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We consider the problem of estimating an unknown but constant carrier phase modulation θ using a general –
possibly entangled – n-mode optical probe through n independent and identical uses of a lossy bosonic channel
with additive thermal noise. We find an upper bound to the quantum Fisher information (QFI) of estimating θ as
a function of n, the mean and variance of the total number of photonsNS in the n-mode probe, the transmissivity
η and mean thermal photon number per mode n̄B of the bosonic channel. Since the inverse of QFI provides
a lower bound to the mean-squared error (MSE) of an unbiased estimator θ̃ of θ, our upper bound to the QFI
provides a lower bound to the MSE. It already has found use in proving fundamental limits of covert sensing,
and could find other applications requiring bounding the fundamental limits of sensing an unknown parameter
embedded in a correlated field.

I. INTRODUCTION

Loss and noise are inevitable in all physical systems. In-
deed, lossy bosonic channels with additive thermal noise
henceforth called lossy thermal-noise channels are ubiquitous
– in communications across fibres and free-space links as well
as wireless sensor networks. Although the number of thermal
photons at optical wavelengths is small at room temperature,
amplification in an optical channel provides an effective envi-
ronment of thermal noise. The quantum communication lim-
its of optical channels in terms of channel capacity have long
been studied [1–5]. As quantum sensing moves into practi-
cal applications, the quantum limits of sensing capabilities in
optical channels will become increasingly relevant. However,
there have been few studies on the quantum limits of sens-
ing capabilities in optical channels [6, 7]. In particular, as the
lossy thermal-noise channel is an accurate quantum descrip-
tion of many optical channels, estimation of unknown carrier
phase modulation θ over this channel is a problem of wide and
imperative appeal in quantum sensing. Our work addresses it.

We consider the problem of estimating unknown but con-
stant carrier phase modulation θ using an n-mode optical
probe through n independent and identical uses of lossy
thermal-noise channel, as described in Fig. 1. A fully gen-
eral probe may be entangled across modes. The performance
of this sensing task can be captured by the variance of an un-
biased estimator θ̃ and is limited by the quantum Cramér-Rao
bound

〈(θ − θ̃)2〉 ≥ F−1Q (θ), (1)

where FQ(θ) is the quantum Fisher information (QFI) associ-
ated with phase θ, and may be a function of θ [8, 9].

Analytically closed expressions for the QFI are in general
difficult to obtain. Several works [10–12] provide a funda-
mental and attainable bound, however, it cannot be calculated
analytically. Therefore, it has little value to understanding the
problem at hand nor can be applied in specific tasks such as
covert sensing [13]. However, one can extract many features
of precision of estimators through analytical upper bounds on
the QFI [14–19]. In this work we provide such bound for QFI
associated with phase θ, denoted by CQ(θ). We lower-bound
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Figure 1. Phase estimation over a lossy thermal-noise channel. We
consider the use of a general n-mode optical probe for estimating
an unknown but constant phase modulation θ, where each mode of
the probe is independently corrupted by an identical lossy thermal-
noise channel E n̄B

η with mean thermal noise photon number n̄B and
transmissivity η. We are interested in a lower bound on the mean
squared error 〈(θ − θ̃)2〉 of the phase estimator θ̃.

the lower bound on the variance of the estimator θ̃ by combin-
ing Eq. (1) with the relation

FQ(θ) ≤ CQ(θ)⇒ F−1Q (θ) ≥ C−1Q (θ). (2)

Our main result, Eq. (19), is, to the best of our knowledge, the
first upper bound on the QFI that accounts for thermal photons
in the environment and an arbitrary input state. Our bound is a
function of the number of modes n, the mean and variance of
the total number of photons NS in the n-mode probe, and the
channel transmissivity η and mean thermal photon number per
mode n̄B. Obtaining Eq. (19) requires non-trivial optimisation
to ensure that it is tight and decreasing with increasing ther-
mal noise. It has already found use in proving the fundamental
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limits of covert sensing [13]. Other potential applications of
our result include finite-length analysis of channel estimation
in quantum key distribution protocols [20], distributed sens-
ing using shared entanglement [21–25], and other problems
requiring bounding the fundamental limits of sensing an un-
known parameter embedded in a correlated field.

We denote operators with a circumflex (e.g., ρ̂ for density
operators) and estimators with a tilde (e.g., µ̃ or θ̃). Bold capi-
tal letters stand for operators (such as K), which we use when
we refer to Kraus operators as well.

