
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Discrete Wigner formalism for qubits and noncontextuality
of Clifford gates on qubit stabilizer states

Lucas Kocia and Peter Love
Phys. Rev. A 96, 062134 — Published 29 December 2017

DOI: 10.1103/PhysRevA.96.062134

http://dx.doi.org/10.1103/PhysRevA.96.062134


Discrete Wigner Formalism for Qubits and Non-Contextuality of Clifford Gates on
Qubit Stabilizer States
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We show that qubit stabilizer states can be represented by non-negative quasi-probability dis-
tributions associated with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-
independent maps. This is accomplished by generalizing the Wigner-Weyl-Moyal formalism to three
generators instead of two—producing an exterior, or Grassmann, algebra—which results in Clifford
group gates for qubits that act as a permutation on the finite Weyl phase space points naturally
associated with stabilizer states. As a result, a non-negative probability distribution can be asso-
ciated with each stabilizer state’s three-generator Wigner function, and these distributions evolve
deterministically to one another under Clifford gates. This corresponds to a hidden variable theory
that is non-contextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a
context-dependent representation. Equivalently, we show that qubit Clifford gates can be expressed
as propagators within the three-generator Wigner-Weyl-Moyal formalism whose semiclassical expan-
sion is truncated at order ~0 with a finite number of terms. The T -gate, which extends the Clifford
gate set to one capable of universal quantum computation, require a semiclassical expansion of
the propagator to order ~1. We compare this approach to previous quasi-probability descriptions
of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism and find that the two-
generator Weyl symbols of stabilizer states result in a description of evolution under Clifford gates
that is state-dependent, in contrast to the three-generator formalism. We have thus extended Wigner
non-negative quasi-probability distributions from the odd d-dimensional case to d = 2 qubits, which
describe the non-contextuality of Clifford gates and contextuality of Pauli measurements on qubit
stabilizer states.

I. INTRODUCTION

Contextuality [1–3] is a necessary resource for univer-
sal quantum computation [4]. In general, the existence of
a positive quasiprobability representation is a notion of
classicality that is equivalent to non-contextuality [5–8].
As a result of work by Wootters [9], Gross [10], Veitch
et al. [11, 12], Mari et al. [13], and Howard et al. [4], it
has been established that non-contextuality is equivalent
to the non-negativity of the discrete Wigner functions,
and Weyl symbols, of the associated states and opera-
tors involved [5]. In particular, it is possible to formu-
late a discrete two-parameter or two-generator Wigner
function for odd d-dimensional qudit [10] and rebit [14]
stabilizer states that are non-negative, along with posi-
tive covariant maps for the associated Weyl symbols of
the Clifford gates. For odd d, quantum gates and states
that are non-contextual can be efficiently simulated on
classical computers [4, 13, 15].

However, it is impossible to define a non-negative
two-generator Wigner function for qubit stabilizer states
and positive covariant two-generator Clifford Weyl sym-
bols [11, 13, 16–18]. This is true despite the fact that
it has long been known that qubit stabilizer states and
Clifford operations can be simulated efficiently by the
Gottesmann-Knill theorem [19], and that contextuality
is necessary for attaining quantum universality in qubit
circuits with some additional postulates [20]. This begs
the question: is contextuality only equivalent to the non-
negativity of associated discrete Wigner functions for d-
dimensional qudits with odd d?

Here we answer this question. We find that non-

contextuality is equivalent to non-negativity in the (ap-
propriate) associated discrete Wigner function for qubits
(d = 2). The issue preventing such a result in previ-
ous efforts was the use of only two generators to define
a discrete Wigner function. By instead employing three
generators, and thereby defining an exterior (or Grass-
mann) algebra, we show that the Wigner-Weyl-Moyal
formalism, first developed by Berezin [21], results in dis-
crete Wigner functions that are non-negative for stabi-
lizer states, and Weyl symbols that are state-independent
positive maps for Clifford gates. This is related to the
fact that Clifford gates in any odd prime power dimen-
sion are unitary two-designs, while multiqubit Clifford
gates are also unitary three-designs [17]. The necessity
of using three bases for qubits was also found by Wall-
man et al. [22], from a very different approach to the
Wigner-Weyl-Moyal formalism, to characterize one qubit
non-contexutality.

