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Lifetimes of complexes formed during ultracold collisions are of current experimental interest as
a possible cause of trap loss in ultracold gases of alkali-dimers. Microsecond lifetimes for com-
plexes formed during ultracold elastic collisions of K2 with Rb are reported, from numerically-exact
quantum-scattering calculations. Thermally averaged lifetimes are compared with those calculated
using a simple density-of-states approach, which are shown to be reasonable. This validates the
density-of-states approach and suggests that the formation of long-lived complexes is indeed the
cause of observed experimental trap loss in ultracold alkali dimer systems. Long-lived complexes
correspond to narrow scattering resonances which we examine for the statistical signatures of quan-
tum chaos, finding that the positions and widths of the resonances are in good agreement with the
Wigner-Dyson and Porter-Thomas distributions respectively.

I. INTRODUCTION

The ability to create ultracold atomic and molecular
gases has engendered extraordinary progress in diverse
areas of physics and chemistry. In few-body physics the
first experimental observation of Efimov states was made
in a gas of ultracold ceasium [1]; in many-body physics
experimental observation of zero-temperature quantum
phase transitions have been made in a gas of ultra-
cold rubidium atoms trapped in an optical lattice [2]; in
precision measurement the development of new atomic-
clock technologies has used ultracold strontium trapped
in an optical lattice [3]. What all these diverse applica-
tions have in common is that they take advantage of the
exquisite precision and control uniquely attainable in the
ultracold regime.

Ultracold molecules share the precision and control of
ultracold atomic gases, while their richer internal struc-
ture and long-range anisotropic interactions open up an
even more diverse range of applications. Cold and ul-
tracold molecules have been used to study chemical re-
actions at their most fundamental level [4–8], measure
the shape of the electron [9, 10], and perform precision
spectroscopy of complex molecules [11]. There is a wide
array of theory proposals for ultracold molecular samples,
which take advantage of the complexity of molecules rel-
ative to atoms, from studying novel quantum phases [12–
14] to quantum information processing [15–18]. Such pro-
posals rely on the ability to produce a stable ultracold
molecular gas without significant loss.

The rich structure of molecules is however both a bless-
ing and a curse. Trap loss has been found to be a lim-
iting factor in ultracold molecule experiments with al-
kali dimers [19–22]. This loss persists even when the
molecules are in their absolute ground-state and only
elastic collisions are possible. One possible mechanism
for this loss is the formation of long-lived complexes.
Based on statistical arguments, Mayle et al have pro-
posed that due to the high density-of-states (DOS) in
such systems 4-body complexes can have lifetimes of or-
der 1-10 ms [23, 24]. If these lifetimes are reasonable

then this could explain the experimentally observed trap
loss, which limits trap lifetime to the order of seconds.
Lifetime estimates for 3-body alkali complexes formed
in atom-dimer collisions using this DOS approach have
been shown to be reasonable when compared to estimates
from classical trajectory calculations [25]. So far, how-
ever, there has been no explicit experimental measure-
ment or theory predication based on quantum calcula-
tions for such lifetimes.
Such complexes can also be considered a feature not a

bug. They are expected to exhibit the Wigner-Dyson
energy level statistics associated with quantum chaos.
There has been recent interest in understanding the role
of chaos in cold collisions [23–35]. Ultracold molecular
collisions are complex and understanding them in chaotic
terms could allow for the considerable insight gained in
nuclear physics to be applied to ultracold atomic and
molecular physics [36]. For example Mayle et al have de-
veloped a statistical scattering formalism which assumes
the formation of chaotic complexes at short range [23, 24].
In this work we report explicit delay times for elas-

tic K2-Rb collisions, obtained from numerically-exact
quantum-scattering calculations. Thermally averaged
delay times are compared with lifetimes for the collision
complex predicated by a simple DOS approach finding
them to be reasonable and validating their use for other
similar systems. We also examine the statistics of res-
onance positions and widths for the signatures of chaos
finding that they are in good agreement with the Wigner-
Dyson and Porter-Thomas distributions respectively.

