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Abstract

We study the relation between the coherence of assistance and the regularized coherence of assis-

tance introduced in [Phys. Rev. Lett. 116, 070402 (2016)]. The necessary and sufficient conditions

that these two quantities coincide are provided. Detailed examples are analyzed and the optimal

pure state decompositions such that the coherence of assistance equals to the regularized coherence

of assistance are derived. Moreover, we present the protocol for obtaining the maximal relative en-

tropy coherence, assisted by another party under local measurement and one-way communication

in one copy setting.

PACS numbers: 03.65.Ud, 03.67.-a
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I. INTRODUCTION

Quantum coherence is an important feature in quantum physics [1]. It is also a powerful

resource for quantum metrology [2], entanglement creation [3], and biological processes [4–7].

Due to the significant roles played in many novel quantum phenomena, it has attracted much

attention recently. A rigorous framework for the quantification of coherence is introduced

and some intuitive and computable measures of coherence are identified, for example, the

relative entropy coherence and l1 norm coherence [8]. The relative entropy coherence of a

state is defined as the difference of von Neumann entropy between the density matrix and

the diagonal matrix given by its diagonal entries. The l1 norm coherence depends on the

magnitudes of off-diagonal entries of a density matrix. Trace norm coherence is a coherence

measure for qubits [9], but it is only a coherence monotone for X states [10]. Besides, the

coherence can also be quantified via the convex roof construction [11].

More than that, there are operational coherence measures such as distillable coherence

and coherence cost which characterize the optimal rate of performance for certain infor-

mation processing tasks [12]. In Ref. [12], they reveal the appealing feature of distillable

coherence being equal to the relative entropy coherence. As the maximal average relative

entropy coherence of a quantum state, the coherence of assistance Ca is another coherence

monotone [13]. This quantity Ca has an operational interpretation. Suppose Bob holds

a state ρB. Alice holds another part of the purified state of ρB. With the help of Alice

by performing local measurements and telling Bob her measurement outcomes by classical

communication, the relative entropy coherence of ρB can be increased to Ca(ρ
B) maximally.

In many copy setting, if Alice is allowed to make joint measurement across her many copies

and telling Bob her measurement results by classical communication, averagely, the rela-

tive entropy coherence of ρB can be increased to C∞

a (ρB), which is called the regularized

coherence of assistance [13].

For the process of increasing relative entropy coherence with the help of another party

under the local measurement and one way classical communication, an interesting and mean-

ingful question is when the coherence Ca obtained in one copy setting equals to that C∞

a

in many copy setting. Obviously, for quantum states ρ such that Ca(ρ) = C∞

a (ρ), one copy

setting is enough, and many copy setting is redundant and wasteful. In this paper, we aim

to answer this question and provide analytical results for the equivalence of the coherence
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of assistance and the regularized coherence of assistance.

First we present the necessary and sufficient conditions when the coherence of assis-

tance attains the regularized coherence of assistance. Detailed examples are analyzed for

two dimensional, three dimensional and high dimensional systems. In these examples, the

optimal decompositions for the saturation of the coherence of assistance Ca with the regu-

larized coherence of assistance C∞

a are provided. The optimal protocol of obtaining maximal

relative entropy coherence assisted by an assistant using local measurement and one way

communication in one copy setting is designed finally.

II. COHERENCE OF ASSISTANCE

Under fixed reference basis, the coherence of assistance of a state ρ is characterized by

the maximal average relative entropy coherence,

Ca(ρ) = max
∑

i

piCr(|ψi〉), (1)

where the maximization is taken over all pure state decompositions of ρ =
∑

i pi|ψi〉〈ψi|,
Cr(ρ) = S(∆(ρ)) − S(ρ) is the relative entropy of coherence, ∆(ρ) denotes the state given

by the diagonal entries of ρ, S(ρ) is the von Neumann entropy [13].

