunneling presents several precursors to these effects in
many-body systems. Fermionization of two distinguish-
able fermions occurs during the tunneling dynamics of a
repulsively interacting system [66–68]. Sequential single-
particle tunneling is found in both repulsive and attractive
systems [69], while pairing phenomena can be investigated
in the strongly attractive interaction region [27, 68, 69]. As
inter-particle interaction varies from strongly attractive to
strongly repulsive, tunneling rates diverge within a wide
range of orders of magnitude [68, 69].

The strength of the interaction in a system determines
the appropriate tunneling theory. For instance, bosons
with weak interactions can often be described by mean-
field theory, where the many-body wavefunction is dom-
inated by a semi-classical field, i.e., a complex scalar
field [34, 35, 37]. Even weak interactions produce an effec-
tive barrier, which deforms as the wavefunction escapes,
as depicted by the blue curve in Fig. 2(a), where repulsive
atomic interactions change the barrier the wavefunction
encounters, resulting in a non-exponential decay.

Increased interaction strength can lead to correlations,
fluctuations, and entanglement [70], which render mean-
field theory ineffective. We include here a non-exhaustive
list of resulting effects on MQT. First, the BEC may
be fragmented or depleted. When the energy of the
system exceeds a threshold as a consequence of strong
interactions, fragmentation – macroscopic occupation of
more than one mode of the single-particle density ma-
trix – is induced [36]. The tunneling of an initially
parabolically-trapped ultracold Bose gas in a coherent
state into open space develops fragmentation after some
propagation time [25, 71]; the fragmented components are
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not said to be phase-coherent, as the notion of phase is tied
to a single macroscopically occupied mode. Thus semiclas-
sical wave theory becomes less and less applicable, and
tunneling does not proceed in the same manner as the
original concept. Nevertheless, particles with an energy
below that of a potential barrier tunnel, so the term, even
in this non-semiclassical context, still applies. Apart from
fragmentation, condensates can also deplete, where there
is non-macroscopic occupation of many modes [25]. Sec-
ond, interactions can enhance or decrease tunneling rates.
The tunneling rate of a quasibound many-body state is
sped up (slowed down) by repulsive (attractive) interac-
tions [25]. Third, fluctuations affect the tunneling rate.
Quantum fluctuations of the Josephson-Leggett mode in a
Josephson junction drastically enhances the MQT escape
rate [72, 73]. Finally, dissipation may also alter the tun-
neling behavior. In the Josephson-Leggett mode, quantum
dissipation suppresses MQT [73].

For strong interactions, 1D bosons can show similar
transport properties as noninteracting fermions, due to
the boson-fermion dual representation in 1D [74]. A fa-
mous example is a Tonks-Girardeau gas, a strongly in-
teracting system, where bosonic atoms exhibit fermion-
like behavior [75]. A non-exponential decay regime arises
in a bosonic Tonks-Girardeau gas for short times, which
exhibits few-body decay features. A fermionic Tonks-
Girardeau gas, on the other hand, shows bosonization and
deviations from exponential decay at long times [28]. As
an extreme example of strong interactions, consider the
unitary Fermi gas, and its holographic dual in a weakly
curved gravitational representation [76]. The MQT of a
unitary Fermi gas remains an exciting and untested pre-
diction of dynamical holographic approaches [77].

C. Trapping Potential

The potential dictates the tunneling environment, and
plays an essential role in characteristic tunneling times.
An important case across many fields of physics, chem-
istry, etc. is tunneling from one or a few single-well dis-
crete modes to continuous modes in free space, i.e., the
quasi-bound or escape problem. This is exactly the sys-
tem studied in this Article, where in our case tunneling
escape from a single well is assisted by inter-atomic inter-
actions [26]. For a harmonic trap, power law behavior in
MQT of BECs is observed near the critical point of col-
lapse, while for an anharmonic trap, there is no power law
behavior [78].

Double well tunneling stands in strong contrast to the
quantum escape problem, since for instance a small bias
in the system can lead to an exponential suppression of
tunneling. Both wells contain discrete modes for atoms,
thereby the tunneling process describes motion from dis-
crete modes in one well to discrete modes in the second
well. Josephson effects [30–33, 61, 62], including the well-
known AC and DC Josephson effects [61, 62], which arise
in double-well-type systems, epitomize this form of MQT.

Related contexts in this direction range from adiabatic
transport of BECs [79] to interaction supported transport
of BECs [80], and polarized fermion tunneling in 3D [81].
Under common assumptions, only a few modes in each
well are required for consistent analysis with experiments.

In addition to these examples, other potentials to con-
sider include periodic potentials, like lattices. In a static
periodic lattice potential, the expansion of matter waves
is quadratic for short times [82]. Other than potential
shapes, barrier materials also modify the tunneling pro-
cess. Comparing two different barrier materials, pillared
silicon and aerogel, quantum reflection is suppressed differ-
ently by mean-field interactions at low velocity [83]. In ad-
dition to the bare potentials above, there are also dressed
potentials, such as radio frequency dressed potentials [84].
Studies show that on-site interactions in neutral atoms are
dramatically enhanced in radio frequency dressed traps,
which can affect the tunneling behavior [85].

Beyond static potentials, dynamic potentials, such as
those directly influenced by a time-dependent force, pro-
vide a unique milieu for tunneling dynamics. A ring trap
with a driven space-time reflection symmetry breaking
(PT symmetry) potential can induce chaos in the sys-
tem [86, 87]. Shaking a lattice can reduce the tunnel-
ing rate, and even completely suppress it for certain val-
ues of the shaking or driving parameter [82, 88–90]; the
same phenomenon also occurs in a driven double well
system [91]. In a single potential well with a periodi-
cally modulated amplitude, dynamical tunneling is sup-
pressed by nonlinear interaction, in comparison to the non-
interacting case [92]. A less obvious dynamic barrier can
form indirectly by other means. For instance, interactions
between particles can deform the barrier, rendering a pre-
viously static barrier dynamic, as shown in Fig. 2(a).