We further show that the Weyl symbol for qubit uni-
tary gates can be formulated in terms of a traditional
path integral expansion in powers of ~ and find that Clif-
ford gates can be fully described by a single term con-
sisting of the truncated path integral at order ~0. On the
other hand, the T -gate, which extends the Clifford gates
to a universal quantum gate set, requires the full path
integral up to order ~1. This agrees with results found
for odd d-dimensional qudits [23, 24]. The Weyl symbols
of Pauli measurements, with which Clifford gates com-
plete the set of Clifford operations, are shown to have
the possibility of being contextual, when more than one
qubit is involved in the system.

Finally, we show how the Weyl symbols of stabilizer
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states in the two-generator formalism relate to their
three-generator counterparts. Using a map from the two-
generator algebra stabilizer states to the three-generator
algebra stabilizer states, we explain their propagation
rules under Clifford gates. This yields the Aaronson-
Gottesman tableau algorithm, just as in the odd-d
case [15]. In this two-generator representation we find
that Clifford gates must be defined state-dependently,
whereas in the three-generator representation, evolution
is state independent. As a result, we argue that the
two-generator formalism forms a non-local and contex-
tual hidden variable theory for Clifford gates on qubit
stabilizer states from the perspective of preparation con-
textuality. This is in contrast to the three-generator rep-
resentation, which forms a local and non-contextual hid-
den variable theory.

We begin by first offering motivation in Section II
for why formulating a discrete Wigner function for qu-
dits with only two generators is necessarily restricted to
odd d if it is to be associated with the usual Wigner-
Weyl-Moyal formalism. We introduce some fundamen-
tals of the Grassmann algebra in Section III. This allows
us to introduce the Wigner-Weyl-Moyal formalism with
three generators in Section IV, and show that within this
framework Clifford gates and stabilizer states are positive
state-independent maps and non-negative states, respec-
tively, for d = 2. We return to discrete two-generator
Wigner functions in Section VI, which includes Woot-
ter’s original discrete formulation for qubits [9], and re-
late it to the three-generator algebra. We explain how the
Aaronson-Gottesman tableau algorithm for qubit stabi-
lizer state propagation under Clifford gates is equivalent
to such a two-generator Wigner function, as we argued
in recent work [15]. Finally, in Section VII, we discuss
how the contextuality of Pauli measurements is manifest
in the three-generator Wigner-Weyl-Moyal formalism.

II. MOTIVATION FOR USING THREE
GENERATORS

Most prior formulations of a discrete Wigner function
can be expressed as a discretization of the continuous
two-generator Wigner-Weyl-Moyal formalism [25–27] to
odd d. The Wigner formalism replaces operators and
states by their corresponding Weyl symbols (defined be-
low). Therein, the usual conjugate momentum (p) and
position (q) degrees of freedom are replaced with the
“center” and “chord” degrees of freedom. This turns
out to be very useful in the discrete case where p̂ and
q̂ no longer form a Lie algebra in which their Lie prod-
uct (commutator) is a scalar. Instead, the generator of
the corresponding one-parameter Lie subgroups, eiθp̂ and
eiφq̂, obey a simple Weyl relation (which can be inter-
preted as a weaker group commutation relation [23]) and
these define the corresponding translations and reflec-
tions that chords and centers parametrize, respectively.

