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Hypergraph states are generalizations of graph states where controlled-Z gates on edges are re-
placed with generalized controlled-Z gates on hyperedges. Hypergraph states have several advan-
tages over graph states. For example, certain hypergraph states, such as the Union Jack states, are
universal resource states for measurement-based quantum computing with only Pauli measurements,
while graph state measurement-based quantum computing needs non-Clifford basis measurements.
Furthermore, it is impossible to classically efficiently sample measurement results on hypergraph
states unless the polynomial hierarchy collapses to the third level. Although several protocols have
been proposed to verify graph states with only sequential single-qubit Pauli measurements, there
was no verification method for hypergraph states. In this paper, we propose a method for verifying
certain class of hypergraph states with only sequential single-qubit Pauli measurements. Impor-
tantly, no i.i.d. property of samples is assumed in our protocol: any artificial entanglement among
samples cannot fool the verifier. As applications of our protocol, we consider verified blind quantum
computing with hypergraph states, and quantum computational supremacy demonstrations with
hypergraph states.

I. INTRODUCTION

Many-point correlations in quantum many-body sys-
tems are one of the most essential ingredients in
condensed-matter physics and statistical physics. Corre-
lations of sequential single-qubit measurements on quan-
tum states are also important drive forces for quantum in-
formation processing. For example, measurement-based
quantum computing [1], which is nowadays one of the
standard quantum computing models, enables univer-
sal quantum computing with only adaptive single-qubit
measurements on certain quantum states, such as graph
states [1] and other condensed-matter-physically moti-
vated states including the AKLT state [2–17]. Further-
more, not only adaptive but also non-adaptive single-
qubit measurements on graph states can demonstrate a
quantumness which cannot be classically efficiently simu-
lated: it is known that if probability distributions of non-
adaptive sequential single-qubit measurements on graph
states are classically efficiently sampled, then the poly-
nomial hierarchy collapses to the third level [18–20] or
the second level [21]. The polynomial hierarchy is a hier-
archy of complexity classes generalizing P and NP, and
it is not believed to collapse in computer science. It is
an example of recently well studied “quantum computa-
tional supremacy” of sub-universal quantum computing
models, which are expected to be easier to experimentally
implement, but can outperform classical computing. (For
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details, see Refs. [18–24] and their supplementary mate-
rials.)

For practical implementations of measurement-based
quantum computing and experimental demonstrations
of quantum computational supremacy, verifying graph
states is essential, since in reality a generated state can-
not be the ideal graph state due to some experimen-
tal noises. The problem becomes more serious if we
consider delegated secure quantum computing, so called
blind quantum computing [25, 26]. It is known that the
ability of sequentially measuring single qubits is enough
to secretly delegate quantum computing to a remote
server [27, 28]. The honest server sends each qubit of
a graph state one by one to the user, and user can real-
ize any quantum computing with only sequential single-
qubit measurements. If the server is malicious, how-
ever, a completely wrong state might be sent to the user.
The user therefore needs to test the state sent from the
server. In such a quantum cryptographic scenario, the
situation is worse than the single-party laboratory ex-
periments, since the noises on the given state are caused
by malicious servers and therefore not necessarily phys-
ically natural ones. Several methods of verifying graph
states with only sequential single-qubit Pauli measure-
ments have been proposed [28, 30]. (If more than two
non-communicating servers are available, a completely
classical user can verify stabilizer states [31–33].) In the
protocol of Ref. [28], the user does a test so called the
stabilizer test on some parts of the state sent from the
server. The stabilizer test can be done with only sequen-
tial single-qubit Pauli measurements. If the user passes
the test, the remaining state is guaranteed to be close to
the ideal graph state.

Since the protocol of Ref. [28] makes no assumption
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(such as the i.i.d. sample or physically natural noises) on
the given state, the verification method can be used in
quantum cryptographic contexts. In particular, verified
blind quantum computing and verified quantum compu-
tational supremacy demonstrations can be realized with
graph states verified through the protocol. There are,
however, two problems. First, in the verified blind pro-
tocol of Ref. [28], the user needs non-Clifford basis mea-
surements for computing (the verification itself can be
done with only Pauli measurements). It would be bet-
ter if both the verification and the computation can
be done with only Pauli measurements [34]. Second,
the quantum computational supremacy demonstration
with graph states [18], which needs only non-adaptive
measurements, requires somehow a strict approximation,
namely a multiplicative-error approximation.