II. BOUNDING THE QUANTUM FISHER INFORMATION

Consider the problem of estimating a parameter µ from a
state ρ̂µ, which can be an output of a channel characterized
by µ. Denote the QFI for the parameter µ estimated from
the state ρ̂µ by FQ(µ). While closed-form expressions for
QFI for a single phase have been found for pure states [9]
and general Gaussian states [26, 27], no such formulae are
known for arbitrary quantum states. Numerical methods can
provide the exact QFI in specific systems and scenarios, but
closed-form expressions are by definition more powerful and,
thus, desirable. Finally, they are valuable for optimising the
performance of a given sensing set-up over arbitrary probe
states and essential in proving optimality in general.

Let CQ(µ) be the QFI for the parameter µ estimated from
a purification |Ψ(µ)〉 of the state ρ̂µ. Since, we can extract
more information about the parameter when the system and
the environment are monitored together rather than monitor-
ing the system alone [15] FQ(µ) ≤ CQ(µ). If the evolution
of the system from some initial state to ρ̂µ is described by the
set of Kraus operators {Kl(µ)}, where l may refer to multiple
indices (non-bold l always refers to single index), it has been
shown [15] that

CQ(µ) = 4
[
〈Ĥ1〉 − 〈Ĥ2〉2

]
, (3)

Ĥ1 =
∑
l

dK†l
dµ

dKl

dµ
, (4)

Ĥ2 = i
∑
l

dK†l
dµ

Kl, (5)

where the mean values in Eq. (3) are taken on the input state,
which can be pure or mixed. For brevity we have suppressed
the dependence of Kl on µ. The bound in Eq. (3) can be
generalised to the case of n identical channels [15] to

CQ,n(µ) = 4

n∑
m0=1

(
〈Ĥ(m0)

1 〉 − 〈Ĥ(m0)
2 〉2

)
(6)

+8

n∑
m1=2

m1−1∑
m2=1

(
〈Ĥ(m1)

2 Ĥ
(m2)
2 〉 − 〈Ĥ(m1)

2 〉〈Ĥ(m2)
2 〉

)
,

where the mean values are taken over the input n-mode state,
while H(mi)

1,2 refers to the standard definitions of Eqs. (4), (5)
for the mi-th quantum channel.

The purification of a quantum state is not unique. There-
fore, in seeking the tightest bound, which is CQ(µ) = FQ(µ)
[15], we must optimise over all possible purifications or at
least selectively optimise over some possible purifications.
The non-uniqueness of the purification is linked to the unitary
ambiguity of Kraus operators, since both of these ambiguities
are rooted in the freedom of choosing the environments’ basis
up to some local unitary. Specifically, the unitary ambiguity
of Kraus operators means the following: two Kraus represen-
tations {Kn} and {K′n} represent the same quantum channel
if and only if Kn =

∑
n,m UmnK

′
m, where Umn are the el-

ements of the matrix representation of a unitary operator that
acts on the environment’s Hilbert space. Optimisation over all
possible equivalent representations of a quantum channel is in
general formidable. However, a limited optimisation over a
subset of equivalent Kraus representations should yield better
results than no optimisation. In particular, the aim is to min-
imise the amount of information about the parameter µ in the
environment. The more of this information is erased by the
local unitary operations, the tighter is the inequality (2).

III. LOSSY THERMAL-NOISE CHANNEL AND PHASE
SHIFT

In the lossy thermal-noise channel the input state ρ̂0 inter-
acts with a thermal state ρ̂th via a beam splitter of transmissiv-
ity η. Then the environment is traced out, leaving the chan-
nel’s output state ρ̂f . The transformation Û for the action of
the beam splitter on a single mode is

Û =

( √
η

√
1− η

−
√

1− η √
η

)
, (7)

and the thermal state can be expressed in Fock basis as

ρ̂th =
1

1 + n̄B

∞∑
k=0

(
n̄B

1 + n̄B

)k
|k〉〈k|, (8)

where n̄B is the mean thermal photon number.
To proceed, we need the Kraus operators for the lossy

thermal-noise channel. One possible Kraus operator descrip-
tion is found by decomposing the lossy thermal-noise channel
into a pure loss channel of transmissivity τ = η/G followed
by a quantum-limited amplifier with gain G = 1 + (1− η)n̄B
[28]. This provides a Kraus representation for the lossy
thermal-noise channel as ρ̂f =

∑∞
k,l=0 BkAlρ̂0A

†
lB
†
k, where

Al are the Kraus operators of the pure loss channel, while
Bk(G) are the Kraus operators of the quantum limited ampli-
fier [28] given by

Al =

√
(1− τ)l

l!
τ

n̂
2 âl, (9)

Bk =

√
1

k!