Coherence of assistance can be interpreted operationally. For given quantum state ρ, its

initial relative entropy coherence is Cr(ρ). Now suppose Bob holds a state ρB and an assistant

Alice holds another part of a purification of ρB. With the help of Alice by performing local

measurement and telling Bob her measurement outcomes by classical communication, the

quantum state in Bob will be in one pure state ensemble {pi, |ψi〉} with relative entropy

coherence
∑

i piCr(|ψi〉). The relative entropy coherence in Bob is increased as relative

entropy coherence is monotonic under selective measurements on average. Maximally, the

relative entropy coherence can be increased to Ca(ρ
B) in this process.

Similarly, the regularized coherence of assistance is introduced as the average coherence

of assistance in many copy setting,

C∞

a (ρ) = lim
n→∞

1

n
Ca(ρ

⊗n). (2)

It is obvious that the coherence of assistance is bounded by the regularized coherence of

assistance from above

Ca(ρ) ≤ C∞

a (ρ). (3)
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Utilizing the relation between the regularized coherence of assistance and the regularized

entanglement of assistance [14, 15], the authors in [13] have shown a closed form expression

for the regularized coherence of assistance,

C∞

a (ρ) = S(∆(ρ)). (4)

Based on this formula, we can get the first necessary and sufficient condition for the satu-

ration of the coherence of assistance with the regularized coherence of assistance as follows.

Theorem 1. For any quantum state ρ, Ca(ρ) = C∞

a (ρ) if and only if there exists a pure

state decomposition ρ =
∑

i pi|ψi〉〈ψi| such that all ∆(|ψi〉) = ∆(ρ).

[Proof]. By definition, we have Ca(ρ) = max
∑

i piCr(|ψi〉) = max
∑

i piS(∆(|ψi〉)) ≤
maxS(

∑

i pi∆(|ψi〉)) = S(∆(ρ)) = C∞

a (ρ), where the second equation is due to S(|ψi〉) = 0

for pure state |ψi〉, and the third inequality is from the concavity of the Von Neumann

entropy. The third inequality becomes equality if and only if ∆(|ψi〉) are the same for all i.

Hence, the coherence of assistance equals to the regularized coherence of assistance if and

only if there exists a pure state decomposition ρ =
∑

i pi|ψi〉〈ψi| such that all ∆(|ψi〉) = ∆(ρ),

that is all components in the pure state decomposition have the same diagonal entries as

the density matrix.

From theorem 1 one can get another necessary and sufficient condition which is easy to

prove.

Corollary 1. For any quantum state ρ, Ca(ρ) = C∞

a (ρ) if and only if there exists a pure

state decomposition ρ =
∑

i pi|ψi〉〈ψi| such that each pure state |ψi〉 has relative entropy

coherence S(∆(ρ)).

Theorem 1 and corollary 1 are both necessary and sufficient conditions for the coincidence

of the coherence of assistance and the regularized coherence of assistance. The former

gives more explicit form of the optimal pure state ensemble and the latter is more easy to

understand.

Ca is called additive theoretically if Ca = C∞

a . In Ref. [13] it has been shown that

Ca fails to be additive in general, with an example in 4 dimensional system showing the

nonadditivity. Nevertheless, Ca is additive in two dimensional system. Furthermore, we
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can find one optimal decomposition for the balance of the coherence of assistance and the

regularized coherence of assistance by theorem 1. Consider two dimensional quantum states

ρ =

2
∑

i,j=1

ρij |i〉〈j|. (5)