D. Dimension of the System

Tunneling usually occurs at the weakest points of a trap,
where the escape rate is the largest and most favorable.
For instance, in this Article, tunneling proceeds through
the weakest points of the potential well, the two saddle
points as depicted schematically in Fig. 1(b). This is sim-
ilar to a dam breaking; water begins to spill out from the
structurally weakest points. In this view, tunneling can be
recast as a 1D or quasi-1D problem. But, higher dimen-
sions can elicit new phenomena. One such phenomenon
is chaos, which can significantly complicate the dynam-
ics [41]. The cluttered paths in Fig. 2(c) sketch possi-
ble chaos in the experimental trap, and dashed lines at
the saddle points indicate MQT. Chaos-assisted tunneling
sometimes gives rise to tunneling oscillation [42], and pro-
duces irregular fluctuations in the tunneling rate [93, 94].
Another consequence, due to the presence of extra degrees
of freedom, is incoherent oscillations of a large number of
polarized fermions in a 3D double well [81].
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III. A MACROSCOPIC QUANTUM TUNNELING
EXPERIMENT

We have made the first step in reporting a non-
exponential decay in a single-well tunneling experiment
due to inter-atomic interactions [26]. In this section, we of-
fer a description of the experiment, present previously un-
published findings from both the experiment and support-
ing 3D mean-field simulations showing reasonable agree-
ment with the data, and finally exhibit a case study of the
experiment using an effective 1D modified JWKB model
derived in detail in Section IV.

A. Experimental Design

The experiment studied tunneling of a 87Rb BEC pre-
pared in a quasi-bound state with repulsive inter-atomic
interaction. The trapping potential had harmonic confine-
ments in the x and z directions with trapping frequencies
ωx and ωz. Due to gravity and a magnetic field gradient,
there was a tilt in the y direction (vertical direction) with
a constant acceleration a. A slice through the y–z plane
of the potential well is shown in Fig. 1(b), with complete
trapping potential as follows:

V (x, y, z) =
1

2
mω2

xx
2 +

1

2
mω2

zz
2 −may + Vb(x, y, z)

Vb(x, y, z) = V0 exp
(
−2y2/ω(z)2

)
ω(z) = ω0

(
1 + (z/zR)

2
) 1

2

(1)

Here V0 is the peak height of the barrier, zR = 8µm is the
Rayleigh range, ω0 is the barrier waist, ω0 = 1.3(0.1)µm,
and ω(z) is the Gaussian beam waist.

The experiment uses two trapping configurations: weak
and tight. The parameters of the trap in the weak config-
uration are ωx = 2π × 32.7(0.24) Hz, ωz = ωx/2, and a =
2.08(0.04) m/s2, while for the tight configuration, ωx =
2π×86.6(0.6) Hz, ωz = ωx/2, and a = 8.40(0.06) m/s2. As
a result of a tighter confinement in the latter, the initial to-
tal number of atoms trapped in the potential is around one
fifth of that in the weak configuration. This decrease of
particle number affects the validity of the Thomas-Fermi
approximation in our previous mean-field calculation [26],
and requires an offset of the kinetic energy term. The
details of this correction is described in Section IV B. Al-
though the first report of our experiment focused on the
tight trapping configurations [26], our theory starts with
the weak configuration and then covers the tight config-
uration afterward, expanding the reach of our study to
different regimes.

Figure 1(a) depicts the time sequence of the experi-
mental procedures. First, a cloud of 87Rb atoms in the
| F = 2,mF = 2〉 ground state is loaded into the trapping
potential from a hybrid trap. Next, evaporative cooling
techniques lower the temperature of the atoms until they
form a BEC. Then, the barrier height is ramped down non-

Peak [nK] Saddle [nK] x0 [µm] N0/103

146± 10 46± 3 16± 1 423± 21

170± 11 52± 10 17± 2 548± 37

190± 13 58± 4 18± 1 559± 33

221± 16 69± 5 20± 1 630± 26

260± 18 81± 6 21± 1 583± 32

299± 21 92± 6 23± 1 663± 54

TABLE I. Experimental and Estimated Parameters. From the
weak configuration, with peak height, saddle height, horizontal
distance from local potential minimum to saddle point (x0) and
initial total particle numbers trapped behind the barrier (N0).

adiabatically in 20 ms (5 ms) for the weak (tight) config-
uration. After ramping procedure, the condensate is held
in the trap for a variable time from 0.1 ms to 1.2 s. Fi-
nally, the trapping potentials are abruptly turned off and
the cloud is imaged after time-of-flight (TOF) expansion.

Table I shows major parameters in the weak configu-
ration. The relative saddle heights are about one-third
of their corresponding peak heights, where we note that
MQT occurs through the two saddles or weak points of
the potentials, not the peak. All the plots in this Article
reference peak heights. In the trap, x0 is the horizontal
distance from the bottom (local minimum point) to one
saddle point. We will see in Section IV that our theoret-
ical fit parameters agree well with this parameter. N0 is
the total particle number in the trap at the beginning of
experimental observation of the dynamics, after the non-
adiabatic ramp down of the barrier. Figure 1(c) shows a
typical raw data set from the experiment. We find clear
non-exponential decay in the number of atoms. Further
presentation and analysis of the data is deferred to the
following two sections.