1

G

(
G− 1

G

)k
â†kG−

n̂
2 . (10)

The parameter to be estimated is the phase picked up by the
input state, that is µ ≡ θ. The Kraus representation of the full
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channel including the phase shift θ is

ρ̂ =

∞∑
k,l=0

eiθ[n̂+γ(k−l)]BkAlρ̂0A
†
lB
†
ke
−iθ[n̂+γ(k−l)], (11)

where, as it will become apparent, γ ∈ R controls the position
of the phase shift operator with respect to the lossy thermal-
noise channel.

The state in Eq. (11) is independent of γ. Therefore,
the position of the phase operator with respect to the lossy
thermal-noise channel does not affect the QFI FQ(θ) [29].
However, the position of the phase shift impacts the bound
CQ(θ), as can be see from Eqs. (3), (4), and (5). The case
for which γ = −1 corresponds to the phase shift being ap-
plied before the lossy thermal-noise channel, while the case
γ = 0 corresponds to the phase shift being applied after it.
This follows from the identity eiθ(n̂−(k−l))â†kG−

n̂
2 τ

n̂
2 âl =

â†kG−
n̂
2 τ

n̂
2 âleiθn̂, which can be proven using the relation(

â†
)l
n̂k = (n̂− l)k

(
â†
)l
. This latter relation is also useful

for the calculations that follow.
Our strategy for extracting a tighter bound is to optimise

over the Kraus operators A and B by adding local phase shift
operators, whose generators depend linearly on the estimated
parameter (see App. Sec. 1). We impose the dependence of
the Kraus operators A and B on θ so that we obtain non-trivial
results when using Eqs. (4) and (5). These local phases gen-
erate equivalent Kraus decompositions of the lossy thermal-
noise channel. Hence this is a special case of the local unitary
freedom on the environment in defining the Kraus operator.
To that end, consider two equivalent Kraus representations of
the pure loss channel, i.e., {Al} of Eq. (9) and {A′l}, and let
the unitary operator connecting them be a local phase rotation
by xθ. That is,

A′l =

∞∑
k=0

δkle
ixkθAl = eixlθAl

=

√
(1− τ)l

l!
τ

n̂
2

(
eixθâ

)l
, (12)

where x ∈ R. Therefore, the operators in Eq. (12) can be
obtained from Eq. (9) by applying a local phase θx in the
system’s modes, e−iθxn̂âeiθxn̂ = eiθxâ. Thus, we define a
family of Kraus representations, parametrised by x, which we
optimise over the continuous real parameter x. Following the
same reasoning, we can define a family of Kraus representa-
tions {B′k} for quantum-limited amplification channel as

B′k = eiθykBk

=

√
1

k!

1

G

(
G− 1

G

)k (
eiθyâ†

)k
G−

n̂
2 , (13)

where now the family of equivalent Kraus operators is
parametrised by the continuous parameter y ∈ R. Now we
can define a Kraus representation for the full channel, i.e.,

phase shift, loss and thermal noise,

ρ̂ =

∞∑
k,l=0

eiθn̂Bke
iθkyAle

iθlxρ̂0A
†
l e
−iθlxB†ke

−iθkye−iθn̂

=

∞∑
k,l=0

eiθ(n̂+lx+ky)BkAlρ̂0A
†
lB
†
ke
−iθ(n̂+lx+ky), (14)

where x and y do not affect the evolution of the initial state
and, therefore, the value of FQ(θ) (nor of any other quan-
tity that depends only in the properties of the channel’s output
state), but they have an impact on CQ(θ). Therefore, we op-
timise CQ(θ) over x and y. Note Eq. (11) is a special case of
Eq. (14) for −x = y = γ. This gives the physical meaning
for considering γ ∈ R: it is a local phase shift in the environ-
ment’s degrees of freedom.

