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While quantum speed-up in solving certain decision problems by a fault-tolerant universal quan-
tum computer has been promised, a timely research interest includes how far one can reduce the
resource requirement to demonstrate a provable advantage in quantum devices without demanding
quantum error correction, which is crucial for prolonging the coherence time of qubits. We pro-
pose a model device made of locally-interacting multiple qubits, designed such that simultaneous
single-qubit measurements on it can output probability distributions whose average-case sampling
is classically intractable, under similar assumptions as the sampling of non-interacting bosons and
instantaneous quantum circuits. Notably, in contrast to these previous unitary-based realizations,
our measurement-based implementation has two novel features. (i) Our implementation involves
no adaptation of measurement bases, leading output probability distributions to be generated in
constant time, independent of the system size. Thus, it could be implemented in principle without
quantum error correction. (ii) Verifying the classical intractability of our sampling is done by chang-
ing the Pauli measurement bases only at certain output qubits. Our usage of random commuting
quantum circuits in place of computationally universal circuits allows a unique unification of sam-
pling and verification, so that they require the same physical resource requirements in contrast to
the more demanding verification protocols seen elsewhere in the literature.

I. INTRODUCTION

General-purpose quantum computers hold the promise
of achieving quantum speed-ups in many problems of
practical importance, unmatched by any known classi-
cal methods [1–3]. While the prospect of such speed-ups
is exciting, a growing realization is the extreme difficulty
of achieving the levels of precision and control required
for building truly scalable, fault-tolerant quantum hard-
ware. As an intermediate step towards this goal, sev-
eral recent proposals have suggested the development of
special-purpose quantum devices which achieve so-called
“quantum supremacy” in certain tasks [4–21]. Instead
of solving general computational problems, these devices
instead sample from probability distributions widely be-
lieved to be impossible to simulate efficiently using clas-
sical means. The recent explosion of proposals for such
classically intractable sampling devices has begun to be
matched by actual demonstrations of sampling in the
laboratory [22–26], although so far still at small enough
scales to allow for exact classical simulation.

An important question regarding such proposals is how
far, and in what manner, we can reduce the resources
required to exhibit and certify a genuine quantum ad-
vantage in sampling. The boson sampling protocol [6]
shows that such quantum advantage can be achieved us-
ing simple linear optical devices and single-photon de-
tectors. However, there are many challenges facing a re-
alistic implementation of boson sampling, including the
parallel generation of many single photons, the precise
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timing constraints on these photons, and the robust and
accurate arrangement of the required beam splitters and
phase shifters. An alternative proposal which circum-
vents this bottleneck is the family of instantaneous quan-
tum polynomial-time (IQP) protocols [5, 8, 15], where
sampling distributions arise from single-qubit measure-
ments on the output of low-depth commuting quantum
circuits. If a quantum device can prepare sampling distri-
butions associated with any unitary within a circuit fam-
ily, then that process would be classically intractable un-
der reasonable conjectures from complexity theory. Fur-
thermore, the commuting nature of these quantum cir-
cuits means that they can potentially be engineered to
run in constant time, maximally avoiding the threat of
environmental noise and decoherence. However, a prac-
tical issue which arises here is the extreme difficulty of
engineering the arbitrary long-range interactions needed
for such a constant time implementation. While these
long-range interactions can be simulated by bringing dis-
tant qubits together using SWAP gates before applying
local entangling operations, this process would introduce
a new bottleneck, the growing time required to shuttle
qubits between local interaction regions. In the absence
of quantum error correction, the growing influence of de-
coherence would quickly degrade the quality of our sam-
pling distributions, making this straightforward imple-
mentation likely untenable for practical demonstrations
of quantum supremacy.

In this paper, we show how nonadaptive measurement-
based quantum computation (MQC) [27–29] can be used
to sample from the distributions associated with IQP cir-
cuits, while at the same time verifying the classical in-
tractability of this sampling process. Our protocol uses
a fixed resource state preparable by a constant-depth lo-
cal circuit, which is then nonadaptively measured at each
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site in the Pauli X, Y , or Z bases. The setting of non-
adaptive MQC allows us to replace the time complexity
present in local IQP circuits (with SWAP gates) by a
spatial overhead in our resource state, which results in
a protocol with constant runtime and local interactions.
The cost of this nonadaptivity is a fundamental random-
ness in the distributions prepared by our protocol, arising
from random MQC byproduct operators. This leads each
sample in our protocol to be obtained with high proba-
bility from a different sampling distribution every time.
Surprisingly, we show that this inherent randomness has
no impact on the hardness of our protocol, which remains
classically intractable under the same assumptions as in
[8]. What’s more, we show that these random byproduct
operators actually simplify our implementation relative
to a direct circuit-based counterpart, revealing an inher-
ent advantage of MQC for quantum sampling protocols.
We further show that by simply changing the single-qubit
Pauli measurements used in the final step of our protocol
to obtain sampling statistics, we can instead rigorously
verify the classical intractability of our sampling. Our
verification scheme is inspired by the ground state certi-
fication protocol of [30], but uses the special form of our
IQP sampling distributions to replace the nonlocal op-
erations required for general Hamiltonian measurements
with measurements of single-qubit Pauli operators. This
lets us switch between sampling and measurement by a
simple change in single-qubit measurement bases, allow-
ing our procedure to achieve a robust demonstration of
quantum supremacy capable of efficiently detecting any
errors which could potentially harm the correctness of
our sampling distributions.

Our protocol is closely related to that of [8], as it
constitutes a faithful translation of their circuit-based
IQP sampling into the context of MQC. However, we
show that this translation itself contains several surprises,
ultimately revolving around the nontrivial interface of
MQC byproduct operators with classically intractable
sampling. At first glance, our protocol has much in
common with [13, 19], which also use nonadaptive MQC
to perform classically intractable sampling and verifica-
tion. Upon further investigation however, the different
protocols are seen to utilize completely different mecha-
nisms for demonstrating quantum supremacy, which al-
low for substantial differences in behavior. While using
a more involved resource state than the Ising-like states
of [13, 19], the design of our protocol allows a unique
duality between sampling and verification, in that both
require the same physical resources and are switchable by
a mere change of single-qubit Pauli measurement bases
on an n-qubit output state. This feature fundamentally
depends upon the convenient mathematical nature of our
IQP sampling distributions, and cannot be straightfor-
wardly reproduced within the setting of sampling from
random universal circuits such as [13, 19].

In Section II, we review the relevant theory behind
IQP sampling, verification, and MQC. In Section III we
present our protocol for preparing, sampling from, and

verifying different classically intractable sampling distri-
butions using Pauli measurements on a model resource
state |ΨPrep〉. In Section IV we comment on the features
unique to our protocol, and outline future directions for
our work. A brief comparison of our proposal to other
proposals within the rapidly growing field of classically
intractable sampling can be found in Appendix A, with
detailed proofs of the classical intractability and verifica-
tion of our sampling protocol found in Appendices B, C
and D.

II. BACKGROUND

A. IQP and Boolean Functions

In the IQP sampling protocols of [5, 8, 15], a sampling
state |ψf 〉 = Uf |+〉⊗n is first prepared using an n-qubit
diagonal unitary circuit Uf , and is then measured every-
where in the Pauli X basis to obtain a random outcome
|sX〉 = H⊗n|s〉. In the above, |+〉 = 1√

2
(|0〉+|1〉) denotes

the +1 eigenstate of X, H the single-qubit Hadamard op-
erator, s = (s1, s2, . . . , sn) a bit string of length n, and
|s〉 the corresponding Z basis product state. If Uf is
chosen from an appropriate family of diagonal unitaries,
then [5] shows that the act of sampling from the dis-
tribution Df (s) = |〈sX |ψf 〉|2 is impossible to perform in
polynomial time using a classical computer, assuming the
widely conjectured non-collapse of the polynomial hierar-
chy of complexity theory [31, 32]. More generally, we use
the phrase classically intractable sampling to mean any
sampling protocol which shares this property of being
impossible to simulate classically (given the non-collapse
of the polynomial hierarchy), possibly in the presence of
some allowable error and under the assumed truth of ad-
ditional mathematical conjectures.