B. Experimental Data and 3D Mean-Field Model

Data for the chemical potential as a function of atom
number and time dependence of the number of atoms
trapped in the quasi-bound state are shown in Fig. 3 and 4
for both weak and strong trapping configurations. Mean-
field simulations are then performed for comparison, using
the split-step operator method for the 3D Gross-Pitaevskii
Equation (GPE); imaginary time evolution is used to find
the ground state. Measured trap parameters and initial
atom numbers are used as input parameters to the sim-
ulations without any free parameters. To mimic the ex-
perimental procedure in Fig. 1(a), the barrier height is
linearly ramped down to a final value. Absorbing bound-
ary conditions are introduced to avoid reflections of es-
caped atoms from the edge. Finally, the chemical poten-
tial extracted from the experiment uses a Thomas-Fermi
approximation [26]. This leads to good agreement in the
weak trapping case in Fig. 3(a) but a systematic error in
Fig. 3(b) where the Thomas-Fermi approximation is less
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FIG. 3. Experimental and Numerical 3D Gross-Pitaevskii
Chemical Potential. Chemical potential µ as a function of
the total number of atoms N . (a) Weak configuration bar-
rier heights: V0 = 460(30) nK (red circles), 260(18) nK (blue
diamonds), and 170(11) nk (green squares). (b) Tight config-
uration: V0 = 330(35) nK (red circles), 290(30) nK (blue di-
amonds), and 240(25) nK (green squares). Mean-field simu-
lations predict a chemical potential (black line) in agreement
with experimental data, using barrier heights (a) 350 nK and
(b) 300 nK.

applicable due to a larger kinetic or zero-point energy. In
contrast, in Fig. 4 the mean-field time sequence is qualita-
tively close but is up to a factor of 2 off in both trapping
configurations. These studies suggest a mean-field model
can reproduce the main features of this experiment, but
may bear some correcting either due to characterization of
the trapping potential or due to other beyond mean-field
effects, as we will explore in Sec. V.

Both experimental data and mean-field predictions
clearly show non-exponential decay in both trapping con-
figurations. Figure 4(a) covers the weak configuration
with barrier heights V0 = 260(18) nK (blue circles), V0 =
190(13) nK (purple diamonds) and V0 = 170(11) nK (teal
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(b)
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(c)
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FIG. 4. Numerical 3D Gross-Pitaevskii and Experimental
Data. Semi-log plot for decay in number of trapped atoms
for (a) weak and (b) tight trapping configuration. Data from
the classical spilling regime around the first 40 ms (20 ms)
in weak (tight) configuration is also included. Gray lines are
3D GPE simulations. Beyond (a) 0.8 s and (b) 0.6 s, the dy-
namics become loss dominated. (c) 3D simulations reproduce
gross features of decay rate as a function of chemical poten-
tial, where gray data points are classical spilling transients,
and dashed black lines are fitting results. All data points are
from the experiment.
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FIG. 5. Case Study: Theoretical Model Fit to Macroscopic Quantum Tunneling Data. Experimental number of trapped atoms
as a function of time (red circles: mean values with 1σ error bars) with theoretical fit (solid blue curve), exponential fit through
tunneling dominated regime (dash dot black line), and experimental background loss (dashed pink nearly-horizontal line). We
divide the decay curve into three sub-regions (indicated by dashed vertical lines): initial transient classical spilling, (A) mean-field
assisted quantum tunneling region with non-exponential decay, and (B) background loss dominated region. The green (dark gray)
envelope indicates uncertainty in fitting parameters from modified JWKB. The yellow (light gray) envelope indicates combined
uncertainty due to: uncertainty in experimental parameters, uncertainty in data, and uncertainty in fit parameters.

squares), and Fig. 4(b) the tight configuration with barrier
heights V0 = 330(35) nK (red circles), V0 = 290(30) nK
(blue diamonds) and V0 = 240(25) nK (green squares).
From bottom to top, 3D GPE simulations are shown by
the solid gray lines with barrier heights for Fig. 4(a): 120,
130, 140, 210, and 220 nK; and in Fig. 4(b): 230, 240, 290,
300, 340 and 350 nK. The barrier heights used in the sim-
ulations were chosen to match the results from the exper-
iment. In the case of the tight configuration (Fig. 4(b)),
we see that the barrier heights for which the simulation
closely matches the data are consistent with the experi-
mentally measured barrier height. However, in the case of
the weak configuration (Fig. 4(a)), there is a discrepancy.
This could be possibly be due to aberrations developed in
the barrier beam off-axis, which results in an incorrect es-
timation of the barrier height. Quantum tunneling starts
at around 40 ms (20 ms) in weak (tight) configuration.
The non-exponential decay feature of this quantum tun-
neling region (shown in Fig. 4(a) and Fig. 4(b)) will be
emphasized in Fig. 5.

We further consider the relation between decay rate and
chemical potential in Fig. 4(c) for the tight trapping con-
figuration, with barrier heights of V0 = 240(25) nK (green
squares), V0 = 290(30) nK (blue diamonds), and V0 =
330(35) nK (red circles). Their corresponding 3D mean-
field simulations are shown for barrier heights of 230 and
240 nK, 290 and 300 nK, 340 and 350 nK. The 3D mean-
field simulations fit the tight configuration well, which did

not exhibit strong classical spilling in the initial stages of
the dynamics, but not the weak trapping configuration,
which had well-identified distinct classical tunneling and
quantum tunneling regimes, and is discussed further in
Sec. IV. We observe that the decay rate can be fitted with
a simple exponential function of the chemical potential of
form

Γ = Γbg + exp(α+ βµ). (2)

Here Γbg is the background loss rate, and Γbg =
0.31(0.02) Hz in the experiment. These fits are included
in Fig. 4(c) as dashed black lines.

C. Effective 1D JWKB Description: An
Experimental Case Study

In the weak configuration, there is spilling dominated
dynamics for approximately the first 40 ms, quantum tun-
neling from about 40 ms to about 1 s, and background
loss dominates thereafter. While in the tight configura-
tion, there is spilling dominance until around 0 ∼ 20 ms,
quantum tunneling from 20 ms to 1.1 s, and experimental
background loss thereafter. During the escape, trapped
atoms tunnel from a quasi-bound state into the contin-
uum via the weakest points, the saddle points, as the rate
is largest and favorable. Figure 1(b) schematically shows
the corresponding representative trajectories. An intrigu-
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ing question is whether or not, in this rather complicated
potential possibly supporting chaotic semiclassical trajec-
tories, one can capture the basic dynamics of MQT with
the well-known JWKB model in an effective 1D picture.
To explore such an idea, as illustrated in Figure 1, we
choose the most probable direct path for MQT, from the
local minimum behind the barrier to the saddle points.