IV. BOUND FOR SINGLE-MODE LOSSY
THERMAL-NOISE CHANNEL

In order to compute the upper bound CQ(θ) on the QFI
corresponding to the output state of the lossy thermal-noise
channel, for estimating the phase θ, we apply Eqs. (3), (4), and
(5) for the Kraus operator Kl = eiθ(n̂+lx+ky)BkAl, where
l = l, k,

Ĥ1 =

∞∑
k,l=0

A†lB
†
k

de−iθ(n̂+lx+ky)

dθ

deiθ(n̂+lx+ky)

dθ
BkAl,(15)

Ĥ2 = i

∞∑
k,l=0

A†lB
†
k

de−iθ(n̂+lx+ky)

dθ
eiθ(n̂+lx+ky)BkAl. (16)

We find (see App. Sec. 2) that the bound minimised over x, y
is

C?Q(θ) =
4η〈∆n2S〉n̄S [ηn̄S + (1− η)n̄B + 1]

D
, (17)

where

D = (1− η)〈∆n2S〉[ηn̄S(2n̄B + 1)− ηn̄B(n̄B + 1)

+(n̄B + 1)2] + ηn̄S[ηn̄S + (1− η)n̄B + 1] (18)

and 〈∆n2S〉 = 〈n̂2〉 − 〈n̂〉2 = 〈n̂2〉 − n̄2S is the variance of
the system’s photon number. It can be shown that C?Q(θ) is a
decreasing function of the environment’s mean thermal pho-
ton number n̄B (see App. Sec. 2) and therefore the bound
obtained behaves reasonably, meaning that the QFI decreases
when the environmental temperature is increased.

V. BOUND FOR n INDEPENDENT AND IDENTICAL
LOSSY THERMAL-NOISE CHANNEL

We consider n identical lossy thermal-noise channel with
the same mean thermal photons number n̄B, equivalently we
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Figure 2. The bound corresponding to an entangled coherent probe
state as a function of mean thermal photon number. The amplitude is
|α| = 1 for all curves. Solid curve corresponds to η = 0.1, dashed
curved corresponds to η = 0.4, and dotted curved corresponds to
η = 0.7.

consider n uses of the same lossy thermal-noise channel. For
that case we find the bound (see App. Sec. 3),

C?Q,n(θ) =
1

Dn

{
4nη〈∆N2

S〉〈NS〉[1 + n̄B(1− η)]

+4η2〈∆N2
S〉〈NS〉2

}
, (19)

where the denominator reads,

Dn = η2〈NS〉2 + ηn〈NS〉[1 + (1− η)n̄B]

+(1− η)η〈∆N2
S〉〈NS〉(1 + 2n̄B)

−(1− η)η〈∆N2
S〉nn̄B(1 + n̄B)

+(1− η)n〈∆N2
S〉(1 + n̄B)2 (20)

and 〈NS〉 and 〈∆N2
S〉 are respectively the mean photon and

photon number variance of the n-mode input state. It can be
shown that the bound C?Q,n(θ) is a decreasing function of the
environment’s mean thermal photon number (see App. Sec.
3).

As an example, we consider an entangled coherent state
[30] of the form,

|Ψ〉 =
1√

2(1 + e−|α|2)
(|α, 0〉+ |0, α〉) (21)

where |α〉 is a coherent state. Both modes of the entangled
coherent state suffer the same losses and thermal noise and
pick up the same phase shift. The mean photon number 〈NS〉

and the photon number variance 〈∆N2
S〉 for the state (21) are

〈NS〉 =
|α|2

1 + e−|α|2
(22)

〈∆N2
S〉 =

|α|2

1 + e−|α|2
. (23)

The bound can then be found from Eq. (19) and we plot its
behaviour with respect to mean thermal photon number in Fig.
2.

VI. CONCLUSIONS

We have analytically bounded the QFI associated with
phase modulation of an arbitrary probe state (single-mode and
n-mode) that suffers thermal noise and loss. The bound we
have derived in Eq. (19) behaves reasonably with thermal pho-
tons, i.e., it decreases with n̄B. We note that our bound is
sub-optimal, as better bounds may be found by choosing dif-
ferent unitarily equivalent Kraus decompositions of the lossy
thermal-noise channel. However, the task of further optimisa-
tion is onerous since one can only hope for an educated guess
on the local unitary transformation which acts on the environ-
ment. Based on the physical argument of erasing the phase
information leaked to the environment, we have chosen the
phase shift operator as the local unitary to act on the environ-
ment. Beyond this, one is left with a trial and error approach.

Moreover, we show that the position of the phase shift with
respect to the lossy thermal-noise channel aids optimisation
of the bound but is irrelevant in the calculation of the Fisher
information to be bounded. Note that this proof is valid for
a larger class of quantities, i.e., we have shown that for every
quantity Q that depends only on the properties of the final
reduced density matrix, the position of the phase shift operator
with respect to the lossy thermal-noise channel does not play
any role in the calculation of Q.