We now choose the n-qubit unitary gates Uf above
to be parameterized by n-bit binary functions f :
GF (2)n → GF (2), where GF (2) ' {0, 1} denotes the
finite field of binary numbers. The functions f set the
eigenvalues of Uf as

Uf =
∑

x∈GF (2)n

(−1)f(x)|x〉〈x|, (1)

where x = (x1, x2, . . . , xn). When applied to |+〉⊗n, this
results in the sampling state

|ψf 〉 = 2−n/2
∑

x∈GF (2)n

(−1)f(x)|x〉. (2)

We can alternately describe |ψf 〉 as the unique state sat-

isfying the n (nonlocal) stabilizer relations h
(i)
f |ψf 〉 =

(+1) |ψf 〉 for 1 ≤ i ≤ n, where

h
(i)
f = UfXiU

†
f

= Xi

∑
x∈GF (2)n

(−1)∂if(x)|x〉〈x|, (3)
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and the polynomial ∂if is equal to the difference

∂if(x) = f(x1, . . . , xi+1, . . . , xn)−f(x1, . . . , xi, . . . , xn).
(4)

Because addition inGF (2) is modulo 2, it is easy to verify
that ∂if(x) is always independent of the value of xi.

We now restrict our binary functions to be cubic poly-
nomials, so that f(x) can be written in the form

f(x) =
∑

1≤i<j<k≤n

aijkxixjxk +
∑

1≤i<j≤n

bijxixj +
∑

1≤i≤n

cixi,

(5)

for some binary coefficients aijk, bij , and ci. These are
generated by linear, quadratic, and cubic monomials,
whose associated diagonal unitary gates are Uxi

= Zi,
Uxixj

= CZij (controlled-Z), and Uxixjxk
= CCZijk

(controlled-controlled-Z). More explicitly, the gates
Zi, CZij , and CCZijk are defined by their action on
qubits i, j, and k respectively as Zi|xi〉 = (−1)xi |xi〉,
CZij |xi, xj〉 = (−1)xixj |xi, xj〉, and CCZijk|xi, xj , xk〉 =
(−1)xixjxk |xi, xj , xk〉. In the following, any references to
polynomials will be understood to refer specifically to bi-
nary polynomials. We will use a, b, and c to denote
homogeneous polynomials, for which the only nonzero
coefficients are of the form aijk, bij , or ci, respectively.
Similarly, b + c and a + b will denote polynomials for
which all aijk = 0 or all ci = 0, respectively.

It will be convenient in the following to interpret n-bit
vectors s as linear polynomials of n variables, which act
as

s(x) =

n∑
i=1

sixi. (6)

This is useful in giving the probability of different sam-
pling outcomes, as the probability of obtaining any given
|sX〉 when |ψf 〉 is measured in the X product basis is

Df (s) =
∣∣〈sX |ψf 〉∣∣2

=

∣∣∣∣2−n ∑
x∈GF (2)n

(−1)f(x)+s(x)

∣∣∣∣2
= ngap2(f + s). (7)

ngap2(f) refers here to the square of ngap(f), the
(signed) difference between the fraction of inputs yielding
f(x) = 0 and f(x) = 1. ngap(f) is known to be #P-hard
to compute for arbitrary cubic polynomials f [33], and
we will see that this hardness underlies the classical in-
tractability of our sampling protocol.

B. Classically Intractable Sampling and
Verification

It is shown in [8] that estimating the quantity ngap2(f)
up to 1

4 multiplicative error, so that |ngap2
Est(f) −

ngap2(f)| ≤ 1
4ngap2(f) for arbitrary cubic polynomi-

als f , is #P-hard, mirroring the difficulty of comput-
ing ngap(f). This hardness leads to a similar finding
as in [5], that exactly sampling from the cubic polyno-
mial distributions Df defined in Eq. (7) is classically in-
tractable. In particular, assuming the existence of a clas-
sical randomized algorithm which can efficiently sample
from any of the distributions Df lets a technique called
Stockmeyer approximate counting [34] be used to esti-
mate the probabilities Df (s) up to 1

4 multiplicative er-
ror, and thus to solve arbitrary #P problems. While
Stockmeyer counting is an unphysical process which can-
not be implemented with realistic classical or quantum
computers, it can be carried out at a finite level of the
polynomial hierarchy, and the hardness of #P problems
for this hierarchy then leads to its collapse. Details of
this process can be found in Appendix C. On the other
hand, we have seen that these distributions appear nat-
urally as the output distributions of the IQP sampling
protocol described above, which allows us to interpret a
concrete implementation of this protocol as a provable
demonstration of “quantum supremacy”.

While straightforward and conceptually compelling, a
major limitation of the above result is the impossibility
of verifying that any realistic quantum protocol is sam-
pling from exactly the ideal distribution Df [35]. In order
to demonstrate quantum supremacy in a more realistic
setting, an alternate proof is given in [8] which shows the
classical intractability of sampling from any distribution
Qf which is variationally close to Df . Variationally close
means here that the statistical distance between Qf and
Df is bounded by a constant η0, so that∣∣Qf −Df

∣∣
1

=
∑

s∈GF (2)n

|Qf (s)−Df (s)| ≤ η0, (8)

In [8] a value of η0 ≤ 1
192 was shown to be sufficient for

classically intractable sampling, which in Appendix C we
show can be relaxed to η0 ≤ 1

86 (although both values rely
on the particular value of ε0 appearing in Conjecture 1
below). This result is appealing from a practical stand-
point, as the quantity

∣∣Qf − Df

∣∣
1

can be efficiently es-
timated in experiments involving quantum sampling dis-
tributions.

On the other hand, the above “average-case” sampling
result relies upon one additional complexity theoretic
conjecture:

Conjecture 1 (Average-Case Hardness of ngap2(f)).
Let f be an arbitrary cubic polynomial of the form given
in Eq. (5). Then it is #P-hard to efficiently calculate an
estimate ngap2

Est(f) of ngap2(f) for which |ngap2
Est(f)−

ngap2(f)| ≤ 1
4ngap2(f), on at least 1 − ε0 = 1

24 of poly-
nomials f .

Intuitively, this conjecture states that even when our
estimates ngap2

Est(f) are allowed to fail with some fi-
nite probability ε0, corresponding to realistic errors in
our sampling distributions Qf , the problem of estimat-
ing ngap2(f) on the remaining instances is still #P-hard.
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While this reliance on an additional unproven conjecture
isn’t desirable, an analogous conjecture is required for ev-
ery known average-case classically intractable sampling
result, and thus isn’t any special demerit of [8].

The techniques of [30] can be used to efficiently ver-
ify the condition

∣∣Qf −Df

∣∣
1
≤ η0 when Qf arises from

measurements on experimentally prepared quantum sam-
pling states ρf , which approximate our intended |ψf 〉.
Given ρf , we can perform measurements of the nonlo-

cal Hermitian stabilizers h
(i)
f defined in Eq. (3), which

will always yield the outcome +1 in the ideal case where
ρf = |ψf 〉〈ψf |. In more general cases, a sufficiently

accurate empirical estimate of these n observables h
(i)
f

can be converted into a bound on the statistical dis-
tance between the distributions Qf and Df . If the av-

erage
〈
h
(i)
f

〉
is sufficiently close to +1 so as to guaran-

tee
∣∣Qf − Df

∣∣
1
≤ η0, then we can confidently conclude

that our quantum protocol is performing classically in-
tractable sampling. We will soon show that the nonlocal

measurements of h
(i)
f can actually be entirely replaced

with single-qubit X and Z measurements, which allows
this verification to be done within the setting of MQC.

C. Measurement-Based Quantum Computation

MQC is a means of carrying out computation using
only single-qubit measurements on a fixed many-body
resource state. In this framework, the choice of mea-
surements made on local regions of our resource state
determines logical operations which are applied to en-
coded logical qubits, while simultaneously teleporting
these qubits to adjacent unmeasured sites. The ran-
domness of quantum measurement leads the outcomes of
these measurements to determine a so-called byproduct
operator, which acts as a random correction to the over-
all logical operation. For example, in Figure 1a we show
the standard protocol for teleporting one logical qubit
within the MQC quantum wire known as the 1D cluster
state. Given two successive X measurements with out-
comes |t1,X〉 and |t2,X〉, the resultant logical operation is
UX(t1, t2) = Xt2Zt1 , showing the intended logical uni-
tary to be the identity and the byproduct operator to be
a random Pauli Xt2Zt1 . In Figure 1b we show a gadget
for performing the two-qubit SWAP operation on logi-
cal qubits, for which the byproduct operator is a random
two-qubit Pauli operator. In both of these examples, the
collection of operators appearing as byproducts for ar-
bitrary measurement outcomes form a closed group (up
to global phase) of finite size, referred to as a byproduct
group.