Recently, two breakthroughs that solve these draw-
backs of graph states have been done. These results
use hypergraph states [35–39] in stead of graph states.
(For the definition of hypergraph states and their prop-
erties, see below.) First, certain hypergraph states, such
as the Union Jack states, are universal resource states for
measurement-based quantum computing with only Pauli
measurements [40]. This result solves the first problem,
namely, the requirement of non-Clifford basis measure-
ments for the user. Therefore, by using the hypergraph
states, the one-way secure delegated quantum computing
is possible for the user who can do only Pauli measure-
ments. Ref. [40] also pointed out that hypergraph states
are important in the study of symmetry-protected topo-
logical orders. Second, it was shown in Ref. [19] that if
hypergraph states are considered, the multiplicative error
requirement can be replaced with an L1-norm one, which
is more relaxed. This result solves the second problem.

In short, hypergraph states are promising novel re-
source states for many quantum information processing
tasks. However, how can we verify hypergraph states?
Without any verification, the above advantages of hyper
graph states cannot be enjoyed. The verification protocol
of Ref. [28] can be applied to only bipartite graph states,
and therefore useless for general hypergraph states. Re-
cently, a protocol of verifying Union-Jack states was pro-
posed [29]. They also mention that their protocol can be
generalized to other hypergraph states. Their protocol,
however, assumes i.i.d. property of samples.

In this paper, to solve the problem, we invent a new
test for general hypergraph states, and, by using it, intro-
duce a new protocol for verifying certain class of hyper-
graph states. Our protocol needs only sequential single-
qubit Pauli measurements. Neither quantum memory
nor entangling gate operation is necessary. Furthermore,
our protocol makes no assumption on the i.i.d. prop-
erty of samples: any malicious and artificial entangle-
ment among samples cannot fool the verifier. As applica-
tions of our protocol, we consider verified blind quantum
computing with hypergraph states, and verified quantum
computational supremacy demonstrations of IQP with
hypergraph states.

Note that our protocol works only for the class of hy-
pergraph states such that at most constant number of
generalized CZ gates are applied on every qubit. As
we will see later, however, the class contains several
useful hypergraph states such as the Union Jack states
for measurement-based quantum computing and output
states of IQP circuits. We leave the generalization for a
future study.
The idea of decomposing CZ gates into Pauli opera-

tors, which we use in our protocol, was also considered
in Ref. [37] to study non-locality of hypergraph states.

II. HYPERGRAPH STATES

We first define hypergraph states, and explain their
properties. A hypergraph G ≡ (V,E) is a pair of a set
V of vertices and a set E of hyperedges, where n ≡ |V |.
A hyperedge may link more than two vertices. For sim-
plicity, in this paper, we assume that 2 ≤ |e| ≤ 3 for all
e ∈ E, where |e| is the number of vertices linked to the
hyperedge e. (Generalizations to other cases would be
possible.) Let

|G〉 ≡
( ∏

e∈E

C̃Ze

)
|+〉⊗n

be the hypergraph state corresponding to the hypergraph
G, where

C̃Ze ≡
⊗

i∈e

Ii − 2
⊗

i∈e

|1〉〈1|i

is the generalizedCZ gate acting on vertices in the hyper-
edge e. Here, I is the two-dimensional identity operator.
For example, if |e| = 2, it is nothing but the standard
CZ gate. If |e| = 3, it is the CCZ gate,

CCZ ≡ (I⊗2 − |11〉〈11|)⊗ I + |11〉〈11| ⊗ Z.

The stabilizer gi of |G〉 associated with the vertex i is
defined by

gi ≡
( ∏

e∈E

C̃Ze

)
Xi

( ∏

e∈E

C̃Ze

)

= Xi

( ∏

j∈WZ

i

Zj

)( ∏

(j,k)∈WCZ

i

CZj,k

)
,

where

WZ
i ≡ {j ∈ V | (i, j) ∈ E},

WCZ
i ≡ {(j, k) ∈ V × V | (i, j, k) ∈ E}.