Prior formulations of such a discrete Wigner-Weyl-

Moyal formalism have generally relied on expanding the
state ρ ∈ L(Cdn) in a basis of operators labelled by
the points of a (Z/dZ)n × (Z/dZ)n grid [11], for n d-
dimensional qudits. They depend on a discretization
of the following Weyl-Heisenberg operators, which are
also called generalized translation operators in semiclas-
sics [25]:

T̂ (λp,λq) = exp

(
− i

2~
λp · λq

)
ẐλpX̂λq . (1)

The set T̂ are Hilbert-Schmidt orthogonal. Ẑ and X̂
generate a Lie group and correspond to the “boost” op-
erator:

Ẑδp |q′〉 = e
i
~ q̂δp |q′〉 = e

i
~ q
′δp |q′〉 , (2)

and the “shift” operator:

X̂δq |q′〉 = e−
i
~ p̂δq |q′〉 = |q′ + δq〉 , (3)

which satisfy the Weyl relation:

ẐX̂ = e
i
~ X̂Ẑ. (4)

From Eq. 4 and Eq. 1, it follows that

T̂ †(λp,λq) = T̂ (−λp,−λq). (5)

The translation operator defines the characteristic func-
tion of an operator ρ̂:

ρλ(λp,λq) = Tr
(
T̂ †(λp,λq)ρ̂

)
. (6)

This is the chord representation of ρ̂. We define R̂(x) as

the symplectic Fourier transform of T̂ (λ):

R̂(xp,xq) = (2π~)
−n
∫ ∞
−∞

dλe
i
~λ

TJxT̂ (λ), (7)

where

J =

(
0 −In
In 0

)
, (8)

for In the n-dimensional identity.
These R̂-operators are Hermitian, Hilbert-Schmidt or-

thogonal, self-inverse and therefore also unitary:

R̂−1(x) = R̂†(x) = R̂(x). (9)

With this in hand, the Weyl symbol of operator ρ̂ can
be expressed as the coefficient of the density matrix ex-
panded in the basis of states R̂(xp,xq):

ρx(xp,xq) = Tr
(
R̂†(xp,xq)ρ̂

)
. (10)

x ≡ (xp,xq) ∈ R2n are called “centers” or Weyl phase
space points. If ρ̂ is a state, ρx is the corresponding
Wigner function.
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Restricting this to finite d-dimensional systems in-
volves setting ~ = d/2π, and enforcing periodic boundary
conditions [26]. The points (λp,λq) and (xp,xq) become
elements in (Z/dZ)2n and form a discrete “web” or Weyl
“grid”. The generalized translation operator becomes

T̂ (λp,λq) = ω−λp·λq(d+1)/2ẐλpX̂λq . (11)

where ω ≡ exp 2πi/d and (d+1)/2 is equivalent to 1/2 in
mod odd-d arithmetic. In this way, it can be seen that the
generalized translation operator plays a fundamental role
in the definition of the Wigner function. In particular, it
defines a Lie algebra with two generators, p̂ and q̂.

Unfortunately, even with different definitions for ω, the
translation operator forms a subgoup of SU(d) only for
d odd, i.e. for d = 2, it is in U(2), not SU(2) [28]. This
can be seen by evaluating

det T̂ (1, 0) = det T̂ (0, 1) = det T̂ (1, 1) = (−1)d+1, (12)

which is only equal to 1 for odd d. This also manifests
itself in 2d- instead of d-periodicity for some elements:(

T̂ (1, 0)T̂ (0, 1)
)2

=
(
ẐX̂

)2

= (iŶ )2 = −1. (13)

As a result, it becomes impossible by the approach de-
tailed by Eqs. 6-10, to find the results we expect of
Wigner functions for the even d case. In particular, we
would like our Wigner-Weyl-Moyal formalism to have the
following properties:

1. Stabilizer states are the discrete analogues of Gaus-
sians and so have non-negative Wigner functions.

2. Clifford operators have underlying harmonic
Hamiltonians and are positive state-independent
maps that can be treated by a path integral trun-
cated at order ~0.

There are an infinite number of possible formulations
for a discrete two-generator Wigner-Weyl-Moyal formal-
ism, which are related to each other by unitary transfor-
mations. It has been shown that none of them satisfy the
above characteristics [11, 13, 14, 16–18, 20].