Figure 5 presents one case study with a barrier height of
190(13) nK in the weak configuration and serves to convey
the details of our approach. We divide the dynamical pro-
cess into three main parts: transient spilling, mean-field
assisted MQT, and background loss dominated dynamics,
division indicated by the vertical dashed lines. In our anal-
ysis we discard the classical spilling transients. MQT is
defined as beginning when the chemical potential is equal
to Vs, the difference in potential energy between the sad-
dle points and the local minimum of the potential. For
the weak configuration, this is at about t = 20 to 40 ms,
beginning region A. In this region, the decay process slows
down and shows a non-exponential decay feature; an ex-
ponential fit (solid black line) has χ2 = 3.32 as opposed
to our model fit χ2 = 1.21. This non-exponential decay
is caused by the mean-field effect, or atomic interactions,
as confirmed by the effective JWKB model fit and the 3D
GPE simulations. As we show in Section IV, this fit re-
quires the interactions to match the data. As the decay
process progresses, the number of atoms and the chemi-
cal potential decreases, and so does the mean-field effect.
Thus, we obtain an effectively dynamical barrier height,
which decreases with time. Combined, these factors pro-
duce a faster decay at the beginning of region A and a
much slower decay by the end of the region. Finally, in re-
gion B, the decay process is dominated by the background
loss. The blue curve is our theoretical fit and red points
with error bars are the experimental data. The error re-
gion for our fit, from the uncertainty in our resulting fit pa-
rameters (a and w as discussed in Section. IV A), is shown
in green. The error region shown in yellow is the combined
error including uncertainty in (i) fit parameters, (ii) atom
number (error bars for red points), and (iii) experimen-
tal parameters; errors added in quadrature. The major
contributions to the experimental error are the standard
deviations of initial particle numbers (δN0) at the start of
the tunneling regime, and uncertainty in the peak barrier
height (δVs), about 6% (11%) in the weak (tight) config-
uration. For early times, t < 100µs, both δN0 and δVs

contributed about O(103 ∼ 104) to the total error enve-
lope. After this time, the contribution from δN0 decreases
1-2 orders of magnitude, while δVs contribution remains
about the same. All other error contributions are gener-
ally at least one order of magnitude smaller than δVs. We
found similar results for the tight configuration, but the
smaller particle numbers resulted in larger error envelopes
relative to particle numbers; see Section. IV B for details.
We also calculate the reduced chi squared of our model
for all the data sets in both configurations, which con-
firms that our theoretical fits are well within experimental
error.

In fact, this pattern in Fig. 5 occurs in all the experi-
mental data sets, in both weak and tight configurations,
as we discuss in the following section.

IV. EFFECTIVE 1D JWKB MODEL OF
MACROSCOPIC QUANTUM TUNNELING

In this section, we derive and explore in detail an effec-
tive 1D modified JWKB model, comparing quantitatively
to experimental results. The term “modified” refers to
inclusion of mean-field effects not normally considered in
based JWKB analysis, which turn out to be key to the
non-exponential decay observed in the experiment.

A. Modified JWKB Model

Our initial hypothesis was that we could capture non-
exponential tunneling simply through barrier shape. A
triangle barrier is the simplest case with a barrier width
which increases as the particles escape and the chemical
potential decreases, leading to a slow-down in tunneling.
The triangle also has the advantage of being analytically
tractable. We found that a square barrier does not repro-
duce the experimental data, while a Gaussian increases
the analytical difficulty without improving the accuracy
of the model. We take the triangle height to be the saddle
height Vs and triangle centers at x = ±x0, both as deter-
mined in the experiment, and single free parameter, the
full width at half maximum (FWHM), w (i.e., its slopes
are ±Vs/w):

Vtri(x) =

{
−Vs

w |x± x0|+ Vs, |x± x0| < w

0, otherwise
(3)

as shown in Fig. 6. Using Eq. (3), the JWKB tunneling
probability is given by

Ptri = exp

(
− 8

3~
w
√

2mVs

(
1− E

Vs

)3/2
)
, (4)

the semi-classical oscillation time in the potential by

τtri =
√

2m
(x0 − w)√

E
+ 2
√

2m
w
√
E

Vs
, (5)

and the tunneling rate through the saddle by

Γtri =
Ptri

τtri
. (6)

The experimentally measured background loss rate is
Γbg ≈ 0.31(0.02) Hz. The number of atoms remaining be-
hind the barrier as a function of time is given by a decay
equation

Ṅ(t) = −(Γtri + Γbg)N(t) = −ΓN(t), (7)
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TrappedEscape Escape

FIG. 6. JWKB Potential Schematic. Tunneling in the full 3D
experimental potential can be modeled with a much simpler 1D
approach. The minimal feature set required to fit the data is (1)
a bare 1D triangle potential of height Vs and width 2w (gold,
solid); (2) inclusion of the mean-field to create an effective
potential of height Vs(1 + a) with a ∝ N(t) (teal, dotted); and
(3) use of the Thomas-Fermi approximation for the chemical

potential µ ∝ N1/3 (red dashed line). Such a choice of model
provides self-consistency between the replacement of E with µ
in the usual JWKB treatment, together with the bare V (x)
with the effective potential Veff(x) = V (x) + g|ψ|2.

We further assume our system can be described by the
Thomas-Fermi picture, which justifies using the analytical
approximation for the chemical potential [26], from which
we obtain

µ = bN1/3, (8)

with constant of proportionality b = 1.15(8) nK
(3.03(5) nK) as measured for the weak (tight) configura-
tion. Note that any dependence on barrier height is neg-
ligible within experimental and model fitting parameter
error.