It is easy to check that the following properties are sat-
isfied:

[gi, gj ] = 0

gi|G〉 = |G〉

g2i = I⊗n

n∏

i=1

I⊗n + gi
2

= |G〉〈G|.
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III. STABILIZER TEST FOR gi

Before introducing our verification protocol, we define
the stabilizer test for each gi, which is an essential ingre-
dient of the protocol. Note that

CZj,k =
1

2
(Ij ⊗ Ik + Ij ⊗ Zk + Zj ⊗ Ik − Zj ⊗ Zk).

Therefore

gi = Xi

( ∏

j∈WZ

i

Zj

)( 1

2r

∑

t∈{1,2,3,4}r

∏

(j,k)∈WCZ

i

σj,k(tj,k)
)

=
1

2r

∑

t∈{1,2,3,4}r

st,

where

r ≡ |WCZ
i |,

t ≡ {tj,k}(j,k)∈WCZ

i

,

σj,k(1) ≡ Ij ⊗ Ik,

σj,k(2) ≡ Ij ⊗ Zk,

σj,k(3) ≡ Zj ⊗ Ik,

σj,k(4) ≡ −Zj ⊗ Zk,

st ≡ Xi

( ∏

j∈WZ

i

Zj

)( ∏

(j,k)∈WCZ

i

σj,k(tj,k)
)
.

Let us define a bit αt ∈ {0, 1} and a subset Dt ⊆ V such
that

st = (−1)αtXi

( ∏

j∈Dt

Zj

)
.

Note that αt andDt can be calculated in polynomial time
(see Appendix A). (αt and Dt actually depend on i, but
for simplicity, we omit it.)
Let ρ be an n-qubit state. We define the “stabilizer

test for gi on ρ” as the following Alice’s action:

1. Alice randomly generates t ∈ {1, 2, 3, 4}r.

2. She measures ith vertex of ρ in X , and jth vertex
of ρ in Z for all j ∈ Dt.

Let x ∈ {+1,−1} be the measurement result of the X
measurement, and zj ∈ {+1,−1} be that of the Z mea-
surement on vertex j ∈ Dt. We say that Alice passes the
stabilizer test for gi on ρ if

x
∏

j∈Dt

zj = (−1)αt .

The probability ptest,i that Alice passes the stabilizer
test for gi on ρ is

ptest,i ≡
1

4r

∑

t∈{1,2,3,4}r

Tr
(
ρ
I⊗n + st

2

)
=

1

2
+

Tr(ρgi)

2r+1
.

Here we can see that if r = poly, then ptest,i = 1
2 +

O(2−poly), which means that exponentially many mea-
surements are required to gain useful information about
Tr(ρgi). It suggests that our verification method does
not work if r = poly.

IV. VERIFICATION PROTOCOL

We now explain our verification protocol. Bob sends
Alice an n(nk+1+m)-qubit state Ψ, where k = 22r+3n7

and m ≥ 2n7k2 ln 2. The state Ψ consists of nk + 1 +m
registers (Fig. 1). Each register stores n qubits. (If Bob
is honest, every register is in the state |G〉. If Bob is ma-
licious, on the other hand, Ψ can be any n(nk + 1+m)-
qubit entangled state.) Alice randomly permutes regis-
ters and discards m registers. (As we will see later, this
random permutation and discarding of some registers are
necessary to guarantee that the remaining state is close
to an i.i.d. sample by using the quantum de Finetti the-
orem [41].) Let Ψ′ be the remaining state. The state
Ψ′ consists of nk + 1 registers. She chooses one register
from Ψ′, which is used for the measurement-based quan-
tum computing. We call the register computing regis-
ter. The remaining nk registers of Ψ′ are divided into n
groups. Each group consists of k registers. The stabilizer
test for gi is performed on every register in the ith group
for i = 1, 2, ..., n. (Note that Alice does not need to do
the permutation “physically”, which requires a quantum
memory. Bob just sends each qubit of Ψ one by one to
Alice, and Alice randomly chooses her action from the
test, discarding, or computation.)
Let Ki be the number of times that Alice passes the

stabilizer test for gi, i.e. the random variable to describe
the number of Alice’s observation of the event

1

4r

∑

t

I⊗n + st
2

.

If

Ki

k
≥

1

2
+

1− ǫ

2r+1
,

we say that the ith group passes the test. Here, ǫ = 1
2n3 .