If the coefficient ρ12 is real, we choose

|ψ0〉 =
√
ρ11|1〉+

√
ρ22|2〉,

|ψ1〉 =
√
ρ11|1〉 −

√
ρ22|2〉,

(6)

and p0 = 1
2
(1 + ρ12/

√
ρ11ρ22), p1 = 1

2
(1 − ρ12/

√
ρ11ρ22) for nonzero ρ11 and ρ22. If the

coefficient ρ12 is complex, with |ρ12| the magnitude and arg(ρ12) the argument, we set

|ψ0〉 =
√
ρ11|1〉+

√
ρ22e

−i arg(ρ12)|2〉,
|ψ1〉 =

√
ρ11|1〉+

√
ρ22e

−i(π+arg(ρ12))|2〉,
(7)

and p0 = 1
2
(1 + |ρ12|/

√
ρ11ρ22), p1 = 1

2
(1 − |ρ12|/

√
ρ11ρ22) for nonzero ρ11 and ρ22. Thus

{pi, |ψi〉} is an optimal pure state decomposition of ρ such that the coherence of assistance

attains the regularized coherence of assistance. In fact, there are infinitely many optimal

decompositions as the choices of the relative phase in |ψ0〉 are infinite. However, once |ψ0〉
is fixed, |ψ1〉 and the corresponding probabilities p0 and p1 are determined. Moreover, if

one of the elements ρ11 and ρ22 is zero, the quantum state ρ is pure, and its coherence of

assistance, regularized coherence of assistance and relative entropy coherence are the same.

Now we consider the equality Ca(ρ) = C∞

a (ρ) in n-dimensional systems and investigate

the requirement quantum states should satisfy. For an n-dimensional quantum state ρ =
∑

ij ρij |i〉〈j|, we define the matrix equation,

AP = B. (8)
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Here

A =



















































eiθ
(1)
12 eiθ

(2)
12 · · · eiθ

(T )
12

eiθ
(1)
13 eiθ

(2)
13 · · · eiθ

(T )
13

· · · · · · · · · · · ·
eiθ

(1)
1n eiθ

(2)
1n · · · eiθ

(T )
1n

eiθ
(1)
23 eiθ

(2)
23 · · · eiθ

(T )
23

· · · · · · · · · · · ·
eiθ

(1)
2n eiθ

(2)
2n · · · eiθ

(T )
2n

· · · · · · · · · · · ·
eiθ

(1)
n−1,n eiθ

(2)
n−1,n · · · eiθ

(T )
n−1,n

1 1 · · · 1



















































(
n(n−1)

2
+1)×T

(9)

with (n− 1)(n− 2)/2 constraints



























θ
(k)
1s − θ

(k)
2s = θ

(k)
12 , s = 3, · · · , n,

θ
(k)
2s − θ

(k)
3s = θ

(k)
23 , s = 4, · · · , n,

· · ·
θ
(k)
n−2,n − θ

(k)
n−1,n = θ

(k)
n−2,n−1,

(10)

for all k. There are essentially n− 1 independent variables θ
(k)
ij for each k, k = 1, 2, · · · , T ,

which are all between 0 and 2π. P = (p1, p2, · · · , pT )t, 0 ≤ pk ≤ 1 for k = 1, 2..., T .

B = (
ρ12√
ρ11ρ22

,
ρ13√
ρ11ρ33

, · · · , ρ1n√
ρ11ρnn

,
ρ23√
ρ22ρ33

, · · · , ρ2n√
ρ22ρnn

, · · · , ρn−1,n√
ρn−1,n−1ρnn

, 1)t, (11)

with superscript t denoting transpose. For vector B, although its components are all

fractions, if one denominator is zero, then the corresponding numerator must be zero because

of the positivity of density matrix. Therefore, vector B is a well defined n(n−1)
2

+1 dimensional

vector and is decided by the coefficients of density matrix. In Eq. (8), the vector B is known

and given by the density matrix, the matrix A and the vector P are unknown.

Theorem 2. For n-dimensional quantum state ρ, Ca(ρ) = C∞

a (ρ) if and only if the equation

(8) has solutions for unknowns P and θ
(k)
ij satisfying conditions (10).