Here we show that all these different discrete Wigner
formulations eventually run into trouble for even d be-
cause they inevitably must keep track of another degree
of freedom, and they accomplish this by using both posi-
tive and negative numbers in either a Clifford gate Weyl
symbol, or a stabilizer state Wigner function.

For qubits the problem can be traced to the fact that
the Weyl-Heisenberg group is a subgroup of U(2) and not
SU(2). The remedy to put the Weyl-Heisenberg group
back into SU(2) is to change the algebra for the degrees
of freedom to the Grassmann algebra. The resultant
Weyl-Wigner-Moyal formalism can then be made to sat-
isfy conditions 1 − 2 above with the addition of another
degree of freedom. We will find that this third degree of
freedom, which we will refer to as ‘r’ to complement the
usual ‘p’ and ‘q’ degrees of freedom, will accomplish this
task without resorting to negativity.

III. SOME GRASSMANN FUNDAMENTALS

A discrete system with d = 2 (spin-1/2) has no clas-
sical mechanical counterpart. However, one can invoke
canonical quantization in reverse, and determine a classi-
cal mechanical system which yields spin-1/2 when canon-
ically quantized. This problem was solved by Berezin
in 1977 [21] in which he identified the Grassmann al-
gebra with three generators as the appropriate “pseudo-
”classical system corresponding to spin-1/2 under canon-
ical quantization. Berezin showed that this formalism
is interpretable in terms of Weyl symbols. However, it
appears that the semiclassical Wigner-Weyl-Moyal for-
malism of Grassmann numbers has not been developed,
where translations and reflections, as in Eq. 1 and Eq. 7,
are identified [29]. Here, we develop this semiclassical
formalism and derive the propagator in powers of ~.

As we shall show, the Grassman algebra with three
generators provides not only the classical system corre-
sponding to spin 1/2 under canonical quantization, but
also a subtheory of spin-1/2 which is the familiar qubit
stabilizer formalism with Clifford operators.

An exterior—or Grassmann—algebra is an associative
algebra that contains a vector space such that the square
of any vector space element is zero. More formally, the
Grassmann algebra over the vector space V over the field
K is defined as the quotient algebra of the tensor algebra
by the two-sided ideal I generated by all elements of the
form x⊗ x for x ∈ V .

Let ξp, ξq and ξr be three real generators of a Grass-
mann algebra G3. Hence,

ξjξk + ξkξj ≡ {ξj , ξk} = 0, for j, k ∈ {1, 2, 3}, (14)

where we can identify ξp ≡ ξ1, ξq ≡ ξ2 and ξr ≡ ξ3. Any
element g ∈ G3 may be represented as a finite sum of ho-
mogeneous monomials consisting of the three generators:

g(ξ) = g0 (15)

+ (gpξp + gqξq + grξr) (16)

+ (gpqξpξq + gqrξqξr + gprξpξr (17)

+gqpξqξp + grqξrξq + grpξrξp)

+ (gpqrξpξqξr + gprqξpξrξq + grpqξrξpξq (18)

+grqpξrξqξp + gqrpξqξrξp + gqprξqξpξr) ,

where there is no implicit sum on p, q and r and ξ ≡
(ξp, ξq, ξr) [21]. Notice that the above equation is writ-
ten in a manner to make the antisymmetry present ex-
plicit, i.e. gpqξpξq = −gpqξqξp and so the coefficients
gpq and gqp can be exchanged under sign inversion. We
write ξ as the argument of g since we will relate g(ξ)
later to the Weyl symbol of the corresponding operator
ĝ. Any such element can be written as a linear combi-
nation of grades—each grade denotes monomials of the
same degree—thereby forming a graded algebra. In par-
ticular, every element consists of a linear combination of
a scalar (line 15), vector (line 16), axial vector (line 17),
and a pseudoscalar (line 18) grade.
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Next, we define an analog of complex conjugation by
the following involution:

(g∗)∗ = g, (19)

(αg)∗ = α∗g∗,

where α is a complex number. If we define an element g
as real if g∗ = g (and an algebra as real if all its elements
are real: ξ∗k = ξk), then it follows that

(g1g2)∗ = g∗2g
∗
1 . (20)

This definition ensures that gg∗ is real (since (gg∗)∗ =
gg∗). Since we consider the generators ξk to be real, it
follows that ξ∗k = ξk by definition.