If all groups pass the test, we say that Alice accepts Bob.

test for g
1

test for g
2

test for g
3

MBQC

FIG. 1: An example for n = 3, k = 2, m = 5. Each square
represents a register that stores n qubits. Registers repre-
sented by black squares are discarded.

The main results of the present paper are the following
two items:
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1. Completeness: if every register of Ψ is in the state
|G〉, then the probability that Alice accepts Bob is larger
than 1− ne−n.
2. Soundness: if Alice accepts Bob, the state ρcomp of

the computing register satisfies

〈G|ρcomp|G〉 ≥ 1−
1

n

with a probability larger than 1− 1
n
.

Proofs are given in Appendix B and C.

V. APPLICATIONS

To conclude this paper, we discuss two applications
of our results. First, our verification protocol can be
used in verified blind quantum computing. Blind quan-
tum computing [25] is a secure quantum computing pro-
tocol where Alice, who does not have enough quantum
technology, can delegate her quantum computing to Bob,
who has a full-fledged quantum computer, without leak-
ing any her privacy. Several verification protocols have
been proposed that enable Alice to check the correct-
ness of Bob’s quantum computing [26, 28]. In particular,
in the protocol of Ref. [28], Bob sends each qubit of the
graph state to Alice one by one, and Alice checks the cor-
rectness of the graph state by measuring stabilizer oper-
ators. However, in the protocol, Alice needs non-Clifford
basis measurements to implement quantum computing
(note that the verification itself can be done with only
Pauli measurements). If Bob sends Alice the Union Jack
state [40] in stead of the graph state, for example, Alice
needs only Pauli measurements for both the verification
and the computation, which is a great advantage over the
previous protocols. The verification protocol introduced
in this paper can be used to verify the Union Jack state.
The second application of our verification protocol is

the verified quantum computational supremacy demon-
stration of sub-universal quantum computing. It was
shown in Ref. [19] that, for several hypergraph states,
if there exists a classical sampler that outputs z with
probability qz such that

∑

z∈{0,1}n

|pz − qz| ≤
1

192
,

then the polynomial hierarchy collapses to the third level.
Here, pz is the probability of obtaining the result z ∈
{0, 1}n when certain single-qubit measurements are done
on an n-qubit hypergraph state. Since the collapse of
the polynomial hierarchy is not believed to happen, the
result suggests the “quantumness” of hypergraph states
that cannot be classically simulated. However, in reality,
not the ideal hypergraph states but some noisy ones are
available in laboratories. Here, we show that the verified
state ρcomp via our protocol is enough to demonstrate
the same quantum advantage. In fact, let us assume that

there exists a classical sampler such that

∑

z

|p′z − qz| ≤
1

192
,

where p′z is the output probability distribution of the
single-qubit measurements on ρcomp. Then, from the tri-
angle inequality,

∑

z

|pz − qz| ≤
∑

z

|pz − p′z|+
∑

z

|p′z − qz|

≤ o(1) +
1

192
,

which means that the classical sampler can also sample
pz with the ∼ 1/192 L1-norm error, and therefore the
polynomial hierarchy collapses.
For example, the hypergraph states that are outputs

of IQP circuits corresponding to the non-adaptive Union
Jack state measurement-based quantum computing [40]
can be used for that purpose. Since the non-adaptive
Union Jack state measurement-based quantum comput-
ing is universal with postselections, a multiplicative error
calculation of its output probability distribution is #P-
hard [20]. If we make the “average case vs worst case”
conjecture (as in Refs. [19, 22]) that the worst case hard-
ness can be lifted to the average case one, we obtain the
hardness of the classical constant L1-norm error sampling
of the Union Jack states with a similar proof as that of
Ref. [19].
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Appendix A: Calculation of αt and Dt

Here we show that αt and Dt can be calculated in
polynomial time.
First, αt can be calculated in the following algorithm.

1. First set αt = 0.

2. Choose (j, k). Calculate tj,k.
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3. If tj,k = 4, flip αt.

4. Repeat 2. and 3. for all (j, k) ∈ WCZ
i .

Since

|WCZ
i | ≤

(
n− 1

2

)
= O(n2),

the above algorithm takes at most polynomial time.
Next, Dt can be calculated in the following algorithm.

1. First set Dt = WZ
i .

2. Choose (j, k). Calculate tj,k.

3. Update Dt according to tj,k.

4. Repeat 2. and 3. for all (j, k) ∈ WCZ
i .

Again, |WCZ
i | ≤ O(n2) means that the algorithm takes

at most polynomial time.