The next logical step to adapt JWKB to this context
is to replace E in Eq. (4) and Eq. (5) with the appropri-
ate single-particle energy in the presence of the effective
potential and interactions from Eq. (8). However, this ap-
proach alone fails to accurately reproduce the experimen-
tal results over the entire experimental time-window: tun-
neling stops too soon and the dynamics of the final half of
the tunneling process are not accounted for. Instead, along
with replacing E with µ in Eq. (8), the explicit inclusion
of mean-field effects is also required to fit the data, which
makes the tunneling rate Γ in Eq. (7) time dependent,
similar to results from the complex scaling method [95].
In order to take into account the time-dependent mean-
field effects, we add time dependence to the height of our
triangle potential, capturing a mean-field effective poten-
tial from the GPE of form Veff(x) = V (x) + g|ψ(x, t)|2,
as is also necessary to be self-consistent with the Thomas-
Fermi approximation underlying Eq. (8); see also [16, 17].
The simplest model capturing such effects is a potential of

form

Veff(x, t) =

{
−Vmf

w |x± x0|+ Vmf , |x± x0| < w,

0, otherwise,

Vmf = Vs

[
1 + a

N(t)

N0

]
.

(9)

Here, N0 is the initial particle number in the trap when
quantum tunneling regime begins (tQT), a > 0 is a unitless
mean-field fit parameter, and Vmf is the time-dependent
potential pre-factor that captures the mean-field. The ef-
fect of a in Vmf is to introduce a dynamic effective barrier
which decreases to the bare potential as the atoms escape.
A schematic of the bare triangle barrier Eq. (3) and ef-
fective mean-field triangle Eq. (9), at the beginning of the
tunneling regime Veff(x, tQT), are shown in Fig. 6. Note,
mean-field interaction would necessarily alter the ground-
state wavefunction of the system; the JWKB model used
here is a minimal model which is able to reproduce the
experimental findings with only two free parameters, w
and a, and may hint at many-body dynamics as will be
discussed in Section V. Finally, we make the appropriate
replacements of Eqs. (8) and (9) into Eqs. (4) and (5) to
give

Peff = exp

(
− 8

3~
w
√

2mVmf

(
1− bN1/3

Vmf

)3/2
)

(10)

τeff =
√

2m
(x0 − w)√
bN1/3

+ 2
√

2m
w
√
N1/3

Vmf
, (11)

the modified JWKB tunneling probability and semi-
classical oscillation time, which are subsequently substi-
tuted into Eqs. (6) and (7).

Figure 7 contains the fitted potential FWHM parameter
w, the saddle height Vs, and the initial (t = tQT) mean-
field saddle height Vmf = Vs(1+a). The increasing trend in
w reflects the fact that the experimental trap widens with
increasing height, as shown in Table I. The trend in Vmf

overall increases with increasing peak height, leading to a
deeper potential well in Fig. 7(a). Deeper wells are able
to hold larger number of atoms, and the more atoms the
stronger the mean-field effect (larger barrier). These larger
barriers cause slower maximal tunneling rates as shown
in Fig. 8(b), except for 260 nK. The case of peak height
260 nK has a smaller increase from bare saddle height Vs

to Vmf than expected; Vmf for 260 nK is close to that of
221 nK even though the bare height Vs is more than 10%
larger, indicating additional unaccounted for systematic
error in the experimental setup for this barrier height. The
initial number of atoms for V0 = 260 nK (N0 ≈ 583, 000)
is much closer to V0 = 190 nK (N0 ≈ 560, 000) than V0 =
221 nK (N0 ≈ 630, 000). This is further supported by the
results in the tight configuration runs, see Section IV B.

In the experiment, we were able to fit a nearly exponen-
tial relation between the experimental tunneling rate Γexp

and the chemical potential, Eq. (2), for weak (Fig. 8(a))
and tight (Fig. 4(c)) configurations. Figure 8(b) shows
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(a)

(b)

FIG. 7. Fitting Results in Quantum Tunneling Regime. Op-
timized values of (a) effective saddle height (teal squares) at
start of tunneling dynamics in comparison to the experimen-
tally measured bare saddle height (red triangles) vs. the bare
peak height, showing how mean-field effects significantly cor-
rect the tunneling dynamics. (b) Effective potential width w
for the weak configuration. Both the effective width and height
increase as a function of bare experimental barrier height V .

both experiment and 3D mean-field simulations for the
weak configuration with barrier heights of V0 = 170(11) nK
(teal squares), V0 = 190(13) nK (purple diamonds) and V0

= 260(18) nK (blue circles). From the modified JWKB
fits, we calculate the instantaneous decay rate Γ as a func-
tion of chemical potential µ, and use Eq. (2) to fit to
this relation, Fig. 8(b); in light of the discussion in Sec-
tion IV B, we omit tight configuration data. By examining
Fig. 8, one finds that the fit captures the gross features of
both the experimental data and modified JWKB curves,
especially when comparing curves which correspond with
the same barrier height (teal, purple, and blue curves be-
tween both subfigures. In Fig. 8(b), for barrier heights
V0 ≤ 221 nK, it can be seen that quantum tunneling is
still contributing, as the tails for the fits strongly deviate
from the modified JWKB curves.

Finally, we demonstrated the power of the resulting
JWKB prediction for N(t) in our case study in Fig. 5.
Figure 9 shows N(t) predictions from the theoretical fit-
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FIG. 8. Experimental Data and Theoretical Curves Compari-
son: Decay Rate vs Chemical Potential. (a) Experimental data
for the weak trapping configuration (colored points), 3D GPE
simulations (gray lines), and fit results to an exponential plus
a constant, Eq. (2) (dashed black lines). (b) Modified JWKB
curves modeling this data (solid colored lines) and fit curves to
our model, again based on Eq. (2) (dashed black lines), showing
that the basic exponential dependence on chemical potential is
captured by a much simpler 1D modified JWKB approach.
Numbers in (a,b) represent barrier height Vs.

ting results from Fig. 7 for the other five sets of data
in the weak configuration, with the same trends of non-
exponential MQT behavior. For brevity, we do not il-
lustrate complete error bar analyses here, but they show
similar trends to the case study.