[Proof]. Let {pk, |ψk〉} be an optimal pure state ensemble such that Ca(ρ) =
∑T

k=1 pkCr(|ψk〉〈ψk|). If Ca(ρ) attains its upper bound C
∞

a (ρ), then Cr(|ψk〉〈ψk|) = S(∆(ρ))
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by corollary 1 and |ψk〉〈ψk| should be of the form




















ρ11
√
ρ11ρ22e

iθ
(k)
12

√
ρ11ρ33e

iθ
(k)
13 · · · √

ρ11ρnne
iθ

(k)
1n

√
ρ11ρ22e

−iθ
(k)
12 ρ22

√
ρ22ρ33e

iθ
(k)
23 · · · √

ρ22ρnne
iθ

(k)
2n

√
ρ11ρ33e

−iθ
(k)
13

√
ρ22ρ33e

−iθ
(k)
23 ρ33 · · · √

ρ33ρn,ne
iθ

(k)
3n

· · · · · · · · · · · · · · ·
√
ρ11ρnne

−iθ
(k)
1n

√
ρ22ρnne

−iθ
(k)
2n

√
ρ33ρnne

−iθ
(k)
3n · · · ρnn





















(12)

by theorem 1 for all k. The (n− 1)(n− 2)/2 constraints in Eqs. (10) guarantee that the

rank of |ψk〉〈ψk| in Eq. (12) is one. ρ =
∑T

k=1 pk|ψk〉〈ψk| demands

T
∑

k=1

pk
√
ρiiρjje

iθ
(k)
ij = ρij , (13)

or
T
∑

k=1

pke
iθ

(k)
ij = ρij/

√
ρiiρjj, (14)

for 1 ≤ i < j ≤ n, which gives rise to the equation (8). Thus Ca(ρ) = C∞

a (ρ) if and only if

the equation (8) has solutions for P and θ
(k)
ij satisfying conditions (10).

In Theorem 1 and Corollary 1, the necessary and sufficient conditions are provided for the

saturation of the coherence of assistance Ca(ρ) with the regularized coherence of assistance

C∞

a (ρ). In theorem 2, we present the way to find the optimal pure state ensemble for

this saturation. The solution P in matrix equation (8) is just the probabilities {pk} in

the optimal decomposition {pk, |ψk〉}. The solution θ
(k)
ij in A in (8) is the argument of the

entries in the i-th row and the j-th column with magnitude
√
ρiiρjj for the component

|ψk〉〈ψk| in the optimal decomposition {pk, |ψk〉}. The problem of theorem 2 is that the

matrix A and P scale quadratically with respect to the dimension of the density matrix,

which implies more unknowns P and arguments θ in A are involved when the dimension

increases. In solving the matrix equation, one can select proper independent arguments first,

then subsequently the matrix A. The vector P is then determined by A and the previous

vector B. If P = (p1, p2, · · · , pT )t is the solution satisfying 0 ≤ pk ≤ 1 for k = 1, 2..., T ,

then the solution is obtained and the coherence of assistance Ca(ρ) equals to regularized

coherence of assistance C∞

a (ρ). Otherwise, one chooses different independent arguments.

Example 1. Consider the following three dimensional state,

ρ =
3

∑

i,j=1

ρij |i〉〈j|. (15)
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According to Theorem 2, Ca(ρ) = C∞

a (ρ) if and only if matrix equation














eiθ
(0)
12 eiθ

(1)
12 · · · eiθ

(T−1)
12

eiθ
(0)
23 eiθ

(1)
23 · · · eiθ

(T−1)
23

eiθ
(0)
13 eiθ

(1)
13 · · · eiθ

(T−1)
13

1 1 · · · 1





























p0

p1

· · ·
pT−1















=















ρ12/
√
ρ11ρ22

ρ23/
√
ρ22ρ33

ρ13/
√
ρ11ρ33

1















(16)

with θ
(k)
12 + θ

(k)
23 = θ

(k)
13 , have solutions for P satisfying 0 ≤ pk ≤ 1 and free arguments θ

(k)
12

and θ
(k)
23 .