Since the lossy thermal-noise channel is an accurate quan-
tum description of many practical communication channels,
having a worked out bound on the output’s QFI for sensing
phase modulation through such channel is important and use-
ful. Our bound has already found use in covert sensing [13],
where thermal noise is inevitable and the main ingredient at
the same time. Therefore, we anticipate that our results are
applicable in a wide range of problems requiring bounding
the fundamental limits of sensing an unknown parameter em-
bedded in a correlated field.
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APPENDIX

1. Physical meaning of the equivalent Kraus operators

We prove that the unitary equivalence between the sets of Kraus operators we have chosen in the main text has the physical
interpretation of a local phase in the environment after interaction. First of all we decompose the lossy thermal-noise channel into
a pure loss channel followed by quantum-limited amplifier [28], as depicted in Fig. 3. Let Û be a beam splitter transformation

Figure 3. The lossy thermal-noise channel (left) can be decomposed into a pure loss channel followed by a quantum limited amplifier (right).
If the lossy thermal-noise channel is characterised by transmissivity η and mean thermal photon number n̄B, then the pure loss channel is
characterised by transmissivity τ = η/G and the quantum limited amplifier has gain G = 1 + (1− η)n̄B.

with transmissivity τ , the Kraus operators for the pure loss channel is defined as

Al = 〈l|Û |0〉 =

∞∑
m,n=0

〈m, l|Û |n, 0〉|m〉〈n|, (A1)
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where m,n refer to the system while l and the vacuum state |0〉 refer to the environment. Also, note that in Eq. (A1) we use the
Fock basis for the system and the environment. Employing the unit resolution of the coherent basis in Eq. (A1) we obtain

Al =
1

π2

∞∑
m,n=0

∫
d2α1

∫
d2α2 exp

(
− |α1|2

2
− |α2|2

2
− 1

2
|α1

√
τ + α2

√
1− τ |2 − 1

2
| − α1

√
1− τ + α2

√
τ |2
)

× (α∗1
√
τ + α∗2

√
1− τ)n√

n!

αm1√
m!

αl2√
l!
|m〉〈n|, (A2)

where d2α = dRe(α)dIm(α). Performing the integrations in Eq. (A2), we get a representation of the Kraus operators for the
pure loss channel in Fock space,

Al =

∞∑
n=0

√
(1− τ)l

l!
τ

n̂
2 âl|n〉〈n|. (A3)

Applying a phase shift e−iθxn̂ on the environment’s mode after interaction, we obtain

A′l =

∞∑
n=0

√
(1− τ)l

l!
τ

n̂
2

(
eixθâ

)l |n〉〈n| = eixlθAl. (A4)

Applying the same method to the quantum-limited amplification channel we prove that a phase shift e−iθyn̂ in the environment
after interaction leads to,

B′k =

∞∑
n=0

√
1

k!

1

G

(
G− 1

G

)k (
eiθyâ†

)k
G−

n̂
2 |n〉〈n| = eiykθBk. (A5)

Figure 4 shows how we decompose the lossy thermal-noise channel and include the phase shift to be estimated. The parameters
x, y ∈ R, over which we optimise CQ(θ), have the physical meaning of local rotations xθ (yθ) in the environment of the
pure loss (quantum-limited amplification). We close this section by emphasizing the physical meaning of the optimisation. The
bound CQ(θ) is the QFI for the state |Ψ(θ)〉, which is a purification of ρ̂, while FQ(θ) is the QFI for the state ρ̂ itself. When
we optimise we make the bound tighter, i.e., we look for the smallest possible CQ(θ). This means that we actually look for
these phase shift operations on the environment so that maximum information on the estimated parameter is erased from the
environmental degrees of freedom, making the QFI CQ(θ) smaller.

2. Calculation of the bound for the single-mode lossy thermal-noise channel

Performing the derivatives with respect to θ in equations,

Ĥ1 =

∞∑
k,l=0

A†lB
†
k

de−iθ(n̂+lx+ky)

dθ

deiθ(n̂+lx+ky)

dθ
BkAl, (A6)

Ĥ2 = i

∞∑
k,l=0

A†lB
†
k

de−iθ(n̂+lx+ky)

dθ
eiθ(n̂+lx+ky)BkAl, (A7)

using the equations,

âln̂k = (n̂+ l)
k
âl ⇒ âlGn̂ = Gn̂+lâl, (A8)(

â†
)l
n̂k = (n̂− l)k

(
â†
)l ⇒ (

â†
)l
τ n̂ = τ n̂−l

(
â†
)l
, (A9)

âkâ†k =

k∏
j=1

(n̂+ j), (A10)