In Section. III C we put forth the question of whether
or not an effective 1D JWKB model could reproduce the
experimental findings, and in this section we have demon-
strated that it is indeed possible. Two underlying assump-
tions were used, that we could simplify to a 1D model
and that the JWKB was applicable. JWKB is applica-
ble when the spatial derivative of the de Broglie wave-
length λdB = ~/p(x), is small, dλdB/dx � 1, where p(x)



12

299

260

221

186

166

146

200 400 600 800 1000 1200 1400

3.5

4.0

4.5

5.0

5.5

t [ms]

lo
g 1

0
(N
)

FIG. 9. Theoretical Fits of Trapped Particle Number for Weak
Configurations. All fits demonstrate same trends as the case
study in Fig. 5. Gray dashed lines represent background loss
for each barrier height. Colors indicate barrier heights for weak
configuration, in nanokelvin.

is the semiclassical momentum. Clearly this is the case
here since our model fits the data well. How can this be
true for a 3D system? It turns out that the 3D potential
used here can be efficiently treated by averaging over all
semi-classical paths, and using the JWKB approximation
for tunneling through the barriers, as established in [96].
Our effective JWKB potential, Eq. (9), uses a flat poten-
tial inside the well, while a true 1D path would necessar-
ily include the harmonic and Gaussian contributions from
Eq. (1). However, this allowed the model to capture, on
average, the classical oscillation frequency with the bar-
riers caused by the complicated semi-classical trajectories
in the true 3D well. The key point is that our JWKB
approach is an effective model, not a first principles cal-
culation, and the results fit the data well.

B. The Tight Configuration

According to our calculations from the 3D GPE simu-
lations for the kinetic energy term, the chemical potential
needs to be modified for the tight configuration potential.
This is because we estimate the chemical potential with
the Thomas-Fermi approximation [26]. But, for the tight
configuration, due to the tighter confinement, we have a
smaller particle number in the potential, which is almost
one-fifth of that in the weak configuration. This makes
the kinetic energy term larger in the tight configuration
where the acceleration is large, which leads to a modifica-
tion of chemical potential of about 6 to 21 nK for different
barrier regimes in the tight configuration. Figure 10 shows
the kinetic energy term in the weak and tight configura-
tion. These are calculated by numerically solving the full
3D GPE equation using imaginary time propagation. For
the weak configuration, the kinetic term is much smaller,
Thomas-Fermi is an excellent approximation and indeed
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FIG. 10. Kinetic Energy Correction to the Chemical Potential.
In the (a) weak and (b) tight configurations, as the number of
atoms increases, the kinetic energy contribution decreases, ren-
dering the Thomas-Fermi approximation more accurate. Tight
configuration requires kinetic energy a correction due to fewer
particle numbers. Colored dots are from 3D GPE calculation
while lines are a guide to the eye.

it fits the data well. While on the contrary, the kinetic
term becomes larger and can’t be neglected in the tight
configuration. All the plots which include the chemical
potential in this Article are already fixed with its kinetic
energy term according to Fig. 10.

The tight configuration has larger fluctuations and the
traps deviate from their ideal shape in Eq. (1), an effect
to which our theoretical model is sensitive; Vts in the tight
configuration had about twice as much uncertainty as the
weak configuration. Similar to the weak configuration, the
largest contribution to the error envelopes was the uncer-
tainty in barrier height and the fluctuation in the particle
number, with all other errors typically 1-2 orders of mag-
nitude smaller. Particle number error dominated early
times (t < 100 ms) with errors up to O(103 ∼ 104) be-
fore dropping 1-2 orders of magnitude, and the barrier er-
ror dominated thereafter with errors up to O(103 ∼ 104).
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So, although the error contributions were not significantly
larger in the tight configuration, due to the fewer total
particles involved in tunneling these experimental uncer-
tainties resulted in larger error envelopes relative to the
number of particles.

All fits for the tight configuration fall into two trends.
Figure 11 shows two representative fits for peak heights
of 290 nK and 330 nK. Both plots distinguish the error in
the fit due to uncertainty in our fit parameters (green en-
velope), and the total uncertainty including experimental
uncertainty (yellow envelope); contrast with weak config-
uration in Fig. 5, in which the total uncertainty is not
much larger than the data error bars. Quantum tunneling
is only observable for the first 600 ms, with background
losses quickly dominating the dynamics thereafter, in con-
trast to the weak configuration where MQT is observable
for about twice as long. Data sets for the tight config-
uration either had many points with large experimental
error bars and large fluctuations like Fig. 11(a), or had
few data points with smaller error bars but still large fluc-
tuations like Fig. 11(b); all but V0 = 240 nK had reduced
chi-squared values for N(t) of O(0.05 ∼ 0.10). Although
the total uncertainty for the tight configuration did not
allow for physical insight into the modified JWKB free
parameters, the model was still able to capture the overall
trend in Fig. 11.

V. EFFECTIVE MEAN-FIELD

This section is outlined as follows. We first present
the literature which motivates using a renormalized mean-
field parameter for depleted and fragmented BECs. Next,
we present the many-body Hamiltonian and a correspond-
ing mean-field equation. Following that, we describe the
method by which we create a meta-stable state to study
quantum tunneling. We show the failure in a straight-
forward mean-field application, and how a modified inter-
action parameter captures the low-order many-body dy-
namics from TEBD. Finally, we draw conclusions from
the MQT experiment, and suggest future studies to dis-
tinguish between true mean-field and many-body effects
in MQT experiments.

Experimentally, BECs have overall been very well un-
derstood with mean-field theory in the form of the GPE.
However, the presence of many-body processes can induce
fluctuations, fragmentation, and depletion, thereby ren-
dering mean-field models inaccurate or even ineffective.
Many techniques and approaches are used to move be-
yond the GPE [97]; of particular interest here are those
using an effective interaction parameter [98–103]. We will
demonstrate how, similar to multi-component optical sys-
tems being well modeled by an effective scalar GPE-like
equation derived from a multi-mode or large vector NLS,
fragmented and depleted BECs described by a many-body
Hamiltonian can, for the purposes of MQT, be well de-
scribed by a mean-field model with an effective or renor-
malized interaction parameter.
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FIG. 11. Experimental Data and Theoretical Fits in Tight Con-
figurations. Experimental data for MQT (theoretical fits: blue
lines) for the tight configuration shows either (a) for V=290 nK,
large experimental error and small fitting error, or (b) for
V=330 nK, few data points with large fitting error. Red points
are the mean value of the number of atoms in the trap from
experimental data, with 1σ error bars, and dashed pink line is
background loss. The green regions indicate fitting error, and
yellow regions combined uncertainty in: model fit, experimen-
tal parameters, and data points.