We can define derivatives as the following linear oper-
ators in G3:

~∂

∂ξl
ξk1 · · · ξkν = δk1lξk2 · · · ξkν − δk2lξk1ξk3 · · · ξkν

+ . . .+ (−1)νδkν lξk1 · · · ξkν−1 , (21)

and

ξk1 · · · ξkν
~∂

∂ξl
= δkν lξk1 · · · ξkν−1 − δkν−1lξk1 · · · ξkν−2ξkν

+ . . .+ (−1)νδk1lξk2 · · · ξkν−1 . (22)

The operator ~∂/∂ξl is the left derivative and ~∂/∂ξl is the
right derivative. Examining Eq. 21 and 22, we can see
that the left derivative of a monomial can be found by
permuting ξl to the left and then dropping it and vice-
versa for the right derivative.

With derivatives thus defined, we can develop the ana-
log of the definite single integral (over the whole support

of a variable): ∫
1dξl = 0, (23)

and ∫
ξldξl = 1. (24)

These can be generalized to multiple integration:∫
ξk1 · · · ξkνdξν · · · dξ1 = εk1···kν , (25)

and so∫
g(ξ)dξ3dξ2dξ1 =

3∑
k1,k2,k3=1

εk1k2k3gk1k2k3 , (26)

where εk1···kν is the Levi-Cevita tensor.
In this algebra, the Fourier transform F can be de-

scribed as a linear mapping G3 → G̃3 for the Grassmann
algebras G3 and G̃3 with generators ξk and ρk, k = 1, 2, 3
respectively, defined by:

g(ξ) = F (g̃(ρ)) =

∫
ei

∑
k ξkρk g̃(ρ)dρ3dρ2dρ1, (27)

and its inverse

g̃(ρ) = F−1 (g(ξ)) = i

∫
e−i

∑
k ξkρkg(ξ)dξ3dξ2dξ1.

(28)
Using the properties of the Grassmann elements and the
integrals (Eq. 26), we find

g̃(ρ) = i

∫ 1− i
∑
k

ξkρk −
1

2

∑
k,l

ξkρkξlρl +
i

6

∑
k,l,m

ξkρkξlρlξmρm


× [g0 + (gpξp + gqξq + grξr) + (gpqξpξq + gqrξqξr + gprξpξr + gqpξqξp + grqξrξq + grpξrξp) (29)

+ (gpqrξpξqξr + gprqξpξrξq + grpqξrξpξq + grqpξrξqξp + gqrpξqξrξp + gqprξqξpξr)] dξrdξqdξp

= i (gpqr − gprq + grpq − gqpr + gqrp) + (−ρpgqr + ρqgpr − ρrgpq + ρpgrq − ρqgrp + ρrgqp)

−i (ρpρrgq − iρpρqgr + iρrρqgp) + ρpρqρrg0.

Substituting this equation for g̃(ρ) back into Eq. 27 pro-
duces Eq. 15-18 for g(ξ).

From this exercise it is clear that the vector-space
grade is dual to the axial vectors and the scalars are dual
to the pseudoscalars under the Fourier transform.

In this way, the Fourier transformation takes even
monomials to odd monomials and vice-versa. Therefore,
we can restrict g(ξ) in Eq. 15-18 to only include even or
odd monomials. Following the natural notation above,
we will call the even representation g(ξ) and the odd one

g̃(ρ) where

g(ξ) = g0 + (gpqξpξq + gqrξqξr + gprξpξr (30)

+gqpξqξp + grqξrξq + grpξrξp) ,

and

g̃(ρ) = g̃pρp + g̃qρq + g̃rρr

+ (g̃pqrρpρqρr + g̃prqρpρrρq + g̃rpqρrρpρq (31)