II. METHODS

We use the atom-diatom scattering formalism as de-
veloped by Pack and Parker [37, 38]. The scattering
calculations can broadly be split into three main steps:
the numerical computation of 5D hyperspherical surface
functions in the adiabatically-adjusting principle-axis hy-
perspherical (APH) coordinates in the short-range re-
gion and Delves hyperspherical coordinates (DC) in the
long-range region; the log-derivative propagation of the
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FIG. 1. The adiabatic potential curves for the KRbK com-
plex at short hyperradius for even exchange symmetry. Only
every 100th curve is shown due to the high DOS for this sys-
tem. The horizontal red line corresponds to the v = 0 j = 0
threshold of K2.

CC equation in these coordinates; finally, the asymptotic
matching to ro-vibrational states in Jacobi coordinates.
The Hamiltonian for a triatomic system in hyperspher-

ical coordinates is

H = −
~
2

2µρ5
∂

∂ρ
ρ5

∂

∂ρ
+

Λ̂2

2µρ2
+ V , (1)

where µ =
√

mAmBmC/(mA +mB +mC) is the three-

body reduced mass, Λ̂ is the grand angular momentum
operator and V is the potential energy surface as a func-
tion of the chosen hyperspherical coordinates.
In the short-range region APH coordinates (ρ, θ, φ)

are used as they evenhandedly treat all three arrange-
ment channels, τ , of an A+BC system. For each ρ the
surface functions are computed which are eigen-solutions
of the Hamiltonian H5D = Λ̂2/(2µρ2) + 15~2/(2µρ2) +
V (ρ, θ, φ) for a given total angular momentum J , par-
ity, and exchange symmetry. The 5D surface functions
are functions of two internal coordinates θ and φ and
three Euler angles α, β, and γ to orient the molecule
in space. The size of the APH surface functions ba-
sis sets in θ and φ are determined by lmax and mmax

respectively [38]. In this work the short-range region
is from ρ = 8.0 a0 to 38.15 a0, where a0 is the Bohr
radius (a0 = 0.0529177 nm). This region is further
subdivided into six, with increasing lmax and mmax to
ensure converged surface functions. These regions are
8.0 a0 ≤ ρ < 11.33 a0, 11.33 a0 ≤ ρ < 16.87 a0,
16.87 a0 ≤ ρ < 18.82 a0, 18.82 a0 ≤ ρ < 22.74 a0,
22.74 a0 ≤ ρ < 32.21 a0, and 32.21 a0 ≤ ρ < 38.15 a0
with lmax = 103, 117, 123, 149, 169, 189 and mmax =
206, 234, 246, 298, 338, 378, respectively. For J = 0 this
leads to 5D surface function matrices of dimension 42 952,
55 342, 61 132, 89 550, 115 090, and 143830. Explicit di-
agonalization of such large matrices is not computation-

ally tractable so we use the sequential diagonalization
truncation technique [39, 40] to reduce the dimension.
The matrices are sparse and the implicitly restarted lanc-
zos method [41] is used to compute only the lowest 2543
surface functions for even exchange symmetry and par-
ity needed for the log-derivative propagation. These sur-
face functions are computed on a logarithmic grid in ρ
with 157 sectors. This approach is capable of fully rep-
resenting the complex collision dynamics of three atoms
at short range which is the source of the long lifetimes
predicted by Mayle et al.

Outside the short-range region, where the three-body
interaction has nearly decayed to zero, Delves hyper-
spherical coordinates (ρ, θτ , γτ ) are used. The hyper-
radius is the same as in APH coordinates but the hy-
perangles are defined differently and depend on the ar-
rangement channel τ . The hyper angle γτ is the angle
between Sτ and sτ and θτ = arctan (sτ/Sτ ) where Sτ

and sτ are mass-scaled Jacobi coordinates for the atom-
molecule center-of-mass separation and the diatom sepa-
ration respectively [42, 43]. Delves coordinates are used
from ρ = 38.15 a0 to ρmax = 174.95 a0 and surface func-
tions are computed on a linear grid with 456 sectors. The
number of basis functions is determined by an energy
cutoff of 0.3 eV relative to the minimum energy of the
asymptotic K2 diatomic potential. A one-dimensional
Numerov method is used to compute the adiabatic sur-
face functions.