An MQC protocol is said to be adaptive if the choice
of measurement in some region of our resource state de-
pends on the outcome of measurements made in another
region. Adaptation can be seen as a means of ensuring
that the byproduct group associated with a large com-
putation remains finite (for example, contained within

the n-qubit Pauli group), whereas the use of nonadap-
tive MQC with arbitrary single-qubit measurements will
generally lead to a byproduct group of unbounded size.
On the other hand, nonadaptive MQC computations can
always be implemented in constant time by performing
all measurements simultaneously, a serious advantage in
the absence of quantum error correction. Within the
usual scheme for universal MQC using resource states
built from CZ gates, nonadaptive single-qubit Pauli mea-
surements are associated with byproduct groups formed
from Pauli operators, and implement logical operations
contained within the Clifford group. The Clifford group
is defined as those unitaries U which preserve the Pauli
group under conjugation, so that UPU† is a product of
Pauli operators whenever P is. The evolution of Pauli
eigenstates under the Clifford group is known to be effi-
ciently simulable using classical means [36], which means
that non-Clifford operations are necessary for demon-
strating quantum supremacy.

In Figure 1c, we give an example of an MQC gadget
which implements a non-Clifford CCZ gate when non-
adaptive Pauli measurements are applied. This gadget,
which will be utilized in our classically intractable sam-
pling protocol below, is itself formed from non-Clifford
CCZ gates, and has a byproduct group containing non-
Pauli CZ gates. A similar gadget was shown in [37] to
enable universal MQC using only Pauli measurements,
but with adaptation of measurement bases so as to avoid
a byproduct group of unbounded size. In our MQC sam-
pling protocol below, we will show that restricting our
logical operations to those generating sub-universal quan-
tum computation will allow us to avoid this use of adap-
ation, while still maintaining a byproduct group of finite
size. In fact, we will find that this non-Pauli byproduct
group actually leads to a simplification in our protocol
relative to circuit-based counterparts.

III. MQC PROTOCOL FOR CLASSICALLY
INTRACTABLE SAMPLING

Our MQC implementation of the classically intractable
sampling protocol of [8] uses nonadaptive Pauli measure-
ments to prepare, sample from, and verify the n-qubit
sampling states |ψf 〉 described above, for arbitrary cubic
polynomials f . Our protocol uses a 2D resource state
|ΨPrep〉 which is capable of preparing any sampling state
|ψf 〉 using only single-qubit Pauli measurements. |ΨPrep〉
is constructed from the teleportation, SWAP , and CCZ
gadgets described in Section II C, which are configured
to implement any of the IQP circuits Ua associated with
arbitrary homogeneous cubic polynomials a. The choice
of a is determined by the choice of Pauli measurement
basis applied to each CCZ gadget in |ΨPrep〉. By virtue
of the byproducts arising from our nonadaptive MQC im-
plementation, our output sampling states end up being
random |ψf 〉 where f = a+b+c is a sum of the intended
a, along with random quadratic and linear polynomials
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(a) (b)
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=
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FIG. 1. The MQC gadgets utilized in our protocol. We de-
scribe the formation circuit and outcome-dependent logical
operations for each when sites are measured everywhere in
some single-qubit Pauli basis. Initial states on input sites
(dotted) are teleported to output sites (green online or gray
in print grayscale) and acted on by characteristic logical op-
erations and measurement-dependent random byproduct op-
erators. These outputs are identified with the inputs of fu-
ture gadgets. The relationship between the formation circuits
shown and the logical operations implemented is given by con-
tracting with the appropriate measurement outcomes, which
additionally contributes a scalar factor of 1√

2
per measure-

ment (not shown). Mathematically, this leads our measure-
ment outcomes si to occur uniformly randomly. (a) 1D cluster
state wire of length 2, where solid lines indicate CZ formation
unitaries. Measuring X on two sites implements the identity,
with a uniformly random Pauli byproduct group. (b) Pla-
nar MQC gadget for implementing nonplanar wire crossings.
Measuring X on 6 sites implements SWAP , with a byprod-
uct group of uniformly random two-qubit Pauli operators. (c)
Non-Clifford gadget for conditional CCZ, where triangles in-
dicate CCZ gates used to form the gadget. Measuring Y on 3
non-logical control sites (dark red, smaller circles) gives CCZ
on sites A, B, and C, whereas measuring Z on these sites
instead gives the identity. In both cases, the teleportation is
trivial (output and input sites coincide), while the byproduct
group is a product of uniformly random CZ’s between A and
C, and between B and C.

b and c. Owing to this randomness in b + c, we are
unable to deterministically prepare any fixed sampling
state |ψf 〉. Despite this fundamental indeterminism, we
will show how the act of sampling from randomly pre-
pared |ψf 〉 with X measurements at the final stage of
our protocol remains classically intractable, even in the
presence of realistic noise which leads our output sam-
pling distributions to be some imperfect Qf . We state
the classical intractability of our protocol, and the pre-
cise conditions which guarantee this, as Theorem 1.

Theorem 1. Assume the validity of Conjecture 1 and
the non-collapse of the polynomial hierarchy. If the dis-
tributions Qf (s) arising from our MQC sampling protocol
are close on average to the distributions Df (s) defined in

Eq. (7), meaning that the average `1 norm over all f
meets the experimental threshold

〈∣∣Qf −Df

∣∣
1

〉
f
≤ η0 =

1
86 , then our protocol is impossible to efficiently simulate
using a classical computer, i.e. is classically intractable.

Our protocol for classically intractable sampling is di-
vided into two stages: preparation of the random sam-
pling state |ψf 〉 and sampling/verification measurements
on |ψf 〉 (see Figure 2). In the preparation stage, we
use m = O(n4) single-qubit measurements of Pauli X,
Y , and Z on |ΨPrep〉 with outcomes t = (t1, t2, . . . , tm)
to prepare the n-qubit state |ψf(t)〉 associated with a t-
dependent polynomial f(t) = a + b(t) + c(t). These
measurements are chosen to implement the unitary Ua

by means of a depth O(n3) quantum circuit built from
local CCZ and SWAP gates. The CCZ gates in this
ideal circuit are applied conditionally as (CCZ)aijk , de-
pending on the coefficients of a, with teleportation and
SWAP gates used before each application to move qubits
i, j, and k into the same region. The application of these
conditional CCZ’s is structured within three nested lev-
els of iteration, which together apply all

(
n
3

)
three-body

terms in the lexicographic order of the triples (i, j, k),
where i < j < k. Loop I, the lowest level of iteration, in-
volves fixing qubits i and j in a designated interaction re-
gion, then successively cycling the remaining qubits k > j
through this region. (CCZ)aijk is applied in turn to each
triple, until all triples (i, j, k) with fixed i and j have been
processed in this manner. Loop II, the next level of it-
eration, involves successively replacing qubit j by qubit
j + 1, then repeating Loop I for all qubits k > j + 1
until all triples (i, j, k) with fixed i have been processed.
Finally, Loop III involves successively replacing qubit i
by qubit i+ 1, in the process shifting the location of the
interaction region, and repeating Loop II for all qubits
j, k > i+1 until (CCZ)aijk has been applied to all triples
of qubits. The resulting unitary operation is clearly Ua.

While the simple circuit described above is only ca-
pable of producing sampling states |ψa〉 associated with
homogeneous cubic a, our MQC implementation utilizes
random byproduct operators to implement the remaining
quadratic and linear terms required for the preparation
of arbitrary |ψf 〉. This reveals a simplification within
nonadaptive MQC compared to a direct circuit-based
counterpart, which would require additional CZ and Z
gates to implement Uf for arbitrary f . Each of the con-
ditional operations (CCZ)aijk is implemented using the
CCZ gadget shown in Figure 1c, which is measured in Y
if aijk = 1 and Z otherwise. For either choice of measure-
ment, the non-Clifford nature of these gadgets leads the
resultant byproduct operators to consist of non-Pauli CZ
gates, which generate random quadratic terms in the out-
put |ψf 〉. Because our logic gates and byproduct opera-
tors are made up of X and the diagonal Z, CZ, and CCZ
gates, which together form a closed (non-universal) gate
set under multiplication, the byproduct group associated
with our computation will always remain finite. This is
in contrast to the byproduct group appearing in MQC



6

1

2

3

C
C

Z
)

)

123

4

5

.. .