+g̃rqpρrρqρp + g̃qrpρqρrρp + g̃qprρqρpρr) ,



5

such that

g(ξ) = F (g̃(ρ)) . (32)

The even Grassmann polynomial representation g(ξ)
is thus dual to the odd Grassmann polynomial represen-
tation g̃(ρ) by the Fourier transform F . In particular,
from Eq. 29 it can be shown that the terms defining g(ξ)
and g̃(ρ) in Eq. 30 and Eq. 31 are related by:

g̃p = (grq − gqr), (33)

g̃q = (gpr − grp), (34)

g̃r = (gqp − gpq), (35)

g̃pqr − g̃prq + g̃rpq
−g̃rqp + g̃qrp − g̃qpr

= g0. (36)

We note that the usual plane wave identity of the Dirac
delta function,

i

∫
exp

(
i
∑
k

ρkξk

)
d3ρ = ξpξqξr ≡ δ(ξp)δ(ξq)δ(ξr),

(37)
holds since, ∫

g(ξ)ξpξqξrd
3ξ = g(0), (38)

which follows from Eq. 26.
We can further define a Gaussian integral, which will

prove useful when we evaluate the path integral for a
harmonic Hamiltonian later [21]:∫

exp
(∑

ajkξjξk

)
dξ3dξ2dξ3 =

√
det |2ajk|, (39)

where ajk = −akj . Notice that the resultant determinant
is in the numerator instead of the denominator, unlike in
the usual Gaussian integral over R or C.

As a final point, we note that the three real generators
can be treated as classical canonical variables:

i
∑
j

(
ξk

~∂

∂ξj

)(
~∂

∂ξj
ξl

)
= {ξk, ξl}P.B. = iδkl, (40)

where “P. B.” stands for the Poisson bracket. Therefore,
their evolution can be found from their Poisson bracket
with a Hamiltonian H:

d

dt
ξk = {H, ξk}P.B = iH

~∂

∂ξk
. (41)

We will see later that measurement outcomes and ex-
pectation values are contained in the scalar grade, or
the dual pseudoscalar grade. Unitary operators are con-
tained in the axial vector grade or the dual vector grade.
Projectors and density matrices will be found to be linear
combinations of both the scalar and axial vector grades,
or the dual pseudoscalar and vector grades.

IV. QUANTUM WIGNER-WEYL-MOYAL
FORMALISM WITH THREE GENERATORS

To quantize our algebra, we replace the Poisson brack-
ets for the canonical variables by the anti-commutator
multiplied by −i/~ [21]:

{ξk, ξl}P.B. → {ξ̂k, ξ̂l} = ~δkl. (42)

Renormalizing, we get the Clifford algebra with the three
generators:

ξ̂k =

√
~
2
σ̂k, (43)

which obey

{σ̂k, σ̂l} = 2δkl. (44)

We will set ~ = 2 from now on to avoid writing this scal-
ing factor everywhere. These σ̂k are the Pauli operators.
As such, we know that the generators obey

iξ̂1ξ̂2ξ̂3 = 1. (45)

Any operator ĝ may be written in terms of the op-

erators ξ̂ as follows, where products of ξ̂ denote matrix
products of the corresponding Pauli matrices:

ĝ = g0 (46)

+
(
gpξ̂p + gq ξ̂q + gr ξ̂r

)
+
(
gpq ξ̂pξ̂q + gqr ξ̂q ξ̂r + gpr ξ̂pξ̂r

+gqpξ̂q ξ̂p + grq ξ̂r ξ̂q + grpξ̂r ξ̂p

)
+
(
gpqr ξ̂pξ̂q ξ̂r + gprq ξ̂pξ̂r ξ̂q + grpq ξ̂r ξ̂pξ̂q

+grqpξ̂r ξ̂q ξ̂p + gqrpξ̂q ξ̂r ξ̂p + gqpr ξ̂q ξ̂pξ̂r

)
.