The log-derivative matrix is propagated to ρmax using
the method of Johnson [44]. Only J = 0, even exchange
symmetry, and even parity are required as here we are
interested in ultracold collisions where the initial channel
is K2 j = 0. In the APH region the propagation includes
2543 channels of which over 35% are closed at all ρ. The
DC region only requires 423, as many of the channels lo-
cally open at short range have become strongly closed.
Consequently the long-range propagation takes a negli-
gible time compared to the short-range as the computa-
tional cost scales as the number of channels cubed. At
ρ = ρmax, the DC wave functions are matched to asymp-
totic channel functions corresponding to ro-vibrational
levels of the KRb and K2 molecules, defined in Jacobi
coordinates. This includes vibrational levels up to 2 for
KRb and 5 for K2 with rotational levels up to a maximum
of 68 and 93 respectively.

We emphasize that while in this work we are primarily
interested in elastic scattering this reactive formalism is
in fact required as many of the channels open at short
hyperradius correspond asymptotically to closed-channel
configurations with a bound KRb dimer. The lowest 2500
adiabatic potential curves are shown in figure 1 where the
high DOS which leads to the complex short-range dy-
namics can easily be seen. All calculations are for total
angular momentum J = 0 even parity and even identical-
particle exchange symmetry. Coupling of the orbital an-
gular momenta with both the electron and nuclear spins
is omitted. For non-zero J , the computational cost is
prohibitive scaling as O((J+1)3), even when we take ad-
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vantage of parity and exchange symmetries. Fortunately,
we are primarily interested in the ultracold regime where
only s-wave collisions contribute (that is, only J = 0 is
required for K2 in the ground rotational state j = 0). An
ab initio ground-state potential energy surface was used
which accurately accounts for the long-range dispersion
behavior, for details see [29].

III. RESULTS

A. Long-lived complexes

The long lifetimes predicted for complexes in ultra-
cold alkali-dimer collisions are due to two main factors.
Firstly deep potentials and heavy atoms lead to a high
DOS, classically this corresponds to many ro-vibrational
degrees-of-freedom for the energy to distribute into.
Secondly few exit channels mean the complex spends
a long time exploring these degrees-of-freedom before
finding a way out. These concepts are codified by
Rice-Ramsperger-Kassel-Marcus (RRKM) theory [45–
47]. RRKM theory predicts a lifetime given by

τ =
2π~ρ

No

, (2)

where ρ is the DOS and No is the number of energetically
allowed exit channels. The RRKM lifetime originated
in transition state theory however it has been used by
Mayle et al as a way to estimate lifetimes in ultracold
molecular collisions [23, 24]. The beauty of equation 2
is its simplicity, only an estimate of the DOS and the
number of open channels is needed to calculate a complex
lifetime at a given energy.
We proceed to calculate the lifetime of a KRbK com-

plex, formed in elastic K2+Rb collisions, by following the
method detailed by Mayle et al for estimating ρ [23]. For
the K2 dimer potential we use a Lennard-Jones poten-
tial with C6 and De taken from [48]. To obtain the C6

and De required for the Lennard-Jones K2-Rb potential
we use the C6 and De for KRb taken from [49] and as-
sume the three-body potential is pairwise additive, with
C6 and De chosen to be double the atom + atom value
for the atom + dimer potential. In this way the choice
of C6 used to estimate the DOS is the same as the C6

used in the scattering calculations. The 1d-Schrödinger
equation was solved using the Fourier-grid-Hamiltonian
method [50, 51]. In order to compare to our scattering
calculations we make a couple of changes to the method
given in reference [23]. In that model each channel is de-
fined by the asymptotic ro-vibrational quantum numbers
j and v and the quantum number L for the end-over-
end angular momentum of the atom and the molecule,
and their projection quantum numbers ML and mj . The
DOS is then estimated for a given total angular momen-
tum J and projection M . To account for the identical
particle symmetry we only include even rotational levels
for K2. We also only include channel quantum numbers
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FIG. 2. Elastic cross-section for s-wave collisions of K2(v =
0, j = 0) with Rb as a function of energy (J = 0).