1

2

n
n 1

n 2

3

... ...

6 n 3

1

2

3

n
n 1 4

4

5

6

7

n

S
W

A
P

's
n

2

C
C

Z
)

)

124

C
C

Z
)

)

125

C
C

Z
)

)

12n

C
C

Z
)

)

134

C
C

Z
)

)

135

.. .

.. .

.. .
C

C
Z

)

)

234

...
C

C
Z

)
)

235

1

2

3

4

5

6

n
n 1

.. .

.. .

Loop I

Loop II

S
W

A
P

's
n

2

C
C

Z
)

)

13n

1

2

n
n 1

n 2

3

n 3

4

(a)

1

2

3

4

2

4

2

3
4

3

4

3

3

2
1

2

3

4

1 1

3 4

(b)

O O

FIG. 2. An overview of our constant-time MQC protocol for implementing the unitary Uf = Ub+cUa which prepares the
sampling state |ψf 〉. Our intended logical operation is Ua, while Ub+c is a byproduct contribution containing uniformly
random b and c. (a) Circuit diagram for Ua, which is formed from several repeating loops. In Loop I, qubits i0 and j0
remain fixed and all qubits k > i0, j0 are sequentially cycled past i0 and j0 and acted on by a conditional three-body gate
(CCZi0j0k)ai0j0k depending on the binary coefficient ai0j0k in f . The order of these qubits is reversed after Loop I, which is
undone by a sequence of SWAP ’s with circuit depth O(n). Loop II then involves replacing qubit j0 by j0 + 1, and repeating
Loop I for all triples (i0, j0 + 1, k), where k > i0, j0 + 1. Loop II continues cycling qubit j and applying Loop I until all triples
(i0, j, k) have been addressed. Loop III (not shown) then involves replacing qubit i0 by i0 + 1, and repeating Loop II for all
triples (i0 +1, j, k). At the completion of Loop III, we have addressed all triples of qubits within circuit depth O(n3), producing
the output state |ψa〉. (b) A concrete example of how the above protocol is implemented in MQC using our resource state
|ΨPrep〉, for n = 4. 1D cluster state wires let us teleport information between non-Clifford gadgets, which apply the logical
gate (CCZ)aijk via an aijk-dependent choice of Y or Z measurement on control sites (dark red, smaller circles). While our
state is drawn with nonplanar wire crossings, these are simulated using the planar SWAP gadgets in Figure 1b. Measuring
all preparation sites simultaneously prepares a random n-qubit state |ψf 〉 on the output sites (on right, green online or gray in
print grayscale), where f = a + b + c contains a deterministic a set by the measurement bases and a uniformly random b + c
arising from random byproduct operators. The final n-qubit measurement is chosen to randomly implement sampling via all
X measurements, or verification via a mixture of X and Z measurements.

implementations of random circuit quantum supremacy
protocols, such as [13, 19], which grows unboundedly.

The CCZ gadgets used in our protocol are embedded
in regular intervals in |ΨPrep〉, and are then connected to-
gether using 1D cluster wires and SWAP gadgets, which
simulate the movement of qubits utilized in our ideal
quantum circuit described above. These cluster wires and
SWAP gadgets are always measured in X, which leads
to a product of random Pauli X and Z byproduct oper-
ators. The Z byproducts eventually end up generating
random linear terms in the output state |ψf 〉, while the X
byproducts can be commuted backwards in our circuit, to
eventually be annihilated on the initial |+〉⊗n which our
logical quantum circuit is applied to. This commutation

of X byproduct operators induces conditional (CZ)aijk

and (Z)aijk byproduct operators arising from prior CCZ
gadgets, which results in additional randomness in the
overall byproduct group. Despite this seeming complex-
ity in the distribution of byproduct operators, we prove
in Appendix B that the random outcomes t of prepara-
tion measurements on |ΨPrep〉 lead the random quadratic
and linear terms in the polynomial f = a+b+ c associ-
ated with |ψf 〉 to be uniformly random, simplifying our
analysis.

In the second stage of our protocol we apply a final se-
ries of n single-qubit Pauli measurements to our output
state which, while ideally equal to |ψf 〉〈ψf |, will realisti-
cally be some mixed state ρf . The choice of single-qubit
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measurement bases depends on whether we are imple-
menting sampling or verification, which can be chosen
randomly with 1

2 probability. During sampling, we sim-
ply measure all qubits in the X basis to generate a sample
from the distribution Qf (s) = Tr(ρf |sX〉〈sX |), exactly as
described in Section II B. Although the randomness in the
f associated with ρf means that we will almost certainly
obtain each sample from a different distribution Qf , our
MQC sampling protocol remains classically intractable
nonetheless. To prove this classical intractability, we can
treat the overall process of preparing a random ρf and
then sampling an outcome s as itself a sampling pro-
cess with probability Pra(b + c, s). Given this descrip-
tion, and our knowledge of the complete randomness of
the byproduct contributions b + c, Stockmeyer approx-
imate counting can then be used to estimate Qf (s) as
a conditional probability which is directly proportional
to Pra(b + c, s). This suffices to proves Theorem 1 us-
ing the same arguments as in other classically intractable
sampling proposals, the details of which are given in Ap-
pendix C.

If we choose to perform verification instead of sam-
pling, then we measure all qubits in the Z basis, except
for a random qubit i which is measured in X. The out-
come of this measurement v = (v1, v2, . . . , vn) is then fed

into a parity function π
(i)
f (v) = ∂if(v)+vi, where ∂if(v)

is defined in Eq. (4). This process results in an output
value of 0 or 1, which we show in Appendix D gives the
same information as a measurement of the nonlocal sta-

bilizer h
(i)
f described in Eq. (3), with outcome (−1)π

(i)
f (v).

Because of our ability to characterize the closeness of ρf

to |ψf 〉〈ψf | using measurements of h
(i)
f , this means that

we can interpret π
(i)
f (v) = 0 as a successful verification

measurement, and π
(i)
f (v) = 1 as a deviation of ρf from

our intended |ψf 〉. By obtaining many samples of π
(i)
f (v)

for random i, v, and ρf , the resultant estimate of
〈
π
(i)
f

〉
lets us guarantee the classical intractability of our MQC
sampling protocol to any desired statistical significance
using only O(n2) rounds of verification measurements, as
stated in Theorem 2.

Theorem 2. Suppose that the empirical average of our
parity function after µn2 verification measurements sat-

isfies
〈
π
(i)
f (v)

〉
v,i,f

≤ η20
n , for the η0 appearing in The-

orem 1. Then we can conclude with probability p ≥
1−e−O(µ2) that our sampling distributions Qf satisfy the
assumptions of Theorem 1, and thus generate classically
intractable sampling.

We give a detailed proof of Theorem 2 in Appendix D.
We should mention that another potential means of veri-
fying the classical intractability of our sampling protocol
would have been to directly measure the O(n4) local sta-
bilizers of our resource state |ΨPrep〉, analogous to the
technique used in [13, 19]. The idea behind this ver-
ification scheme is that, if we guarantee our MQC re-
source state to be the ideal |ΨPrep〉, then performing our

prescribed Pauli measurements should always generate
the ideal sampling states |ψf 〉. Unfortunately, this re-
source state verification scheme doesn’t detect errors oc-
curring during preparation measurements, so that even
when given an ideal MQC resource state, measurement
imperfections during state preparation will still lead to
logical errors which harm our output sampling state ρf .
In order for this verification scheme to rigorously guar-
antee the classical intractability of sampling in our set-
ting, the single-qubit error rates for measurement must
be less than O(n−4), whereas our verification technique
only needs errors rates of O(n−1). Since this latter rate is
the maximum allowed for any kind of sampling to main-
tain a constant variational error, this shows our verifica-
tion scheme to be optimal with regards to its soundness
under measurement imperfections. The techniques used
to achieve these more favorable allowed error rates fun-
damentally rely on our use of Conjecture 1, and cannot
be directly transferred to other sampling settings such as
[13, 19].