Advances in nonlinear optics and strong connections
to the NLS motivate the effective interaction parameter
used in our JWKB model. A deep theoretical under-
standing of the propagation and self-focusing of partially
incoherent beams in nonlinear media, which can lead to
spatial incoherent solitons, has been developed through
several equivalent methods [104]: an infinite set of cou-
pled nonlinear Schrödinger equations (coherent density
approach) [105–108], propagation equation for mutual co-
herence function [109–112], and self-consistent multimode
theory [113–117]. Similarities in the propagation equation
for the mutual coherence method to the NLS allow for an-
alytical techniques to be extended for partially incoherent
regimes; e.g., derivation of an analytical expression for the
collapse threshold of spatially partially coherent beans in
inertial bulk Kerr media [118]. It has also been shown
that BECs at finite temperature have analogous behavior
to incoherent light in nonlinear media [119], further sug-
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gesting that analogies to nonlinear optics can offer useful
insight.

For the many-body dynamics, consider N bosons at zero
temperature in the canonical ensemble in a quasi-bound
state, one suitable for quantum tunneling as laid out in
this Article. One appropriate model to study many-body
dynamics for this system is the Bose-Hubbard Hamilto-
nian (BHH), which can be invoked using an optical lattice
of L sites with deep enough sites for a tight binding and
single band approximation, or alternately taking it as a
discretization scheme in an appropriate limit:

Ĥ = −J
L−1∑
i=1

(b̂†i+1b̂i + h.c.) +

L∑
i=1

[
U

2
n̂i(n̂i − 1̂) + V ext

i n̂i].

(12)
In Eq. (12), U determines the on-site two-particle inter-
actions and J is the energy of hopping. An external box
trapping potential, such as in schematic plot Fig. 2(a), is

given by V ext
i with height h. The field operator b̂†i (b̂i)

creates (annihilates) a boson at the ith site, satisfying the

usual commutation relation [b̂i, b̂
†
j ] = δij , and n̂i ≡ b̂†i b̂i.

We will work in hopping units: energies are scaled to J
and time t to ~/J . To simulate the many-body dynam-
ics of the BHH, we use TEBD, a matrix-product-state
method which is able to efficiently simulate one dimen-
sional many-body quantum systems, and allows access to
a wide variety of many-body quantities like fluctuation
and entanglement [120–122].

To describe the system from a mean-field perspective,
the discrete nonlinear Schrödinger equation (DNLS) may
either be obtained via discretization of the NLS or from a
mean-field approximation of the BHH [123]:

i~ψ̇i = −J(ψi+1 + ψi−1) + g|ψi|2ψi + V ext
i ψi. (13)

In Eq. (13), the condensate order parameter, ψi, is nor-

malized to the number of atoms, N =
∑L

i=1 |ψi|2, and
g ≡ U from the BHH. Note however, g in the DNLS is
related, but not equivalent, to the interaction parameter
in the GPE. To be exact, g = g(1)

∫
dx|W (0)(x)|4, where

g(1) is the quasi-1D interaction strength, proportional to
scattering length, and W (0)(x) is the lowest order Wan-
nier state; see [124] for details. Mean-field simulations are
performed using a fourth-order Runge-Kutta adaptation
of Eq. (13). The BHH approaches the DNLS equation in
the mean-field limit N →∞, U → 0, NU = const., which
we take in units of J , NU/J = const. Both the BHH and
the DNLS are single band models, valid when the many-
body wavefunction covers many sites and has variations
larger than the lattice constant.

We use box boundary conditions and initially set the
barrier, V ext

i , to zero over the first 15 lattice sites, and
h = 0.15 over all the rest; the lattice size L is large enough
that the particles don’t reach the end of the grid within
simulation time, mimicking escape into open space. After
propagation in imaginary time, the wavefunction is mostly
trapped in the first 15 sites. We then reduce the external
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FIG. 12. Effective Mean-Field, Many-Body, and Depletion
(a) Normalized trapped atoms for many-body (NU/J = 1.00,
dashed curve) is bounded from above and below by effective
values g = 0.72 (green, upper dark gray curve) and g = 0.77
(dotted curve) respectively, while direct mean-field comparison
g = 1.00 (teal, the lowest dark gray curve) under-predicts. (b)
Semi-log two largest eigenvalues (λ1,λ2) and sum of remaining
eigenvalues λ≥3 of the single-particle density matrix for the
total system (solid lines) and trapping well (dashed lines) are
plotted versus time. The wavefunction has large occupation of
two modes over the whole system (solid lines), with 10% de-
pletion as noted by non-zero λ≥3. Points represent actual data
with error bars smaller than marker, and lines are a guide to
the eye.

barrier to be h = 0.10 from sites 16 to 19, thus rendering
the state meta-stable, and evolve in real time. We reduce
the height to induce larger fragmentation and depletion of
the many-body wavefunction, but show how the renormal-
ized mean-field still captures the key features of tunneling
dynamics.

