
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Tree tensor network approach to simulating Shor's
algorithm

Eugene Dumitrescu
Phys. Rev. A 96, 062322 — Published 20 December 2017

DOI: 10.1103/PhysRevA.96.062322

http://dx.doi.org/10.1103/PhysRevA.96.062322


A tree tensor network approach to simulating Shor’s algorithm

Eugene Dumitrescu1,2

1Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831
2 Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996

Constructively simulating quantum systems furthers our understanding of qualitative and quanti-
tative features which may be analytically intractable. In this letter, we directly simulate and explore
the entanglement structure present in the paradigmatic example for exponential quantum speedups:
Shor’s algorithm. To perform our simulation, we construct a dynamic tree tensor network which
manifestly captures two salient circuit features for modular exponentiation. These are the natural
two-register bi-partition and the invariance of entanglement with respect to permutations of the
top-register qubits. Our construction help identify the entanglement entropy properties, which we
summarize by a scaling relation. Further, the tree network is efficiently projected onto a matrix
product state from which we efficiently execute the quantum Fourier transform. Future simulation
of quantum information states with tensor networks exploiting circuit symmetries is discussed.

Introduction.— Tensor networks (TN) are graphical
data structures consisting of nodal tensors, with elements
related to basis amplitudes, and indexed edges which rep-
resent the physical and virtual degrees of freedom of a
quantum system. In certain cases, the observables of
large systems can efficiently calculated by utilizing TN
decompositions of a quantum state [1]. TNs have been
espeically successful in identifying the ground states of
local Hamiltonians in low-dimensional condensed matter
systems [2, 3]. In this work, we turn our attention to
the simulation of quantum information theoretic systems
[4–7] by introducing a tensor network.

Besides calculating observables, tensor network pro-
vide explicit insight into entanglement structure, which
differs vastly based on dimensionality and criticality[3,
8, 9]. However, finding an optimal tensor network rep-
resentation for a given system is not a simple task. For
example, no generally efficient methods exist for d ≥ 2
dimensional systems [1].

While lattice geometries are natural for condensed
matter systems, dimensionality and local geometry are
ill-defined quantities for states generated by logical quan-
tum circuits on abstract registers of qubits. However,
quantum algorithms do have important structural and
symmetric properties. Thus, motivated by the algorith-
mic structure and entanglement invariance with respect
to permutation of qubits in the modular exponentiation
step, we construct a bipartite tree tensor network (TTN)
naturally suited to simulating Shor’s algorithm. Our nu-
merical analysis verifies the volume law scaling relation
given by Eq. 2.
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While impossible to efficiently simulate general quan-
tum algorithms, tensor networks tailored to quantum al-
gorithms increases the size and complexity of classically
simulable systems; in our case, 39 qubit Shor wavefunc-
tions were constructed on a laptop computer. Such sim-
ulations are of practical interest for benchmarking noisy
near term quantum experiments [10, 11] and may have
some bearing on long term quantum phase estimation or
hidden subgroup algorithms (i.e. the TN constructed in
this work is generalizable to period finding algorithms
with inter-register entanglement generated as illustrated
in Fig. 1)[12].
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FIG. 1. Schematic of Shor’s algorithm with the ME (QFT)
components highlighted in yellow (blue) boxes. Eq. 1 de-
scribes the state of the system one time-step before the bot-
tom register measurements proceeding the ME sub-circuit.