â†kâk =

k∏
j=1

(n̂− j + 1), (A11)

and the key identities of the Kraus operators and their various moments (up to quadratic),
∞∑
l=0

Al(τ)†Al(τ) = 1, (A12)
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Figure 4. (a) A Kraus decomposition of the lossy thermal-noise channel equivalent to that depicted in Fig. 3. The local phases applied to the
environment have no effect on FQ(θ) but they affect the bound CQ(θ). (b) The initial state suffers from loss and additive thermal noise, and
then acquires a phase θ. (c) For x = y = 0 the loss and thermal noise precedes the phase shift. (d) For x = −y = 1 the phase shift precedes
the loss and thermal noise. We minimise CQ(θ) over x, y ∈ R, i.e., over the family of equivalent Kraus decompositions.

∞∑
k=0

Bk(G)†Bk(G) = 1, (A13)

∞∑
k,l=0

lAl(τ)†Bk(G)†Bk(G)Al(τ) = Ŝ1(τ) ≡ (1− τ) n̂, (A14)

∞∑
k,l=0

l2Al(τ)†Bk(G)†Bk(G)Al(τ) = Ŝ2(τ) ≡ (1− τ)
[
τ n̂+ (1− τ)n̂2

]
, (A15)

∞∑
k,l=0

Al(τ)†n̂Bk(G)†Bk(G)Al(τ) = n̂− Ŝ1(τ), (A16)

∞∑
k,l=0

Al(τ)†n̂Bk(G)†n̂Bk(G)n̂Al(τ) = G
(
n̂2 − 2n̂Ŝ1(τ) + Ŝ2(τ)

)
+ (G− 1)

(
n̂− Ŝ1(τ)

)
, (A17)

∞∑
k,l=0

k2Al(τ)†Bk(G)†Bk(G)Al(τ) = (G− 1)2
(
n̂2 − 2n̂Ŝ1(τ) + Ŝ2(τ)

)
+ (G− 1)(3G− 2)

(
n̂− Ŝ1(τ)

)
(A18)

+(G− 1)(2G− 1),

∞∑
k,l=0

kAl(τ)†Bk(G)†Bk(G)Al(τ) = (G− 1)
(
n̂− Ŝ1(τ) + 1

)
, (A19)

∞∑
k,l=0

Al(τ)†Bk(G)†n̂Bk(G)Al(τ) = G
(
n̂− Ŝ1(τ) + 1

)
− 1, (A20)
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∞∑
k,l=0

Al(τ)†Bk(G)†n̂2Bk(G)Al(τ) = G2
(
n̂2 − 2n̂Ŝ1(τ) + Ŝ2(τ)

)
+ 3G(G− 1)

(
n̂− Ŝ1(τ)

)
(A21)

+(G− 1)(2G− 1),

∞∑
k,l=0

kAl(τ)†Bk(G)†n̂Bk(G)Al(τ) = G(G− 1)
(
n̂2 − 2n̂Ŝ1(τ) + Ŝ2(τ)

)
+ (G− 1)(3G− 1)

(
n̂− Ŝ1(τ)

)
(A22)

+(G− 1)(2G− 1),

we find,

〈Ĥ1〉 = c22(x, y)〈n̂2〉+ c1(x, y)〈n̂〉+ c0(x, y) (A23)

〈Ĥ2〉 = c2(x, y)〈n̂〉+ d0(x, y), (A24)

where,

c2(x, y) =
η + (1− η)[(n̄B + 1)x+ ηn̄B(y + 1)]

(1− η)n̄B + 1
, (A25)

c1(x, y) =
1− η

[(1− η)n̄B + 1]2

{
η(n̄B + 1)x2 + ηn̄B{1− (1− η)n̄B[η − 4(1− η)n̄B − 5]}y2

+2(1− η)2n̄B(n̄B + 1)2xy + 2(n̄B + 1)[(1− η)n̄B + 1][(1− η)n̄B − η]x

+2ηn̄B[(1− η)n̄B + 1][3− η + 4(1− η)n̄B]y + η(4n̄B + 1)[(1− η)n̄B + 1]2
}
, (A26)

c0(x, y) = (1− η)n̄B[2(1− η)n̄B + 1](y + 1)2, (A27)
d0(x, y) = (1− η)n̄B(y + 1). (A28)

Therefore, the bound can be written as

CQ(θ, x, y) = 4
[
A(x, y)〈∆n2S〉+ ω(x, y)

]
, (A29)

where,

〈∆n2S〉 = 〈n̂2〉 − n̄2S, (A30)