As a result of Eq. 45, this decomposition is unique only
if even or odd terms are included [21]. Therefore, ĝ has
two equivalent decompositions: even and odd. Note that
there was a similar relationship for the even and odd
representations g(ξ), but the two were related by Fourier
transform instead of being formally equal.

Motivated by this analogy, we define the Weyl symbol
for the operator ĝ as equal to the g(ξ) in Eqs. 15-18.

It follows that any operator can be expressed as a linear
superposition of

T̂ (ρ) = exp

(
i
∑
k

ξ̂kρk

)
(47)

such that

ĝ =

∫
T̂ (ρ)g̃(ρ)d3ρ. (48)

We point out that the integral symbol here means
that these operators are, in a generalized way, labelled
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by a continuous set of Grassmann algebra elements in-
stead of a finite set, as is the case in the discretized two-
generator Wigner-Weyl-Moyal formalism. Nevertheless,
we will soon see that this does not prevent us from as-
sociating a finite set of “Weyl phase space points” to
stabilizer propagation.

Berezin identified the T̂ (ρ) operator as a translation
operator since from the anti-commutator [21] one can
find,

T̂ (ρ′)T̂ (ρ′′) = exp

(∑
k

ρ′kρ
′′
k

)
T̂ (ρ′ + ρ′′) (49)

and

Tr T̂ (ρ) = 2 (1 + iρ1ρ2ρ3) . (50)

Though T̂ (ρ), as defined in Eq. 47, is an operator, it

does not live in the Hilbert space; T̂ (ρ) does not take
states in the Hilbert space to other states in the Hilbert
space. However, Berezin showed that it can be used to
go between Hilbert space and the Grassmann algebra G3:

Tr
(
T̂ (−ρ)ĝ

)
= 2 (ig̃(ρ) + g (iρ)) . (51)

Since g(ξ) and g̃(ρ) have opposite parities, this equa-
tion provides the Weyl symbol of ĝ if you choose g(ξ)
or g̃(ρ) to contain only even terms, and its dual to only
contain odd terms.

Whereas ĝ1ĝ2 = ĝ can be found by the multiplication
rules of the Pauli matrices, the Weyl symbol is able to
reproduce the same algebraic structure with the Grass-
mann elements via an integral:

ĝ ≡ ĝ1ĝ2

=

∫
T̂ (ρ′)g̃1(ρ′)d3ρ′

∫
T̂ (ρ′′)g̃2(ρ′′)d3ρ′′

=

∫
exp

(∑
k

ρ′kρ
′′
k

)
T̂ (ρ′ + ρ′′)g̃1(ρ′)g̃2(ρ′′)d3ρ′d3ρ′′

=

∫
exp

(∑
k

ρ′kρ
′′
k

)
T̂ (ρ′ + ρ′′) (52)

×

(∫
exp

(
−i
∑
k

ξ′kρ
′
k

)
g1(ξ′)d3ξ′

)

×

(∫
exp

(
−i
∑
k

ξ′′kρ
′′
k

)
g2(ξ′′)d3ξ′′

)
d3ρ′d3ρ′′,

With Eq. 27 for the Weyl symbol in terms of an integral
over an exponential, we can find the Weyl symbol:

g(ξ) =

∫
e
∑
k ρ
′
kρ
′′
k+i

∑
k ξk(ρ′+ρ′′)k−i

∑
k(ξ′kρ

′
k+ξ′′k ρ

′′
k )

×g1(ξ′)g2(ξ′′)d3ξ′d3ξ′′d3ρ′d3ρ′′

=

∫
ei

∑
k(ξkρ

′′
k−ξ

′′
k ρ
′′
k)g1(ξ′)g2(ξ′′) (53)

×δ
(
ρ′′ + i(ξ − ξ′)

)
d3ξ′d3ξ′′d3ρ′′

=

∫
g1(ξ′)g2(ξ′′)e∆3(ξ,ξ′,ξ′′)d3ξ′d3ξ′′,

where

∆3(ξ, ξ1, ξ2) =
∑
k

(ξ′kξ
′′
k + ξ′′k ξk + ξkξ

′
k) . (54)

This can be extended to the product of three operators:

(g1g2g3)(ξ) =

∫
g1(ξ′)g2(ξ′′ + ξ′ − ξ)g3(ξ′′)

×e∆3(ξ,ξ′,ξ′′,ξ′′′)d3ξ′d3ξ′′, (55)

and so on. This identity will prove useful later when we
discuss the propagation of density operators ρ̂→ Û ρ̂Û†.