Shor’s Wavefunction.— We first outline the logical op-
erations comprising Shor’s algorithm [13] in order to de-
velop an intuition for the form of an appropriate tensor
network. To factor a natural number N = pq, with p, q
large prime numbers, we draw a random integer x ∈ ZN

and use Shor’s algorithm [13] to find the characteristic
modular periodicity r given by xr mod N = 1. As-
suming that gcd(x,N) = 1 – in the unlikely case that
x = p or q, N is trivially factored – one initializes 2l (l)
qubit top (bottom) register, for a total of 3l qubits, where
l = log2(N) is the number of bits required to represent
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N . The top register is initialized into the product state

|+〉⊗2l = 1/(
√

2)2l
∑22l−1

i=0 |i〉 while the bottom register
is initialized as |1〉 which is the integer basis representa-
tion of the computational basis state |0, 0, ..., 0, 1〉. We
represent the bottom register in the integer basis for the
remainder of this letter. The composite initial product
state is thus |Ψi〉 = |+〉⊗2ltop ⊗ |1〉bot.

The modular exponentiation (ME) unit (see Fig. 1
yellow box) entangles each top register qubit with the
entire bottom register via controlled modular multipli-
cation operators U ≡ U(x,N). The operator U is a
rank 2 tensor with dimensions 2l × 2l and matrix ele-
ments satisfying U |b〉 = |xb mod N〉. Powers of U2i are
generated by i iterative matrix multiplications. Upon
application of the last controlled operator, the state

reads |Ψ〉 = 2−l
∑22l−1

i=0 |i〉 ⊗ |xi mod N〉. Because xr

mod N = 1 we may group together like bottom register
basis vectors and write the state as

|Ψ〉 =
1√
r

r−1∑
i=0

d(22l−1)/re∑
j=0

|jr + i〉

⊗|xi mod N〉. (1)

The entanglement growth across arbitrary bipartitions
is exponential in the smaller bi-partition qubit volume.
The growth saturates at a critical scale which is propor-
tional to the modular periodicity. Using the structure
and symmetries present in Shor’s factoring quantum cir-
cuit, we construct a unique tensor network.

Bipartite tensor network complexity.— Eq. 1 is by def-
inition a bipartite Schmidt decomposition between the
two registers and reveals several interesting features. We
see |Ψ〉 is r-entangled across the bipartition, that is, the
Schmidt coefficient 1/

√
r appears r times. In the worst

case r ∼ O(N) so the inter-register entanglement scales
exponentially in the number of qubits l [14]. The equal-
ity of all Schmidt coefficients also foreshadows different
correlations scaling compared to ground states of local
Hamiltonians, which have exponentially (or power-law)
decaying correlations. Eq. 1 also demonstrates that it is
natural to decompose |Ψ〉 across the inter-register bipar-
tition, and we shall retain this feature in our tree network.

The quantum Fourier transformation is known to be
efficiently simulable [15, 16], suggesting that the non-
trivial part of the computation occurs during the modular
exponentiation step. We thus pose the following ques-
tion: what are the entanglement properties of the basis

state
∑d(22l−1)/re

j=0 |jr + i〉? The top register qubits are
clearly entangled with one another via their interaction
with the bottom register. We therefore know from Eq. 1
that r sets an upper bound on the amount of entangle-
ment. Below we elucidate the entanglement properties of
the top register basis states by developing a tensor net-
work representation whose geometry is consistent with
the inter-register bipartition and, more importantly, by
the permutational invariance of the top register qubits.

A first attempt at a tensor network was performed in
Ref. 7, which treats the bottom register as a qudit lying

at one end of a MPS. The ME algorithm was performed
by contracting two-local controlled modular multiplica-
tion gates along with a series of swap gates. In doing
so, the complexity of storing the state is reduced from
O(23l) → O(2lr) + const with the a constant given by∑

j 2 ∗ d(j)l d
(j)
r where d

(j)
l(r) are the virtual bond dimen-

sions to the right and left of the jth top register qubit.
While this approach was successful in simulating Shor’s
algorithm, artificially large virtual bond dimensions were
generated by successive swap operations. This leads to

a situation where d
(j)
l(r) = r for many bonds when, as we

shall see, few virtual bonds of that size are necessary.
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FIG. 2. Intermediate virtual networks for (b-d) between the
application of a controlled modular multiplication gate (a)
and the updated tree network (e). Red (black) lines denote
physical (virtual) degrees of freedom. The thick red line at
the base of the tree denotes the 2l dimensional qudit bottom
register state. Top register qubits are represented by thin
red lines at the bottom of the tree. The dashed black line
denotes the bipartition defined by Eq. 1. The scissors icon
and dashed purple lines (purple box) denote the bipartition
chosen for tensor decompositions (contraction) generating the
next tree configuration.