A(x, y) =

[
(n̄B + 1)(1− η)

1 + n̄B(1− η)

]2
x2 +

[
n̄Bη(1− η)

1 + n̄B(1− η)

]2
y2 +

2n̄B(n̄B + 1)η(1− η)2

[1 + n̄B(1− η)]2
xy

+
2(n̄B + 1)η(1− η)

1 + n̄B(1− η)
x+

2n̄Bη
2(1− η)

1 + n̄B(1− η)
y + η2, (A31)

ω(x, y) =
(n̄B + 1)η(1− η)n̄S

[1 + n̄B(1− η)]2
x2

+
n̄B(1− η)

{
n[1 + n̄B(1− η)]3 + ηn̄S{1 + (1− η)n̄B[3 + 2n̄B(1− η)− η]}

}
[1 + n̄B(1− η)]2

y2

−2η(1− η)2n̄B(n̄B + 1)n̄S
[1 + n̄B(1− η)]2

xy − 2η(1− η)(n̄B + 1)n̄S
1 + n̄B(1− η)

x

+
2n̄B(1− η)

{
[1 + n̄B(1− η)]2 + ηn̄S[2 + 2n̄B(1− η) + η]

}
1 + n̄B(1− η)

y

+(1− η)
[
n̄2B(1− η) + ηn̄S + n̄B(1 + 2ηn̄S)

]
. (A32)

We note that Eqs. (A12) and (A13) are the completeness relationships for Kraus operators. Equations (A14) and (A15) can be
proven by choosing a basis to represent the operators (they can also be found in [15]). Equations (A16)-(A22) can be calculated
by representing the operators in some basis (e.g. Fock basis) and by performing the summations. Alternatively, in order to prove
Eqs. (A16)-(A22), one can use Eqs. (A12)-(A15), the commutation relation [a, a†] = 1 and its derivative relation Eq. (A10).

We now minimise CQ(θ, x, y) by solving for x, y the following equations,

∂CQ(θ, x, y)

∂x
= 0, (A33)

∂CQ(θ, x, y)

∂y
= 0, (A34)
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and verifying that the solutions x0, y0 to Eqs. (A33) and (A34) satisfy,

∂2CQ(θ, x, y)

∂x2

∣∣∣∣∣x=x0
y=y0

∂2CQ(θ, x, y)

∂y2

∣∣∣∣∣x=x0
y=y0

−

∂2CQ(θ, x, y)

∂x∂y

∣∣∣∣∣x=x0
y=y0

2

> 0. (A35)

We find that

x0 =
η(n̄S − 〈∆n2S〉)[ηn̄S + (1− η)n̄B + 1]

(1− η)〈∆n2S〉[ηn̄S(2n̄B + 1)− ηn̄B(n̄B + 1) + (n̄B + 1)2] + ηn̄S[ηn̄S + (1− η)n̄B + 1]
(A36)

y0 = −1− η〈∆n2S〉n̄S
(1− η)〈∆n2S〉[ηn̄S(2n̄B + 1)− ηn̄B(n̄B + 1) + (n̄B + 1)2] + ηn̄S[ηn̄S + (1− η)n̄B + 1]

(A37)

and the optimised bound is

C?Q(θ) =
4η〈∆n2S〉n̄S[ηn̄S + (1− η)n̄B + 1]

(1− η)〈∆n2S〉[ηn̄S(2n̄B + 1)− ηn̄B(n̄B + 1) + (n̄B + 1)2] + ηn̄S[ηn̄S + (1− η)n̄B + 1]
, (A38)

where 〈∆n2S〉 = 〈n̂2〉 − 〈n̂〉2 = 〈n̂2〉 − n̄S is the variance of the system’s photon number.

3. Calculation for the bound for the n-mode lossy thermal-noise channel

For the m-th lossy thermal-noise channel, using the Eqs. (A8) to (A22), and performing the derivatives in Eqs. (A6) and (A7),
where now Ĥ1 and Ĥ2 correspond to the m-th channel (therefore we denote them as Ĥ(m)

1 and Ĥ(m)
2 ), we have

〈Ĥ(m)
1 〉 = c22(x, y)〈n̂2(m)〉+ c1(x, y)〈n̂(m)〉+ c0(x, y) (A39)

〈Ĥ(m)
2 〉 = c2(x, y)〈n̂(m)〉+ d0(x, y) (A40)

〈Ĥ(mi)
2 Ĥ

(mj)
2 〉 = c22(x, y)〈n̂(mi)n̂(mj)〉+ d0(x, y)d1(x, y)