j, v and L (and not ML and Mj) as our scattering cal-
culations are field free and channels with different pro-
jection quantum numbers will be degenerate. Using this
approach the estimate for ρ is 28 K−1 which gives a com-
plex lifetime of 1.3 ns. If we instead include projection
quantum numbers we find a DOS of 3 mK−1 and a com-
plex lifetime of 167 ns, around 2 orders of magnitude
longer. This large difference is due to channels with ro-
tational quantum numbers j and L as high as 246 which
are still locally open at short range and contribute to the
DOS. For example taking J = 0, M = 0 as we have
here j = L and there are 2j+1 combinations of ML and
Mj consistent with M = 0 all of which contribute to the
DOS.
The lifetime estimate given by equation 2 is the average

lifetime, and assumes the average is taken over a wide
enough energy range to include multiple resonances [24].
Assuming a thermal distribution, equation 2 is therefore
valid when the temperature is above the mean spacing of
resonances. Figure 2 shows the elastic cross-section for
collisions of K2(v = 0, j = 0) with Rb as a function of
energy, for total angular momentum J = 0. It is seen
that there is a forest of narrow resonances starting at
about 10 mK, each of which corresponds to a long-lived
KRbK complex. The zero-energy cross-section gives a
scattering length of 90 Å which compares well to the
average scattering length of 47 Å obtained from the C6

coefficient [52].
In order to assess the validity of the DOS lifetime esti-

mates we compute explicit lifetimes of the collision com-
plex from Smith’s Q matrix,

Q = i~S
∂S†

∂E
. (3)

The eigenvalues of Q are the time delays between a col-
lision with and without a potential [53, 54]. The trace of
Q is therefore the sum of the delay times for each chan-
nel. The matrix Q can be obtained directly by propa-
gating the energy-derivative of the log-derivative matrix,
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FIG. 3. Upper panel: Tr(Q) as as a function of collision energy. Lower panel: elastic cross-section for collisions of K2(v =
0, j = 0) with Rb as a function of energy. The vertical red lines mark the resonance positions while the red crosses show the
resonance lifetimes. The K2 v = 0, j = 2 channel becomes open at 0.47 K. The elastic cross-section is the same as shown in
figure 2.

which can be done efficiently at the same time as the
log-derivative propagation [55]. This allows for the di-
rect calculation of Q from the energy derivatives S. This
approach has been extensively used to compute Smith
delay times in a variety of systems and contexts [56–58].

Figure 3 plots Tr(Q) as a function of energy along with
the cross-section on the same energy grid. It is clearly
seen that there are many resonances with lifetimes as long
as microseconds. The lifetimes are computed on a energy
grid with over 1600 points. The small gaps seen in the
energy grid are regions where the delay time is negative.
Smith time delays are the difference between the time for
a collision and the time for a collision without a potential,
we refer to the latter as the background collision time.
This definition leads to negative delay times away from
resonances as the background collision time is large due
to the lack of an attractive potential, compared to the
collision time with a potential, especially at low collision
energies. Following [57] we fit each of the resonances to

a Breit-Wigner form

Q(E) = 2~
Γr/2

[(Er − E)2 + (Γr/2)2]
, (4)

where Er and Γr are the resonance energy and width
respectively. This allows us to unambiguously assign a
lifetime of 4~