Tree Generation Algorithm.— We now introduce a nat-
ural tensor network which maintains the inter-register
bipartition and distributes entanglement in an unbiased
manner. This network is dynamically constructed by fol-
lowing the ME sub-circuit, as shown in Fig. 1, with in-
termediate virtual updates performed, as shown in Fig. 2
and discussed below, in between circuit operations. Our
construction algorithm goes as follows. (i) Contract the

ith controlled U2i operator with the ith single qubit |+〉
tensor and the current bottom qudit state as shown in
panel (a). (ii) Perform internal operations updating and
generating virtual indices. This cascades the ith qubit
from the tree root (i.e. directly connected to the bot-
tom register) to a new bottom tree branch as illustrated
in panels (b − e). Repeat the procedure for all qubits
indexed by i ∈ Z2l.
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The internal updates consists of the following steps:

(i) After applying a controlled U2i gate, a SVD sepa-
rates the ith qubit from the root qudit (Fig. 2 panel (b)).
The ith qubit is maximally entangled with the bottom
register via a χ = 2 dimensional auxiliary edge with sin-
gular values ( 1√

2
, 1√

2
) (ii) Generate the new inter-register

entanglement bond by performing an SVD between the
bottom register and its local complement formed by the
union of the new qubit and the previous tree root as in-
dicated by the dashed purple line in panel (b). Recall
that this bond’s dimensionality eventually saturates at
r. (iii) The tensors encircled by the purple box in panel
(c) are contracted in order to ‘lower’ the qubit through
the tree before, (iv) another SVD along a bipartition,
which is chosen to direct the qubit through a specific
path, is performed. Step (iv) is identical to step (ii) but
occurs further down the tree. Repeat steps (iii,iv) until
each qubit settles into its final location at the bottom
of the tree. An example of a final tree configuration is
illustrated in Fig. 3.

Note that the choice of a binary tree is arbitrary and
that the entanglement features discussed in the next sec-
tion hold for aribtrary tree data structure. Also note that
the number of virtual updates cascading the ith qubit is
clearly upper bounded by final tree depth. Since the final
tree depth is logarithmic in the number of qubits, that
is with depth dlog2(2l)e, the tree construction procedure
is efficient. This trade-off can be compared to that in
an MPS based simulation for which at least 2l swaps are
performed. Thus, a logarithmic number of updates to
generate an unbiased and natural representation of the
state is well justified and we now discuss the emergent
entanglement properties.
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FIG. 3. Tree tensor network decomposition of |Ψ〉 from Eq. 1
for an l = 12 size system with N = 3403 = 41× 83, x = 346,
and cyclic order r = 410. Edges widths are log2(di)+1 where
di is the ith bond dimension which has been labeled. Top
qubit (qudit) physical degrees of freedom appear as red edges
along the bottom (top). Highlighted regions are entangled to
their complement by a common parent branch whose dimen-
sion follows Eq. 2

Entanglement Features.— After cascading all qubits,
the tree tensor network exactly encodes the wavefunction
appearing in Eq. 1. The entanglement structure for the

top register, not apparent in Eq. 1, is now revealed by the
holographic dimension [19] constructed by our virtual up-
dates. In our analysis we use the Schmidt number, given
by the bond dimension of the virtual index connecting bi-
partitions, as the metric for shared entanglement. This
is an appropriate metric because, unlike ground states of
local Hamiltonians which have exponential or power-law
decaying Schmidt coefficients, the Schmidt coefficients
are equal in magnitude. Thus the Schmidt number com-
pletely describes the entanglement which can therefore
be visualized as done in Fig. 3, where the drawn bonds
are weighted as log2 (di) + 1, where di is the local bond
dimension which is also labeled.