(
〈n̂(mi)〉+ 〈n̂(mj)〉

)
+ d20(x, y), (A41)

where the functions c2(x, y), c1(x, y), c0(x, y), and d0(x, y) are given in Eqs. (A25), (A26), (A27), and (A28). The mean values
in the right-hand side of Eqs. (A39), (A40), and (A41), are taken on the m-th, mi-th, or mj-th mode, as is indicated by their
indices. Note that the functions ci(x, y) and di(x, y) depend on n̄B and η as well. From Eqs. (A39), (A40), and (A41), the
bound CQ,n(θ) as defined in the main text, is

CQ,n(θ, x, y) = 4
[
A(x, y)〈∆N2

S〉+ Ω(x, y)
]
, (A42)

where,

〈∆N2
S〉 =

〈( n∑
m=1

n̂(m)

)2 〉
− 〈NS〉2, (A43)

Ω(x, y) =
(n̄B + 1)η(1− η)〈NS〉

[1 + n̄B(1− η)]2
x2

+
n̄B(1− η)

{
n[1 + n̄B(1− η)]3 + η〈NS〉{1 + (1− η)n̄B[3 + 2n̄B(1− η)− η]}

}
[1 + n̄B(1− η)]2

y2

−2η(1− η)2n̄B(n̄B + 1)〈NS〉
[1 + n̄B(1− η)]2

xy − 2η(1− η)(n̄B + 1)〈NS〉
1 + n̄B(1− η)

x

+
2n̄B(1− η)

{
n[1 + n̄B(1− η)]2 + η〈NS〉[2 + 2n̄B(1− η) + η]

}
1 + n̄B(1− η)

y

+(1− η)
[
nn̄2B(1− η) + η〈NS〉+ n̄B(n+ 2η〈NS〉)

]
, (A44)

and A(x, y) is given by Eq. (A31). The mean value in the argument of the summation in Eq. (A43) corresponds to the m-th
input mode, 〈NS〉 and 〈∆N2

S〉 are respectively the total mean photon number and the photon number variance of the n-mode
input state. Now we minimise the bound CQ,n(θ) of Eq. (A42) by solving for x, y the equations,

∂CQ,n(θ, x, y)

∂x
= 0, (A45)

∂CQ,n(θ, x, y)

∂y
= 0. (A46)
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The solutions of Eqs. (A45) and (A46) are

x0 = −η
2〈NS〉(〈∆N2

S〉 − 〈NS〉) + ηn(〈∆N2
S〉 − 〈NS〉)[1 + (1− η)n̄B]

Dn
, (A47)

y0 =
η2〈NS〉(〈∆N2

S〉 − 〈NS〉)− [n〈∆N2
S〉(1 + n̄B)(1− η) + η〈NS〉(n+ 2〈∆N2

S〉)][1 + n̄B(1− η)]

Dn
(A48)

where,

Dn = η2〈NS〉2 + ηn〈NS〉[1 + (1− η)n̄B] + (1− η)η〈∆N2
S〉〈NS〉(1 + 2n̄B)

−(1− η)η〈∆N2
S〉nn̄B(1 + n̄B) + (1− η)n〈∆N2

S〉(1 + n̄B)2. (A49)

The minimised bound CQ,n(θ, x0, y0) ≡ C?Q,n(θ) reads

C?Q,n(θ) =
4nη〈∆N2

S〉〈NS〉[1 + n̄B(1− η)] + 4η2〈∆N2
S〉〈NS〉2

Dn
, (A50)

where the condition,

∂2CQ,n(θ, x, y)

∂x2

∣∣∣∣∣x=x0
y=y0

∂2CQ,n(θ, x, y)

∂y2

∣∣∣∣∣x=x0
y=y0

−

∂2CQ(θ, x, y)

∂x∂y

∣∣∣∣∣x=x0
y=y0

2

> 0, (A51)

is satisfied so that C?Q,n(θ) is indeed a minimum.
The bound C?Q,n(θ) is a decreasing function of the environment’s mean thermal photon number. Indeed, the derivative of

C?Q,n(θ) with respect to n̄B reads,

dC?Q,n(θ)

dn̄B
= −4η(1− η)〈NS〉〈∆N2

S〉2

D2
n

{
nη〈NS〉[3 + 2n̄B(1− η)] + 2η2〈NS〉2 + n2[1 + n̄B(1− η)]2

}
(A52)

which is negative for all input states, η, n̄B, and n, including of course the single-mode case n = 1.
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