In Fig. 12(a) we plot the normalized number of trapped
atoms as a function of time for the many-body simulations
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with NU/J = 1.00, mean-field with g = NU/J = 1.00,
and effective mean-field with two values of geff . The values
of geff were found by sweeping over g values until appro-
priate upper and lower bounds on the many-body dynam-
ics were found. In Fig. 12(b), we plot the two largest
{λ`}, the eigenvalues of the single particle density matrix

〈b̂†i b̂j〉, and λ≥3, the sum of all but the two largest eigen-
values. We calculate eigenvalues for the single particle
density matrix over the entire system (λsys

l , solid curves
in Fig. 12(b)), as well as focusing in on the single-particle

density matrix in the trapping potential (λtrap
l , dashed

lines in Fig. 12(b)). Information about the whole system
λsys
i indicates a large degree of fragmentation, with up to

30% occupation of the second mode, and depletion, with
more than 10% occupation in all but first 2 modes. In-
formation regarding only the remaining atoms trapped in
the well (λtrap

i ) shows a large fraction of the BEC has es-
caped. Even though the many-body wavefunction would
be considered over 30% depleted by tesc ≈ 186, the time
at which the number of trapped atoms is 1/e of the ini-
tial value, our mean-field plots accurately bound the trend
in many-body tunneling with a simple renormalization of
the interaction parameter g by about 25%. The effec-
tive mean-field simulation is able to qualitatively capture
the overall trend in the number of trapped particles for
tunneling, with less than O(10−3) relative error in the
trapped number of atoms, an error which would be in-
distinguishable within the error bars of many tunneling
experiments including our own. While these results show
that effective mean-field models can accurately reproduce
low-order observables like trapped-atom density for de-
pleted many-body wave-functions, we do not include loss,
finite temperature, and other open-system effects in our
many-body simulations.

In Section. III B, we show how a full 3D mean-field
treatment of the experiment captures the gross features of
the dynamics, and in Section. IV we show how a JWKB
model with an effective mean-field like parameter fits ex-
periments runs well. These results are corroborated in
this section, as we have shown how a renormalized mean-
field interaction can adequately capture quantum tunnel-
ing of fragmented and depleted condensates, two effects
that are likely present in an open quantum system such as
our own, and compensated for with our JWKB parameter
a. The applicability of mean-field seems to be larger than
expected, and care must be taken to determine whether
a given set of experimental data is purely mean-field. Fu-
ture experiments with sufficient resolution may be able to
distinguish between many-body and effective mean-field
dynamics by reducing number fluctuations in the initial
state to resolve effective interaction strengths, for exam-
ple by post-selecting on atomic number in measurements
or using atom interferometry [11]. Furthermore, coherence
experiments on the escaped particles may further illumi-
nate this distinction, as suggested by macroscopic occu-
pation of more than one mode over the entire lattice in
Fig. 12(b).

VI. CONCLUSIONS

We first provided a brief discussion about different MQT
regimes according to four factors: statistical properties
and quasiparticles, the role of interactions, type of trap-
ping potential, and dimension of the system. In the discus-
sion about atomic interactions, we suggested weak inter-
actions can be described by mean-field-like theories, with
fragmentation, entanglement and higher order quantum
fluctuations increasing for stronger interactions and pre-
senting experimentally untested regimes of MQT. We sug-
gested different quasi-particle descriptions may result in
distinct tunneling regimes. We outlined how the shape of
potential wells define the modes which particles can oc-
cupy, before and after tunneling, leading to a strong dis-
tinction between e.g. Josephson physics and quasibound
many-body dynamics, or quantum escape. We emphasize
that the barrier is generally deformed by interactions and
one must think at least in terms of an effective potential,
as evidenced also by our experiment. Although tunneling
is primarily a 1D effect, higher dimensions can affect tun-
neling by creating chaos in semiclassical paths behind the
barrier, for instance. This brief survey set the tone for
our own work and suggested future experiments and the-
oretical development needed, for instance, in the study of
MQT of the unitary Fermi gas, perhaps in its holographic
dual.

Then, we described the tunneling experiment and the
resulting non-exponential decay of the trapped atoms. A
mean-field description was validated by overall agreement
between the experimental results and a 3D mean-field sim-
ulation, in decay curves and decay rates. The 3D mean-
field simulation also calculated the kinetic term separately,
which led to a correction of the kinetic term in the tight
trap configuration. Our theoretical mean-field model re-
produced the experimentally observed non-exponential de-
cay, which was previously indicated to be the result of the
participation of atomic interactions in the tunneling pro-
cess. We then proceeded to explore the usefulness of a
much simpler effective 1D model utilizing a modified ver-
sion of the semiclassical approximation, or JWKB. A case
study of the experiment with barrier height 190nK in the
weak configuration demonstrated the effectiveness of our
1D model. We further divided the tunneling process into
three sub-regions: an initial decay region corresponding
to classical spilling over the two saddles appearing in our
potential; a non-exponential quantum tunneling regime
during which interactions heavily affected the tunneling
rate; and a background-loss dominated region. This pat-
tern appeared in all the experimental runs.

Subsequently, we described the modified JWKB model
in detail. The transition point into JWKB is when the
relative height of the saddle points equals the chemical
potential. In the modified JWKB model we introduced
an effective mean-field term which modified the barrier
and produced non-exponential decay consistent with the
experiment. Thus, this non-exponential decay can be de-
scribed as generated by atomic interactions, which led to
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an effective dynamic barrier. Both 3D mean-field and 1D
JWKB models confirmed an exponential relation between
decay rate and chemical potential observed empirically in
the experiments. JWKB used only two fitting parame-
ters, an effective mean-field saddle height Vmf resulting
from unitless mean-field parameter a, and saddle width
w. The parameter w grew wider with increasing barrier
height, which followed the experimental trend. Increasing
Vmf reflected the fact that higher peaks in the experiment
have smaller maximum tunneling rates.

Finally, we showed how a renormalized mean-field the-
ory is capable of capturing many-body quantum effects
in low-order observables, by comparing discrete nonlinear
Schrödinger and TEBD simulations, in analogy to optics
contexts in which many modes create an effective scalar
nonlinear-Schrödinger or Gross-Pitaevskii type descrip-
tion. Thus, experiments with large number fluctuations or
error bars can have difficulty in discerning between mean-
field and renormalized mean-field due actually to many-
body effects. Future experiments which more precisely
resolve atomic number and interaction strengths may be
able to distinguish between the bare mean-field theories
generally assumed to describe BEC dynamics and the ef-
fective or renormalized theories we have here suggested,
in terms of a concrete observable, the number of atoms re-

maining in a many-body quasi-bound state as a function
of time.
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