At the bottom tree level where qubits first connect to
their parent branches all qubits are maximally entangled
to the rest of the network, with equal Schmidt coefficients
λ0 = λ1 = 1√

2
. At the next level, all pairs of qubits

(e.g. Fig. 3 blue highlighted qubits) are still maximally
entangled with their complement, i.e. with degenerate
Schmidt coefficients λi = 0.5 for i = (0, 1, 2, 3). This
trend, with clusters of 2n qubits maximally entangled to
the rest of the state by 2n identical Schmidt coefficients
(e.g. Fig. 3 cluster of 4 green highlighted qubits, and
so on) continues up to a critical size, at which point the
entanglement rapidly saturates.

The qubit cluster size at which the entanglement scal-
ing saturates depends on which qubits are selected and
is either lr = dlog2(r)e or lr̃ = dlog2(r̃)e, where r̃ = r/2m

and m is the largest integer such that 2m divides r. The
critical length scale, specific to the choice of N and x
determining r, can be understood by the following argu-
ments. The r dimensional tree root bond mediates the
r-fold entanglement across the register bipartition as per
Eq. 1. Further, r constrains the intra-register entangle-
ment because all entanglement between qubits, stored in
the bulk, was generated by controlled modular multipli-
cation gates acting solely on the qudit. Descending from
the tree root, bond dimensions decrease from r to either
r̃, or powers of 2 less than r, r̃. An example is provided
by Fig. 3 (a) where we have illustrated the final tree gen-
erated for N = 3403. Thus the entanglement scales as:

S =

{
2n, if n < lr(r̃)
r(r̃), otherwise

(2)

where n refers to the number of qubits and the saturation
dimension, r vs r̃, depends on whether qubits belong to
the first lr qubits (as seen from left to right in Fig. 3)
or to the remainder of the register. Eq. 2 defines a class
states whose entanglement is reminiscent of quantum er-
ror correcting codes with entanglement set by a distance
d for [[n, k, d]] codes [20].

We now address the seemingly strange feature of why
the first lr qubits are more entangled than the others.
Note modular exponentiation with at least lr qubits is
needed to generate the r-fold basis vectors on either side
of the register bipartition. Modular exponentiation with
the remaining qubits extends the orthonormal basis vec-
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tors |jr + i〉 as the Hilbert space grows, leaving the bi-
partite entanglement at order r. To understand why the
latter qubits are less entangled than the former, consider

a single orthonormal Schmidt vector
∑d(22l−1)/re

j=0 |jr+i〉.
The qubits are projected into such a state upon the mea-
surement of the bottom register qudit. Since r = 2mr̃
(if r is odd the algorithm restarts with a different x) and
i < r, the last m bits for each jr + i〉 are the identi-
cal. Qubits 1 − m are therefore disentangled from the
remaining state, and the remaining entanglement now
follows the scaling law in Eq.2 saturating at r̃. Fig 3 (b)
illustrates this point by re-plotting the tree after a qudit
measurement and bond updates are performed. Note the
changes in the bond dimensions along the left side of the
tree.
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FIG. 4. Entanglement as quantified by MPS auxiliary bond
dimensions for an N = 1763, l = 12 system . The virtual
bond dimensions and entanglement grows exponentially be-
tween adjacent bipartitions for the first few sites from both
the left and right end points and is saturated in the bulk of
the system by the characteristic modular periodicity r̃.