Appendix B: Proof of the completeness

If every register of Ψ is in the state |G〉, then

ptest,i =
1

2
+

1

2r+1

for all i = 1, 2, ..., n. From the union bound and the
Hoeffding inequality,

Pr[Alice accepts Bob] = Pr
[ n∧

i=1

(Ki

k
≥

1

2
+

1− ǫ

2r+1

)]

≥ 1−

n∑

i=1

Pr
[Ki

k
<

1

2
+

1− ǫ

2r+1

]

= 1−

n∑

i=1

Pr
[Ki

k
< ptest,i −

ǫ

2r+1

]

≥ 1− ne−2 ǫ
2

22r+2 k.

Appendix C: Proof of the soundness

We next show the soundness. We define the n-qubit
projection operator

Π⊥
G ≡ I⊗n − |G〉〈G|.

Let T be the POVM element corresponding to the event
that Alice accepts Bob. We can show that for any n-qubit
state ρ,

Tr
[
(T ⊗Π⊥

G)ρ
⊗nk+1

]
≤

1

2n2
. (C1)

Its proof is given later. Due to the quantum de Finetti
theorem (for the one-way LOCC norm version) [41],

Tr
[
(T ⊗Π⊥

G)Ψ
′
]

≤ Tr
[
(T ⊗Π⊥

G)

∫
dµ(ρ)ρ⊗nk+1

]

+
1

2

√
2n2k2n ln 2

m

≤
1

2n2
+

1

2

√
2n3k2 ln 2

2n7k2 ln 2
=

1

n2
.

(Note that the reason why we use the version of Ref. [41]
is that other versions require exponentially many subsys-
tems to discard. The version of Ref. [41] needs only poly-
nomially many, but restricted to only one-way LOCC.
Fortunately, the one-way LOCC is enough for our pur-
pose, and therefore we can use this version.)

We have

Tr[(T ⊗Π⊥
G)Ψ

′] = Tr(Π⊥
Gρcomp)Tr[(T ⊗ I)Ψ′].

Therefore, if

Tr(Π⊥
Gρcomp) >

1

n
,

then

Tr[(T ⊗ I)Ψ′] <
1

n
,

which means that if Alice accepts Bob,

〈G|ρcomp|G〉 ≥ 1−
1

n

with a probability larger than 1− 1
n
.

Proof of Eq. (C1).— First, let us assume that
Tr(ρgi) ≥ 1 − δ for all i = 1, 2, .., n, where δ = 1

n3 . Due
to the union bound,

1− 〈G|ρ|G〉 = 1− Tr
( n∏

i=1

I⊗n + gi
2

ρ
)

≤

n∑

i=1

[
1− Tr

(
ρ
I⊗n + gi

2

)]
≤

nδ

2
.

Therefore,

Tr
[
(T ⊗Π⊥

G)ρ
⊗nk+1

]
= Tr(Tρ⊗nk)Tr(Π⊥

Gρ)

≤ 1×
nδ

2
=

1

2n2
. (C2)

Next let us assume that Tr(ρgi) < 1 − δ for at least
one i. In this case,

ptest,i =
1

2
+

Tr(ρgi)

2r+1
<

1

2
+

1− δ

2r+1
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for the i. Then, due to the Hoeffding inequality,

Tr[(T ⊗ I)ρ⊗nk+1] ≤ Pr[group i passes the test]

= Pr
[Ki

k
≥

1

2
+

1− ǫ

2r+1

]

= Pr
[Ki

k
≥

1

2
+

1− δ

2r+1
+

δ − ǫ

2r+1

]

≤ Pr
[Ki

k
> ptest,i +

δ − ǫ

2r+1

]

≤ e−2 (δ−ǫ)2

22r+2 k = e−n.

Hence

Tr[(T ⊗Π⊥
G)ρ

⊗nk+1] = Tr(Tρ⊗nk)Tr(Π⊥
Gρ)

≤ e−n × 1. (C3)

From Eqs. (C2) and (C3), for any state ρ,

Tr[(T ⊗Π⊥
G)ρ

⊗nk+1] ≤ max
( 1

2n2
, e−n

)
=

1

2n2
.
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