Γr

to each resonance seen in figure 3. The
position and lifetime for each resonance are shown in fig-
ure 3 as solid red vertical lines and red dots respectively.
The lifetimes for the 10 narrowest resonances are given
in Table I.
We now proceed to assess the validity of the DOS

model for this kind of system as well as the experimental
implications of these results. We find excellent agree-
ment with the DOS model which predicted ρ = 28 K−1

while we find 44 resonances in a 1.5 K energy range
which gives 29 K−1. This close agreement is probably
fortuitous given the approximations made in the DOS
approach, however it does clearly show that such esti-
mates are reasonable. Figure 4 compares the thermally
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FIG. 4. Comparison of the lifetime of KRbK collision com-
plex as a functions of energy from three different approaches:
explicit delay time, thermally-averaged delay time, and the
DOS estimate. The Smith delay time is the same as shown
in the upper panel of figure 3.

averaged Smith delay time with the DOS lifetime pre-
dicted by equation 2. It is seen that except at very low
energies where the negative background gives unphysical
results the agreement is excellent. The DOS lifetime is
only valid in regimes where that average is taken over an
energy range which includes many resonances, which cor-
responds experimentally to temperatures T much greater
than the mean resonance spacing (T ≫ 1/ρ). This sug-
gests that in principle it is always possible to avoid the
formation of long-lived complexes by cooling to lower
temperatures. Indeed for atom+dimer alkali collisions
the DOS is estimated to be around 1-10 mK−1 [23], which
suggests that sticking will not be an issue at temperatures
below 1 mK. However for alkali dimer+dimer systems the
DOS is estimated to be around 1-10 nK−1 [24], which
would require temperatures below 1 nK. This is orders of
magnitudes lower than temperatures at which trap loss
has been seen in ultracold gases of alkali dimers which
suggests that long-lived 4-body complexes are indeed the
cause of the observed loss.

Energy (K) Lifetime (µs) Width (µK)
0.24 1.47 20.80
0.29 1.33 22.90
0.41 0.44 68.75
1.23 0.44 68.83
0.11 0.33 91.63
0.39 0.32 95.72
0.03 0.27 111.65
0.01 0.23 132.01
0.31 0.15 207.77
0.70 0.12 256.15

TABLE I. Position, lifetime and width of the 10 narrowest
resonances.

B. Quantum chaos

Quantum-scattering calculations for collisions of ultra-
cold molecules are extremely computationally expensive.
Even though here we have presented results for only to-
tal angular momentum J = 0, even exchange symmetry
and parity, included no spin or field effects the calcula-
tions still required over 300,000 hours of CPU time. It is
possible that numerically exact quantum scattering cal-
culations including all the effects omitted in these calcu-
lation will never be computationally tractable. As such
statistical approaches offer an alternative way to attack
such problems [23, 24, 27, 59, 60].
Atom-dimer ultracold collisions have been shown to

be classically chaotic [25] and the analysis of short range
adiabats of KRbK have been shown to exhibit the charac-
teristics of quantum chaos [29]. While quantum systems
cannot exhibit the non-linearity characteristic of classical
chaos (in quantum mechanics operators are linear [61])
quantum analogs of classically chaotic systems do ex-
hibit certain statistical signatures [62], such as Wigner-
Dyson energy-level statistics [63, 64], Ericson fluctua-
tions [65, 66], and Porter-Thomas resonance-width statis-
tics [67].
We now proceed to examine the statistical distribution

of resonance positions for evidence of quantum chaos.
The distribution of scaled nearest-neighbor spacings for
non-chaotic systems is given by the Poisson distribution,
exp (−s), where small spacings predominate. However
in quantum systems chaos manifests itself in the repul-
sion between energy levels [63], the distribution of scaled
nearest-neighbor spacings is then given by a Wigner-
Dyson distribution [64]. For Hamiltonians with time-
reversal symmetry, such as we have here, the nearest-
neighbor spacings are given by,

Pwd(s) =
π

2
s exp (−

π

4
s2). (5)

The upper panel of Figure 5 shows the distribution of
scaled nearest-neighbor spacings between the 44 reso-
nances shown in figure 3. While we have not found
enough resonances to make a definitive statement as
to whether this system exhibits quantum chaos we do
clearly see the repulsion between neighbouring reso-
nances characteristic of quantum chaos.
The degree of repulsion between the resonances can be

quantified by the Brody parameter [68, 69]. The Brody
parameter is itself not physically meaningful, rather is
defined to smoothly interpolate between the Poisson dis-
tribution and the Wigner-Dyson distribution,