For simplicity, suppose ρ12, ρ23 and ρ13 are all non-zero real numbers. Denote

ρ12/
√
ρ11ρ22 = r1, ρ23/

√
ρ22ρ33 = r2 and ρ13/

√
ρ11ρ33 = r3. First, set T = 4 and

θ
(0)
12 = θ

(0)
23 = 0, θ

(1)
12 = π, θ

(1)
23 = 0, θ

(2)
12 = θ

(2)
23 = π, θ

(3)
12 = 0, θ

(3)
23 = π. Then the ma-

trix equation (16) becomes














1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1





























p0

p1

p2

p3















=















r1

r2

r3

1















. (17)

The unique solution of the matrix equation above is p0 = 1
4
(r1 + r2 + r3 + 1), p1 = 1

4
(r2 −

r1 − r3 + 1), p2 =
1
4
(r3 − r1 − r2 + 1), p3 =

1
4
(r1 − r2 − r3 + 1). Obviously, p0, p1, p2, p3 ≤ 1.

Therefore, if r1+r2+r3+1 ≥ 0, r1−r2−r3+1 ≥ 0, r2−r1−r3+1 ≥ 0 and r3−r1−r2+1 ≥ 0,

then {pi} and {θ(k)ij } are one set of solutions of Eq. (16) for Ca(ρ) = C∞

a (ρ). Therefore the

probabilities {pi} with pure states

|ψ0〉 =
√
ρ11|1〉+

√
ρ22|2〉+

√
ρ33|3〉,

|ψ1〉 = −√
ρ11|1〉+

√
ρ22|2〉+

√
ρ33|3〉,

|ψ2〉 =
√
ρ11|1〉 −

√
ρ22|2〉+

√
ρ33|3〉,

|ψ3〉 =
√
ρ11|1〉+

√
ρ22|2〉 −

√
ρ33|3〉.

(18)

constitute the optimal decomposition of ρ in Eq. (15) giving Ca(ρ) = C∞

a (ρ). Such quantum

states all belongs to the polyhedron in Fig. 1.

Example 2. Consider an n-dimensional state ρ =
∑n

i,j=1 ρij|i〉〈j| such that

n−1
∑

k=1

pkf(k) + p0 = ρij/
√
ρiiρjj, i < j, (19)
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FIG. 1: (Color online) Quantum states in this polyhedron satisfy four inequalities: r1+r2+r3+1 ≥

0, r1 − r2 − r3 + 1 ≥ 0, r2 − r1 − r3 + 1 ≥ 0 and r3 − r1 − r2 + 1 ≥ 0. The coherence of assistance

attains the regularized coherence of assistance for these quantum states.

holds for some probabilities pk, where f(k) = 1 for i ≤ k < j, and f(k) = −1 otherwise,

0 ≤ pk ≤ 1 for k = 0, 1, · · · , n−1. Eq. (19) is derived by inserting Eq. (8) with θ
(1)
1j = π, j =

2, · · · , n; θ(2)1j = θ
(2)
2j = π, j = 3, · · · , n; · · · ; θ(n−1)

1n = · · · = θ
(n−1)
nn = π; and other arguments

0. Therefore if n dimensional quantum state ρ satisfies Eq. (19) for some probabilities pk,

then it allows solution for Eq. (8) for some probabilities pk and θ defined above. Such

quantum state ρ satisfying Eq. (19) makes Ca(ρ) = C∞

a (ρ). For the given arguments θ
(k)
ij ,

we find the corresponding pure states are

|ψ0〉 =
√
ρ11|1〉+

√
ρ22|2〉+ · · ·+√

ρnn|n〉,
|ψ1〉 = −√

ρ11|1〉+
√
ρ22|2〉+ · · ·+√

ρnn|n〉,
|ψ2〉 = −√

ρ11|1〉 −
√
ρ22|2〉+ · · ·+√

ρnn|n〉,
· · ·

|ψn−1〉 = −√
ρ11|1〉 −

√
ρ22|2〉+ · · · − √

ρn−1,n−1|n− 1〉+√
ρnn|n〉.