MPS conversion and interpretation.— We now briefly
comment on the conversion of a tree network to a MPS
network, which is useful in simulating Shor’s algorithm
in its entirety, due to an efficient representation of the
QFT component for MPS systems [7, 15, 16]. A com-
putational basis state measurement Mi (illustrated by
the nodes indexed (i1, ..., il) in Fig. 1) projects the qudit
register onto a basis state |i〉 from Eq. 1. We can proba-
bilistically simulate this measurement by contracting the
bottom register tensor with basis states |i′〉 to find non-
zero matrix elements and then choose one randomly, with
each measurement outcome being equally probable.

A series of virtual updates now reduce the tree net-
work into the MPS form. The first (leftmost) first qubit
in Fig 3 is already in the MPS form because a single
tensor connects a physical and virtual degree of freedom.
We proceed by selecting the next qubit and contracting
its parent bonds until it connects to the virtual degree
of freedom to the right of qubit 1. After contracting the
parent bonds of qubit 3, a decomposition is performed
to its right in order to generate a virtual MPS bond not
connected to qubit 4. This procedure is iteratively re-
peated for all remaining qubits, at which point the re-
sulting network is an MPS. Again, the number of updates
is bounded by the number of qubits and the logarithmic
tree depth.

Inspecting the MPS virtual Schmidt coefficients pro-
vides a complimentary perspective to that provided by
Fig. 3. In Fig. 4 we plot the virtual bond dimensions

across the MPS network for 24 simulations involving the
same N = 1763 with x randomly chosen. Many dis-
tinct x balues share the same order rx, so their entangle-
ment spectrums are superimposed. The MPS spectrum
in Fig. 4 verifies the entanglement scaling described by
Eq. 2, namely, (i) the first m qubits are disentangled, (ii)
entanglement grows exponentially up to a critical length
scale, and (ii) the entanglement saturates at the scale
r̃ ≡ r/2m.

Discussion and conclusion.— Previous works apply-
ing TNs to quantum algorithms have either abstractly
studied of the complexity of TNs as they relate to quan-
tum algorithms[5, 6], or have directly simulated circuits
using conventional TNs [7]. Going beyond this work,
we have explicitly generate a tree tensor network using
properties of Shor’s algorithm. Our construction pro-
ceeded by contracting the ME controlled-U gates into the
TN and performing a logarithmic number of virtual up-
dates. A prevalent visible entanglement feature was the
fully broadened spectrum of the Schmidt coefficients at
all virtual cuts [14]. We also saw that the Schmidt rank
across (global) system bipartitions scaled exponentially
in the minimum number of qubits enclosed until satu-
ration at critical threshold log2(r̃), where r̃ ∝ r. The
volume entanglement scaling violates the entanglement
area law and is like that recently observed in restricted
Boltzmann neural networks [21].

Our construction is useful because it provides a sim-
ple and intuitive inspection of the quantum features for
wavefunctions which involved in the famous exponential
quantum speedup. In doing so, our calculation re-affirms
the difficulty in classically simulating Shor’s algorithm.
Further, due to the broad Schmidt spectrum, typical TN
truncation techniques do not apply to our system. It
is therefore interesting to consider alternative approxi-
mations. For example, a first approximation could be
performed by simply eliminating a random set ratio of
the bottom register basis vectors to enforce polynomial
scaling. This would deform the modular multiplication
operators and generate a state similar to Eq. 1 except
coefficients having support on, the remaining basis vec-
tors. However we anticipate the coherence of the modular
periodicity r states would be destroyed by such methods.

Recently, quantum computing devices have suc-
cessfully scaled to intermediate system sizes in at-
tempt to tackle problems at the edge of classically
intractability[10, 11]. In order to validate the progress of
quantum hardware, it is important to extend the reach of
classical algorithms (as long as possible), especially when
validation cannot be performed by conventional method-
ologies, e.g. with exponentially scaling state tomography.
Our TN construction thus provides a powerful method-
ology for the verification of constantly growing quantum
computations. For example, unitary noise can be directly
simulated by biasing the unitary gates involved in the cir-
cuit away from their ideal description or by stochastically
sampling additionally noisy unitary operations to model
dephasing channels [22].
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