IV. OUTLOOK

We have demonstrated the use of MQC to perform
classically intractable sampling and verification in a uni-
fied manner, with identical resource requirements for
each task. This shows that verifying the hardness of
a quantum sampling protocol doesn’t need to be any
harder than the actual sampling, and in certain architec-
tures comes essentially for free. This contrasts sharply
with many existing quantum supremacy proposals[6, 12,
16, 20], for which verifying the non-classical nature of
sampling is significantly harder than the sampling itself,
likely requiring exponential computational resources to
ensure correctness. By using nonadaptive MQC to drive
our protocol, we have furthermore allowed both sampling
and verification to be carried out in constant time, which
minimizes the effect of environmental decoherence, and
potentially allows us to avoid the use of quantum error
correction.

As an outlook, we expect that a hybrid MQC sam-
pling platform combining the simple physical implemen-
tation of [13] or [19] with the convenient theoretical anal-
ysis and flexibility available here would represent an ex-
tremely appealing framework for implementing classi-
cally intractable sampling. In particular, a sampling pro-
tocol using nonadaptive MQC with non-Clifford

√
CZ

gadgets embedded in a 2D brickwork-type lattice could
potentially demonstrate quantum supremacy in constant
time using only O(n log(n)) qubits, and with entirely lo-
cal interactions. Such a protocol would implement the
“sparse” IQP circuits appearing in [15], which require
only O(n log(n)) two-body interactions. While this can
be implemented in our framework using a 2D lattice of
O(n2 log(n)) qubits which generalizes our |ΨPrep〉, the
possibility of reducing resource requirements further, po-
tentially to O(n log(n)) qubits, would require using local
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complementation operations on graph states. As these
operations can quickly generate long-range entanglement
using only local Y basis measurements, we consider such
capabilities to represent a unique feature of MQC which
are well-suited to reproducing the long-range, low-depth

quantum circuits often utilized for quantum sampling.
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Appendix A: Comparison to Previous Work

We now discuss the relationship of our work to pre-
vious proposals for classically intractable sampling with
qubits, the class of boson sampling protocols having a
largely different flavor with regards to theoretical under-
pinnings and experimental implementations. As men-
tioned before, our work is most closely related to that of
[8], as it implements their circuit-based IQP sampling in
the context of MQC. We have seen that this translation
has several practical advantages, mainly that it allows
us to use constant depth quantum circuits generated by
local interactions to perform classically intractable sam-
pling in constant time. This translation also reveals the
role of MQC byproduct operators in simplifying our pro-
tocol, with an associated randomness which ends up hav-
ing no impact on the classical intractability of sampling.
Furthermore, the convenient verification scheme utilized
in our protocol can be applied equally well in any classi-
cally intractable sampling implementation using the IQP
sampling states associated with Conjecture 1, revealing
an inherent practical advantage of sampling from this
class of states. This advantage more generally applies
to any protocol which samples from output distributions
defined by so-called hypergraph states[40, 41].

Although our work doesn’t make use of the alternate
Conjecture 2 of [8], concerning the average-case hard-
ness of estimating fully-connected Ising partition func-
tions, our techniques can be easily generalized to define
a similar MQC sampling protocol which relies upon Con-
jecture 2. In this alternate protocol, our CCZ gadget
would be replaced by gadgets for the non-Clifford

√
CZ

and T gates, and our byproduct group would contain
not only CZ, but also

√
Z gates. In terms of the Clifford

hierarchy of unitary operations [38], the pattern which
emerges here is that using gadgets which implement op-
erations at the third level of the Clifford hierarchy leads
to a random byproduct group formed from Clifford gates
at the second level of the Clifford hierarchy. Just as with
our protocol, this would eliminate the need to apply any
Clifford gates “by hand”, reducing the physical resources
needed for sampling.

Our work also has many similarities to the MQC sam-
pling protocol of [13], which similarly runs in constant
time using a fixed “brickwork” resource state preparable
by a constant depth quantum circuit, and also allows for
verification. In our protocol, the average-case hardness of
sampling relies on Conjecture 1, while the average-case
hardness in [13] relies upon a conjecture regarding the
estimation of output probabilities of random quantum
circuits, argued in [18] to be a stronger assumption. On
the other hand, this latter conjecture is very similar to
that used in [12, 19, 39].

While [13] also achieves verification of the hardness of
their sampling distribution, their method requires veri-
fying the entire initial MQC resource state. By contrast,
our use of Conjecture 1 lets us perform verification in
exactly the same manner as sampling, where the only
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difference is a change in the single-qubit Pauli bases used
to perform the final n measurements. This unique du-
ality between sampling and verification arises from the
simple byproduct group appearing in our protocol, which
is necessary for our preparation measurements to always
implement IQP circuits. In contrast, the output states
of general random unitary circuits studied in [6, 12] are
likely too complicated to allow the associated sampling
and verification protocols, or MQC counterparts such as
[13, 19], to achieve the duality we observe here.

Appendix B: Randomness of MQC Byproduct
Polynomials

Here we study the preparation stage of our MQC pro-
tocol, and show that the polynomials f = a + b + c as-
sociated with our random output states ρf contains uni-
formly random quadratic and linear coefficients, so that
every bij and ci is an independent binary random variable
with equal 1

2 probability. We show this by first charac-
terizing the distribution of preparation outcomes Pa(t),
where t = (t1, t2, . . . , tm), then using this to characterize
the distribution Pa(b + c) of “byproduct polynomials”
arising in our protocol. We show that Pa(b + c) is uni-
formly random, a fact which holds true in the presence of
arbitrary noise with spatial correlations of a bounded dis-
tance. This result will be used in our proofs of sampling
and verification in Appendices C and D.

We calculate Pa(t) using the Born rule, which in our
ideal setting says that given a-dependent preparation
measurements on |ΨPrep〉, the probability of obtaining
an outcome |ta〉 (where a denotes the appropriate single-
qubit eigenbases) is

Pa(t) = |〈ta|ΨPrep〉|2. (B1)

The expression 〈ta|ΨPrep〉 here denotes not a scalar, but a
partial inner product on |ΨPrep〉, consisting of an n-qubit
state which isn’t measured until the sampling and veri-
fication stage of our protocol. Consequently, Eq. (B1)
says that Pa(t) is equal to the squared norm of this
state 〈ta|ΨPrep〉. Although we would expect this out-
put state to be the sampling state |ψf 〉, a careful cal-
culation of the inner products arising in our protocol
reveals an additional 1√

2
scalar factor per preparation

measurement, as remarked in Figure 1. This shows that
〈ta|ΨPrep〉 = ( 1√

2
)m |ψf 〉, where f = a + b(t) + c(t),

which then proves the preparation measurement out-
comes to be distributed as Pa(t) = 2−m. We note that
this independence of measurement outcomes is a generic
feature of MQC state preparation protocols, as the imple-
mentation of norm-preserving unitary operations in every
preparation measurement will necessarily force Eq. (B1)
to take a constant value for all t, corresponding to every
preparation outcome ti being uncorrelated and uniformly
random.

We now use the uniform randomness of preparation
measurement outcomes t to prove the uniform random-

ness of byproduct polynomials b+c, which depend on t as
b(t)+c(t). These global byproducts arise from the local
byproduct operators associated with random outcomes ti
in each of the MQC gadgets shown in Figure 1, which are
then commuted through our computation to contribute
linear and quadratic terms to b(t)+c(t). Each quadratic
and linear coefficient in b + c can thus be expressed as
a sum (mod 2) of many different measurement outcomes
ti, and it is clear that the complete randomness of each
measurement outcome will lead every byproduct coeffi-
cient in b+c which contains even a single random ti to be
itself completely random. It is clear that every quadratic
coefficient contains contributions from at least one ran-
dom ti, with the one exception of b1n. Because our CCZ
gadgets only apply CCZ byproduct operators between
nearest neighbor logical qubits, and since qubits 1 and n
are never adjacent to each other in the circuit diagram of
Figure 2, it remains possible that b1n will always be 0. A
simple fix for this is to simply vary the ordering among
each triple of qubits entering a non-Clifford gadget us-
ing SWAP gadgets, so that all qubits are adjacent to all
other qubits equally often. In this case, every quadratic
coefficient bij(t) in b(t) + c(t) will receive O(n) random
contributions from outcomes ti arising in CCZ gadgets,
and every linear coefficient ci(t) will receive O(n3) con-
tributions from outcomes arising in 1D cluster wires and
SWAP gadgets. This clearly proves that the distribu-
tion of byproduct operators will be uniformly random as
Pa(b + c) = 2−(nb+n), where nb =

(
n
2

)
.