Pb(s) = Asη exp (−αsη+1),

A = (η + 1)α,

α = Γ
(η + 2

η + 1

)η+1

,

(6)

where η is the Brody parameter. For η = 0 the distri-
bution reduces to Pp and for η = 1 it reduces to Pwd.
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Performing a least-squares fit of equation 6 to the data
shown in the upper panel of figure 5 we obtain a Brody
parameter of η = 0.78±0.04. Despite the relatively small
number of resonances found this value is clearly sugges-
tive of a significantly, though not fully, chaotic system. In
a previous work on the collisions of Li with CaH it was
found that the Brody parameter was sensitive to scal-
ing of the potential [28]. Unfortunately we are unable
to explore this dependence in this work due to the high
computational cost of our calculations, though we note
that the Brody parameter for the short-range adiabats
for this system has previously been shown to be insensi-
tive to such a scaling [29].
We now move on to examine another statistical char-

acteristic of chaos in quantum systems, the Porter-
Thomas distribution of resonance widths [67]. Porter-
Thomas statistics describe the distribution of velocity-

independent reduced widths, Γ0
n = Γn/E

1

2

0 . The scaled
reduced widths, Γ0

n/〈Γ
0
n〉, for chaotic systems follow the

chi-squared distribution χ2
k with degree k = 1. The

lower panel of Figure 5 shows the distribution of reduced
widths for the resonances shown in figure 3. Despite the
relatively small statistical sample we clearly see broad
agreement with the overall trend of the Porter-Thomas
distribution towards resonances with smaller widths.
The signatures of chaos exhibited by the scattering is

a consequence of the strong coupling between all chan-
nels allowed by conservation of energy and angular mo-
mentum. This gives important insight into the nature
of the short-range dynamics of this system and shows
that even in elastic collisions both inelastic and reactive
channels play an important role in the dynamics. The
DOS approach relies precisely on this assumption (that
the entire phase space allowed by conservation of energy
and angular momentum is in fact explored by the colli-
sion complex) which explains the good agreement of the
DOS model with the scattering results we have found for
this system. The chaotic nature of the complex at short
hyperradius is not specific to collisions of K2 with Rb
however which suggests that DOS predications for other
ultracold atom + dimer and dimer + dimer elastic colli-
sions involving heavy alkali atoms are also reasonable.

IV. CONCLUSIONS

We have examined ultracold elastic K2-Rb collisions
and reported explicit lifetimes for long-lived complexes
formed during the collision process, finding that such life-
times can be of the order of microseconds. Such long
lifetimes are due to the high DOS for this system com-
bined with the strong coupling between inelastic and re-
active channels which are closed asymptotically but open
at short range. Thermally averaged lifetimes were com-
pared with those predicted using a simple DOS approach
based on RRKM theory which are shown to be reason-
able. This suggests that the formation of long-lived com-
plexes is indeed the cause of observed experimental trap
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FIG. 5. Distribution of scaled nearest-neighbor spacings (up-
per panel) and scaled reduced widths (lower panel) for scat-
tering resonances, shown as solid red lines in figure 3.

loss in ultracold alkali dimer systems.

Long-lived complexes correspond to narrow resonances
in quantum scattering. We have analyzed the distribu-
tion of nearest-neighbor spacings and widths of these
resonances and have found that they both exhibit the
statistical signatures of quantum chaos. Quantum scat-
tering calculations for collisions of ultracold molecules
are extremely computationally expensive. It is possible
that numerically-exact quantum-scattering calculations
including all the effects of interest will never be computa-
tionally tractable. As such the chaotic nature of systems
such as this suggests a statistical approach to tackling
such problems could be fruitful.

In future work we intend to examine the effect of in-
cluding the excited doublet state on the lifetimes. In-
cluding the excited state in the calculations will allow
for the full treatment of the conical intersection and the
possibility of long-lived quasi-bound states on the upper
surface.
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