(20)

Then {pk, |ψk〉} constitutes an optimal decomposition of ρ with P = (p0, p1, · · · , pn)t the
solution of Eq. (19) and {|ψk〉} in Eqs. (20).

As coherence of assistance Ca(ρ) is the maximal relative entropy coherence obtained with
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the help of another party making local measurement and one way classical communication

in one copy setting. It can be increased more generally in many copy setting. For quantum

state ρ, the equality Ca(ρ) = C∞

a (ρ) means to increase the relative entropy coherence in one

copy setting is equivalent to the result in many copy setting. Therefore, many copy setting

and joint measurement of assistant is redundant.

By theorem 2 we have presented some classes of quantum states whose coherence of

assistance Ca(ρ) reaches regularized coherence of assistance C∞

a (ρ), together with the cor-

responding optimal pure state decompositions for each class of quantum states. Based on

these results, the protocol of obtaining the maximal relative entropy coherence with the help

of assistant using local measurement and one way communication can be schemed explicitly.

As an example let us consider the three dimensional quantum state given by Eq. (15), de-

noted as ρB, which is held by Bob. As a purification we first prepare a pure entangled state

|ψ〉AB =
∑3

i=0 |i〉A|ψi〉B, with {|ψi〉}3i=0 given in Eqs. (18). Then Alice performs optimal von

Neumann measurements on the basis {|i〉A}. If Alice’s part is projected to state |i〉A, the
state of Bob will be collapsed to |ψi〉B, with relative entropy coherence S(∆(ρB)). After re-

ceiving Alice’s measurement outcomes via classical communication channel, Bob can obtain

his state in a four-state ensemble that each state has the same relative entropy coherence

S(∆(ρB)). Therefore the final relative entropy coherence for Bob is S(∆(ρB)), which is the

maximal relative entropy coherence he can get in this one way assisted protocol.

III. CONCLUSIONS

To summarize, we have investigated the saturation of the coherence of assistance Ca(ρ)

with its upper bound regularized coherence of assistance C∞

a (ρ). Necessary and sufficient

conditions have been provided. Especially, for some special quantum states in two dimen-

sional, three dimensional and general high dimensional systems, the optimal decompositions

for the coincidence of Ca(ρ) and C
∞

a (ρ) have been presented. And the corresponding optimal

protocol of obtaining the maximal relative entropy coherence with the help of assistant using

local measurement and one way communication has been schemed. These results are of sig-

nificant implications in two folds. Firstly, the equality Ca(ρ) = C∞

a (ρ) implies the additivity

of coherence of assistance Ca(ρ). We have investigated which kind of quantum states allow

the coherence of assistance additive mathematically. Secondly, the equality Ca(ρ) = C∞

a (ρ)
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shows the equivalence of the maximal relative entropy coherence in one way assisted protocol

in one copy setting and that in many copy setting. Here we have revealed the conditions for

which kind of quantum states the maximal relative entropy coherence obtained in one way

assisted protocol with one copy setting is enough.

Note that coherence of assistance Ca(ρ) is the maximal relative entropy coherence attained

with the help of another part by local measurements and one way communication in one copy

setting, while the relative entropy coherence is in fact the distillable coherence. Therefore,

coherence of assistance Ca quantifies the one way coherence distillation rate with the help of

another part in one copy setting. In many copy setting, higher one way coherence distillation

rate can be obtained. In average C∞

a (ρ) characterizes the one way coherence distillation

rate in infinite copy setting. The equality Ca(ρ) = C∞

a (ρ) shows the equivalence of one way

distillation rate in one copy setting and the one way distillation rate in many copy setting

assisted by another party. In Ref. [16], an experimental realization in linear optical system

for obtaining the maximal relative entropy coherence for two dimensional quantum states

in assisted distillation protocol has been presented. Their results are based on one copy

setting as the optimal distillable rate of two dimensional quantum states can be reached

with one copy scenario. Our research may help for assisted distillation of coherence in high

dimensional systems experimentally.
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