The above analysis which counts the number of mea-
surement outcomes contributing to each coefficient of
b+ c is unnecessary in an idealized setting, but is useful
in the presence of realistic noise and experimental imper-
fections. We can generally characterize this behavior as
a trace preserving quantum operation E which maps our
MQC resource state to some imperfect E(|ΨPrep〉〈ΨPrep|).
Our measurement statistics Pa(t) in this setting are again
set by the Born rule, but now as

Pa(t) = Tr [E(|ΨPrep〉〈ΨPrep|)|ta〉〈ta|] (B2)

= Tr
[
|ΨPrep〉〈ΨPrep|E†(|ta〉〈ta|)

]
, (B3)

where E† represents the quantum operation which is ad-
joint to E . While E† may modify our measurement pro-
jectors |ta〉〈ta| so as to displace or correlate the prob-
abilities of local outcomes ti, we noted above that the
coefficients of byproduct polynomials are determined by
at least O(n) different such measurement outcomes, any
one of which is capable of completely randomizing the
probability of that coefficient. Consequently, in order for
noise to alter the distribution of byproduct operators,
the operator E† must induce correlations between at least
O(n) different measurement outcomes in our system. In
the presence of any noise with a finite correlation length,
this is clearly impossible, which proves the uniform ran-
domness of byproduct operators to be a robust property
of our MQC protocol.
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Appendix C: Hardness of Approximate Sampling

Here we give a detailed proof of the classical in-
tractability of our MQC sampling protocol under con-
stant variational noise in the output sampling distri-
butions Qf . We first discuss the general idea behind
average-case classically intractable sampling protocols,
so as to make clear what precisely needs to be demon-
strated in our proof. We then describe the use of classical
post-processing on our measurement records to imple-
ment “coarse-graining” in the description of our proto-
col. This coarse-graining lets us simplify the analysis of
failure probabilities required in our proof, and eventually
lets us prove Theorem 1, with its associated variational
error threshold of η0 = 1

86 . We note a certain duality
between the proof given here and the proof of Theorem 2
given in Appendix D, with the former using a guaranteed
bound on η0 as a starting point and the latter deriving
such a bound on η0 as an end result.

Any proof of classical intractability of quantum sam-
pling requires adopting somewhat of a dual viewpoint.
On the one hand, we recognize that our sampling pro-
cedure is an intrinsically quantum task, but at the same
time assume that the sampling distributions arising from
this quantum process can be exactly replicated using a
probabilistic classical algorithm. This assumption, anal-
ogous to the assumption of a hidden variable model de-
scribing our quantum process, is made in order to de-
rive a (widely conjectured) contradiction, the collapse
of the polynomial hierarchy of complexity theory. Even
though the probabilities of individual sampling outcomes
Qf (s) are exponentially small and would require expo-
nential time to estimate empirically, if they arise from a
classical sampling process, then the technique of Stock-
meyer approximate counting can be used to estimate
these probabilities up to multiplicative error. In par-
ticular, Stockmeyer counting can be used to output an
estimate Qf,Est(s) which is related to our probability of

interest by |Qf,Est(s)−Qf (s)| ≤ Qf (s)
poly(n) , for any desired

polynomial poly(n). The use of an average-case complex-
ity conjecture, like Conjecture 1 in our paper, is then
required to connect the ability to estimate such proba-
bilities in the presence of noise to the ability to solve
#P-hard problems, from which a collapse of the polyno-
mial hierarchy follows.

Stockmeyer counting is an unphysical process which
cannot be carried out efficiently using classical or quan-
tum devices, but can be implemented with a hypothet-
ical “alternating Turing machine” capable of efficiently
solving problems in the third level of the polynomial hi-
erarchy [42]. Furthermore, Stockmeyer counting involves
manipulations on a register of binary random variables
underlying our random outcomes, and consequently can
only estimate probabilities arising as outcomes of clas-
sical randomized algorithms. Nonetheless, if we assume
the existence of an efficient classical algorithm for exactly
sampling from the distribution Df (s) = ngap2(f + s),

Stockmeyer sampling would then permit a device existing
in the third level of the polynomial hierarchy to estimate
any ngap2(f) up to multiplicative error, and thus solve
any problem in #P. Because solving arbitrary problems
in #P is known by Toda’s theorem [43] to allow one to
efficiently solve all problems in the hierarchy, assuming
the existence of this efficient classical algorithm for sam-
pling from distributions Df would necessarily collapse
the polynomial hierarchy to its third level, a contradic-
tion. Hence, this proves the task of sampling from arbi-
trary Df to be classically intractable.

A necessary ingredient in any average-case classically
intractable sampling result is a mathematical problem
whose estimation remains #P-hard even when our esti-
mates have some finite probability of failing to be multi-
plicatively close to their actual value. In our setting, this
problem is furnished by Conjecture 1, which says that
estimating ngap2(f) up to 1

4 multiplicative error is #P-

hard, even when a fraction ε ≤ ε0 = 23
24 of our estimates

fail to lie within this 1
4 multiplicative bound. Evidence in

support of Conjecture 1 is given in [8]. This failure prob-
ability ε0 ends up determining the allowed deviation of
our quantum sampling distributions Qf from their ideal
Df . If this deviation is sufficiently small, as measured
by the variational distance between Qf and Df , the as-
sumed computational hardness of estimating ngap2(f)
then guarantees that our quantum sampling task will be
classically intractable. Consequently, our main goal in
this proof is to analyze the deviations in our distribu-
tions Qf (s) = Tr(ρf |sX〉〈sX |) arising from deviations in
our experimental states ρf from their ideal |ψf 〉〈ψf |, and
to find sufficient conditions to guarantee that the fail-
ure probability in estimating ngap2(f) using Stockmeyer
sampling on Qf is below our threshold ε0.

We now introduce the idea of coarse-grained sampling
distributions, which indeed we have already implicitly
made use of in the description of our sampling proto-
col. In Section III, we described different preparation
outcomes t = (t1, t2, . . . , tm) as giving rise to differ-
ent ideal sampling states |ψf(t)〉 via the correspondence
f(t) = a + b(t) + c(t). This means that whenever dif-
ferent preparation outcomes t 6= t′ generate the same
byproduct polynomials b(t) + c(t) = b(t′) + c(t′), the
resultant sampling states will be identical. In reality
though, it is entirely possible that these preparation out-
comes will generate different sampling states ρa,t 6= ρa,t′ ,
leading our description of a single sampling state ρf(t) to
represent a coarse-graining over equivalent preparation
outcomes t. In particular, if Pa(t) denotes the proba-
bility of obtaining a preparation outcome t arising from
our a-dependent Pauli measurements on |ΨPrep〉, then we
find ρf to be given by

ρf =
1

Pa(b, c)

∑
{t|b(t)+c(t)=f+a}

Pa(t)ρa,t . (C1)

Pa(b, c) represents a normalization factor which gives the
total probability on input a of obtaining any outcome t
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associated with the byproduct polynomial b+c = f +a.
While the above coarse-graining might appear trivial, we
will now show how this can be used to effectively mix the
inequivalent states ρf and ρf ′ when f and f ′ differ only
in their linear coefficients.

If we describe our overall sampling process at this stage
as first preparing a random state ρf with f = a + b + c,
which is then sampled to obtain an X basis outcome of s,
then we would record this in an experiment as yielding
the outcome (b, c, s) ∈ Ωa in some outcome space Ωa.
From the layout of our sampling protocol, the probabil-
ity of this outcome is clearly Pa(b, c, s) = Pa(b, c)Qf (s).
Because of the degeneracy Df+s(s) = ngap2(f) for all
outcomes s, we say that any such outcome samples from
the polynomial f . These exponentially many outcomes
are precisely the ones which can be used to obtain an es-
timate of ngap2(f) via Stockmeyer counting, and we will
choose our coarse-graining to eliminate this degeneracy,
so that each ngap2(f) is determined by a unique sam-
pling outcome from a unique output sampling state. We
note that this coarse-graining was used implicitly in [8],
although interpreted there as an “obfuscation” of output
probabilities.

In Appendix B we showed that the distribution
of byproduct polynomials is uniformly random as
Pa(b, c) = 2−(nb+n), where nb =

(
n
2

)
. Given this ro-

bust characterization of Pa(b, c), we will use Q̃a+b(c)
to indicate the conditional probability of obtaining any
outcome which samples from f = a + b + c, given that
the quadratic portion of our byproduct polynomial is b.
This leads Q̃a+b(c) to be

Q̃a+b(c) = 2nb

∑
s

Pa(b, c + s)Qf+s(s) (C2)

=
∑
s

2−nTr (ρf+s|sX〉〈sX |) (C3)

= Tr

(
2−n

∑
s

ρf+s|sX〉〈sX |

)
(C4)

= Tr (ρ̃a+b|cX〉〈cX |) . (C5)

We use |cX〉 to indicate the X basis outcome string cor-
responding to the linear terms of f . In the above, we
have also defined ρ̃a+b to be the state

ρ̃a+b = 2−n
∑
s

Zs (ρa+b+s)Z
s, (C6)

where Zs =
⊗n

i=1(Zi)
si indicates a product of Z opera-

tors. In the ideal setting where each ρf = |ψf 〉〈ψf |, the
result of applying Zc to ρf is to simply remove the lin-
ear components of f , leaving the state |ψa+b〉〈ψa+b|. In
this idealized setting, the result of averaging over all ρf
and applying the correction Zc in each case is to leave
the state ρ̃a+b = |ψa+b〉〈ψa+b|, which contains only cu-
bic and quadratic terms. While we can’t literally im-
plement these unitary corrections Zc within the setting
of MQC, we can simulate their action through classical

postprocessing on our measurement outcomes. In par-
ticular, whenever we obtain an outcome of (b, c, s) ∈ Ωa

in our sampling experiment, we instead record this as a
coarse-grained outcome (b, c+ s) ∈ Ω̃a lying in a simpler

outcome space Ω̃a. This is equivalent to recording only
the polynomial f sampled by our experiment, and forget-
ting the relative contributions to f from MQC byproduct
operators and from sampling outcomes s. The equiva-
lence of this coarse-graining in our measurement records
with the action of active unitary corrections arises from
the equality |sX〉〈sX | = Zc+s|cX〉〈cX |Zc+s used to de-
rive Eq. (C5).

Given this coarse-grained description of our experi-
ment, we would like to bound the failure probability ε
of obtaining an estimate ngap2

Est(f) which differs from
the true ngap2(f) by more than a multiplicative factor
of 1

4 . By requiring this probability to be less than the

ε0 = 23
24 appearing in Conjecture 1, we will arrive at con-

crete conditions on our coarse-grained output states ρ̃a+b

in order for our MQC protocol to implement classically
intractable sampling. While the Stockmeyer counting
used to obtain ngap2

Est(f) from our sampling probabili-

ties Q̃a+b(c) technically introduces its own multiplicative
error in this estimate, because this error can be reduced
in our (hypothetical) Stockmeyer counting algorithm to

any inverse polynomial |ngap2
Est(f)−Q̃a+b(c)| < Q̃a+b(c)

poly(n)

while still retaining a polynomial runtime, we will ignore
this error in the following and simply set ngap2

Est(f) =

Q̃a+b(c).
We first use Markov’s inequality to bound the

probability of our estimate ngap2
Est(f) failing to lie

within an arbitrary constant distance of ngap2(f),
Prf

(
|ngap2

Est(f)− ngap2(f)| > 2−nδ
)
, over arbitrary

polynomials f = a + b + c. We will later convert this
into a failure probability for obtaining an estimate of
ngap2(f) outside of our allowed 1

4 multiplicative error.

Since the approximate and exact values of ngap2(f) can
both be interpreted as probabilities in different distribu-
tions, ngap2

Est(f) = Q̃a+b(c) and ngap2(f) = Da+b(c),
we find that the distance between these values, averaged
over c with fixed a+b, is proportional to the variational
distance between these distributions as〈
|ngap2

Est(f)−ngap2(f)|
〉
c

= 2−n
∑
c

|Q̃a+b(c)−Da+b(c)| (C7)

= 2−n
∣∣Q̃a+b −Da+b

∣∣
1

(C8)

Defining ηa+b =
∣∣Q̃a+b − Da+b

∣∣
1

to be the variational
distance between these distributions, Markov’s inequality
then tells us that for any δ > 0 and for f = a + b + c
with a fixed a + b,

Pr
c

(
|ngap2

Est(f)− ngap2(f)| > 2−nδ
)
<
ηa+b

δ
, (C9)

Having this bound in hand, we now give an anticoncen-
tration bound on the probability that 1

4ngap2(f) < 2−nδ,
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which lets us convert the above bound into a statement
about the failure probability ε. We utilize a particular
form of Cantelli’s inequality stating that for any non-
negative random variable X and constant δ′ in 0 ≤ δ′ ≤
1,

Pr(X ≤ δ′
〈
X
〉
) ≤

〈
X2
〉
−
〈
X
〉2〈

X2
〉
− δ′(2− δ′)

〈
X
〉2 . (C10)

This agrees with the more well-known Paley-Zygmund
inequality at δ′ = 0, 1, but otherwise gives a more strin-
gent upper bound. Setting X = ngap2(f), δ′ = 4δ, and
using the result

〈
ngap4(a+b+c)

〉
b,c
≤ 3 ·2−2n from [8],

this lets us restrict the probability of 1
4ngap2(f) being

less than 2−nδ as

Pr
b,c

(
1

4
ngap2(a + b + c) ≤ 2−nδ

)
≤ 2

2 + (1− 4δ)2
.

(C11)

We now define η =
〈
ηa+b

〉
a,b

to be the average varia-

tional distance between distributions Q̃a+b and Da+b,
averaged over all a + b. Combining Eq. (C9) with the
average of Eq. (C11) over all a, this results in a bound
on the multiplicative failure probability of

Pr
f

(
|ngap2

Est(f)− ngap2(f)| > 1

4
ngap2(f)

)
<
η

δ
+

2

2 + (1− 4δ)2
, (C12)

which holds for every 0 ≤ δ ≤ 1
4 .

We now require the failure probability to be at most
23
24 , in line with Conjecture 1, and numerically optimize
over δ to find the largest allowed value of η0 for which
this can be achieved. This yields a maximum of η0 =
0.01169, which has a rational lower bound of η0 ≈ 1

86 .
This completes our proof of Theorem 1.

Appendix D: Verification of Classical Intractability

Here we prove that the verification scheme occurring
in the last stage of our MQC protocol does indeed guar-
antee the classically intractable of our sampling process.
We first show that the local X and Z measurements made
on our sampling states ρf during verification correspond

to exact measurements of the nonlocal stabilizers h
(i)
f ,

via the parity functions π
(i)
f (v). This allows us to es-

timate the average
〈
h
(i)
f

〉
i,f

with respect to random ρf ,

which allows us to bound the average variational distance〈∣∣Qf − Df

∣∣
1

〉
f

using results from [30]. If our empirical

estimate of
〈
h
(i)
f

〉
i,f

remains sufficiently low, an appli-

cation of Höffding’s inequality lets us show that O(n2)
verification measurements are sufficient to conclude that

〈∣∣Qf−Df

∣∣
1

〉
f
≤ 1

86 with any fixed statistical significance,

proving Theorem 2.
We first briefly review our verification procedure. After

preparation of a random ρf , we choose with 50% proba-
bility to perform either sampling or verification measure-
ments on ρf . If verification is chosen, we further choose
a random qubit i of ρf which is measured in X, while
all other n − 1 qubits are measured in Z. We denote
the measurement outcome string by v = (v1, v2, . . . , vn),
ignoring the fact that vi is associated with a different
measurement basis. We then use our knowledge of the
polynomial f associated with ρf to compute a parity

function of v, π
(i)
f (v) = ∂if(v) + vi, where ∂if is the

polynomial difference ∂if(v) = f(v1, . . . , vi+1, . . . , vn)−
f(v1, . . . , vi, . . . , vn). It is easy to show that ∂if(v) is in-
dependent of the value of vi.

We show here that the process of measuring v us-
ing single-qubit Pauli measurements and then comput-

ing π
(i)
f (v) is exactly equivalent to measuring the nonlo-

cal stabilizer h
(i)
f as h

(i)
f (v) = (−1)π

(i)
f (v), where h

(i)
f (v)

indicates the h
(i)
f outcome corresponding to v. Both

processes yield binary random variables as their output,
and in order to prove that their probability distribu-
tions are identical, we can prove that both measurement
schemes are associated with identical Hermitian observ-
ables. While measurements of h

(i)
f are clearly associated

with the Hermitian operator h
(i)
f itself, it isn’t immedi-

ately clear how we should interpret the measurements of
v as measuring any particular Hermitian operator. The
answer comes by recognizing that our relevant measure-
ment statistics during verification consist only of the bi-

nary values π
(i)
f (v), and forgets the specific outcomes v

which produced them. Translating these π
(i)
f outcomes

into equivalent h
(i)
f outcomes shows the expectation value

of h
(i)
f on ρf to be〈

(−1)π
(i)
f (v)

〉
v

=
∑

v∈GF (2)n

(−1)π
(i)
f (v) Pr(v|ρf ) (D1)

=
∑
v

(−1)∂if(v)+viTr [ρf (Hi|v〉〈v|Hi)]

(D2)

= Tr

[
ρf

(
Xi

∑
v

(−1)∂if(v)|v〉〈v|

)]
(D3)

= Tr
(
ρfh

(i)
f

)
. (D4)

In the last equality, we have used the definition of h
(i)
f

in Eq. (3), while in the second to last equality we used
Xi =

∑
vi

(−1)viHi|vi〉〈vi|Hi. This reveals that the ex-

pectation value of (−1)π
(i)
f (v) is equal to that of h

(i)
f on

ρf , and since we made no assumptions about ρf , this
shows that our verification scheme is exactly equivalent
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to measuring h
(i)
f [44].

As a concrete example, suppose we are working with
the 3-qubit sampling state |ψx1x2x3

〉 = CCZ123|+〉⊗3 and

wish to measure the stabilizer h
(1)
x1x2x3 = X1CZ23. In this

case, we would perform our verification by measuring X
on qubit 1, Z on qubits 2 and 3, and then computing the

polynomial π
(i)
f (v) = v1 + v2v3. This process, which can

be thought of as obtaining classical values and plugging
them in to the stabilizer itself, would indicate a success
when v1 = 1 and v2 = v3 = 1, or when v1 = 0 and at
least one of v2 = 0 or v3 = 0 holds true.

Given the ability to measure arbitrary h
(i)
f using single-

qubit X and Z measurements, we now note that the av-

erage
〈
h
(i)
f

〉
i

= 1
n

∑
i

〈
h
(i)
f

〉
over randomly chosen sites

i is equal to 1 on a given ρf only when ρf = |ψf 〉〈ψf |
is the ideal sampling state. More generally, the tech-
niques of [30] show that this average can be used to
bound the closeness of ρf to |ψf 〉〈ψf |, as measured by

the fidelity Ff =
√
〈ψf |ρf |ψf 〉. For our purposes, it will

be more convenient to work with the square of this quan-

tity, F 2
f . When

〈
h
(i)
f

〉
i
≥ 1 − 2

n , ρf cannot be orthogo-

nal to |ψf 〉, and must have a fidelity squared of at least

F 2
f ≥ 1 − n

2 (1 −
〈
h
(i)
f

〉
i
). If we average both sides of

this equality over polynomials f = a + b + c with ran-
dom b+c, then we find that the average fidelity squared〈
F 2
f

〉
f

of output states ρf relative to their intended |ψf 〉
is bounded by the average

〈
h
(i)
f

〉
i,f

as

〈
F 2
f

〉
f
≥ 1− n

2
(1−

〈
h
(i)
f

〉
i,f

) (D5)

With Eq. (D5) in hand, we can now bound the average
variational distance

〈∣∣Qf−Df

∣∣
1

〉
f

between the sampling

distributions arising from ρf and |ψf 〉. We utilize the fact
that the quantum 1-norm distance

∣∣∣∣ρf − |ψf 〉〈ψf |∣∣∣∣1 ≥∣∣Qf − Df

∣∣
1

gives an upper bound on the variational
distance of any output sampling distributions, where∣∣∣∣ρf−|ψf 〉〈ψf |∣∣∣∣1 = Tr

(∣∣ρf − |ψf 〉〈ψf |∣∣) with |A| the op-
erator absolute value. We also use a well-known bound

on the 1-norm distance,
∣∣∣∣ρf − |ψf 〉〈ψf |∣∣∣∣1 ≤ √1− F 2

f ,

which together yield〈∣∣Qf −Df

∣∣
1

〉
f
≤
〈∣∣∣∣ρf − |ψf 〉〈ψf |∣∣∣∣1〉f (D6)

≤
〈√

1− F 2
f

〉
f

(D7)

≤
√

1−
〈
F 2
f

〉
f

(D8)

≤
√
n

2
(1−

〈
h
(i)
f

〉
i,f

). (D9)

In the above, we used the two bounds mentioned, as well
as Jensen’s inequality for the concave function

√
1−X

in Eq. (D8). Using the relationship between the av-

erage of stabilizers and parity functions,
〈
h
(i)
f

〉
i,f

=〈
(−1)π

(i)
f (v)

〉
v,i,f

= 1 − 2
〈
π
(i)
f (v)

〉
v,i,f

, this finally lets

us show that in order to verify that
〈∣∣Qf −Df

∣∣
1

〉
f
≤ η0,

it is sufficient for our parity function average to be below

〈
π
(i)
f (v)

〉
v,i,f

≤ η20
n
. (D10)

This gives the bound appearing in Theorem 2.

Although any empirical estimate of
〈
h
(i)
f

〉
i,f

obtained

from finitely many measurements of π
(i)
f (v) isn’t guar-

anteed to accurately reflect its true value, we can bound
the closeness of this estimate with high probability using
the uniformly random distribution of byproduct opera-
tors proved in Appendix B. In particular, this tells us

that for any fixed a, the average
〈
h
(i)
f

〉
i,b,c

over output

random byproducts is unbiased towards any fixed ρf , and
thus is an accurate indicator of the uniform closeness of
sampling states. This lets us treat

〈
h
(i)
f

〉
i,f

as a simple

binary random variable, and use Höffding’s inequality to
bound the probability of this estimate deviating too far

from the true value of
〈
h
(i)
f

〉
i,f

.

Höffding’s inequality says that if we obtain an estimate
X̃ of a binary random variable X using N independent
samples, the probability of the true average

〈
X
〉

lying

above X̃ by more than ζ is

Pr(
〈
X
〉
≥ X̃ + ζ) ≤ exp(−2ζ2N) (D11)

In our case, we choose X to be our random parity func-
tion, and ζ to be the difference between our specified

tolerance (1/86)2

n , and the more numerically precise tol-
erance for classically intractable sampling derived in Ap-

pendix C, (0.01169)2

n . Setting N = µn2, this gives a failure
probability of

pF ≤ exp(−(2.9138× 10−6)µ2) = exp(−O(µ2)). (D12)

Converting this into a success probability p = 1−pF then
completes our proof of Theorem 2.

A final remark is given to our means of measuring the

highly nonlocal, non-Pauli stabilizers h
(i)
f through single-

qubit Pauli measurements. This technique can actually
be generalized to measure the stabilizers of any sampling
state formed by starting with |+〉⊗n and applying an IQP

circuit composed of
√
Z, Z, CZ, CCZ, and any higher

multiply-controlled Z gates. Since these states include
all hypergraph states as special instances, our means of
measuring non-Pauli stabilizers can be utilized for the
goal of measuring hypergraph stabilizers in [45], as the
latter requires the non-Pauli portion of measured stabi-
lizers to have support on a constant number of qubits.
Generalizing yet further, we see that the necessary and
sufficient condition for a local measurement scheme to ex-
actly replicate measurements of a nonlocal operator M
in this manner is that M can be diagonalized in a ba-
sis which is a tensor product of single-qubit eigenbases.
While this allows us to measure many different multi-
qubit operators using only single-qubit measurements, a



15

simple counterexample is given by the Hermitian oper-
ator SWAP , which cannot be measured in this manner

owing to its unique −1 eigenstate being the entangled
1√
2
(|01〉 − |10〉).
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