We can define the dual to the translation T̂ operator:

R̂(ξ) =

∫
exp(−i

∑
k

ξkρ
′
k)T̂ (ρ′)d3ρ′. (56)

It follows that

R̂(ξ)T̂ (ρ) =

∫
exp(−i

∑
k

ξkρ
′
k)T̂ (ρ′)T̂ (ρ)d3ρ′

=

∫
exp

∑
k

(−iξkρ′k + ρ′kρk) T̂ (ρ′ + ρ)d3ρ′

=

∫
exp

(
i
∑
k

ρ′k (ξ − iρ)k

)
T̂ (ρ′ + ρ)d3ρ′

=

∫
exp

(
i
∑
k

(η − ρ)k (ξ − iρ)k

)
T̂ (η)d3η

= exp

(
−i
∑
k

ρk (ξ − iρ)k

)
R̂ (ξ − iρ) (57)

= exp

(
−i
∑
k

ρkξk

)
R̂ (ξ − iρ) .

Similarly,

T̂ (ρ)R̂(ξ) = T̂ (ρ)

∫
exp(−i

∑
k

ξkρ
′
k)T̂ (ρ′)d3ρ′

=

∫
exp

(
−i
∑
k

ξkρ
′
k +

∑
k

ρkρ
′
k

)
T̂ (ρ+ ρ′)d3ρ′

=

∫
exp

(
i
∑
k

ρ′k (ξ + iρ)k

)
T̂ (ρ+ ρ′)d3ρ′ (58)

=

∫
exp

(
i
∑
k

(η − ρ)k (ξ + iρ)k

)
T̂ (η)d3η

= exp

(
−i
∑
k

ρk (ξ + iρ)k

)
R̂ (ξ + iρ)

= exp

(
−i
∑
k

ρkξk

)
R̂ (ξ + iρ) .
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Finally, we can use this last result to find

R̂(ξ′′)R̂(ξ′)

=

∫
exp(−i

∑
k

ξ′′kρk)T̂ (ρ)R̂(ξ′)d3ρ

=

∫
exp(−i

∑
k

ξ′′kρk − i
∑
k

ρkξ
′
k)R̂

(
ξ′ + iρ

)
d3ρ

=

∫
exp

(
i
∑
k

(η − ξ′)k(ξ′′ − ξ′)k

)
R̂(η)d3ρ (59)

= exp

(
i
∑
k

ξ′k(ξ′′ − ξ′)k

)
T̂
(
ξ′′ − ξ′

)
= exp

(
i
∑
k

ξ′kξ
′′
k

)
T̂
(
ξ′′ − ξ′

)
,

where we also used the inverse Fourier transform:

T̂ (ρ) =

∫
exp

(
i
∑
k

ξkρk

)
R̂(ξ)d3ξ. (60)

This shows that R̂ is self-inverse and so

R̂2(ξ) = 1. (61)

Therefore, it can be seen that R̂(ξ) corresponds to a
general reflection (actually an inversion) operator just

as in the two-generator formalism. Like the T̂ -operator,
this is not a Hilbert space operator. However, taking the
trace we see that it can be used to go between Hilbert
space and G3:

Tr(R̂(ξ)ĝ)

= Tr

∫
exp

(
i
∑
k

ξkρk

)
T̂ (ρ)ĝd3ρ (62)

=

∫
exp

(
i
∑
k

ξkρk

)
2 [ig̃(−ρ) + g (−iρ)]

= 2 [ig(−ξ) + g̃ (iξ)] .

Again, this equation provides the Weyl symbol g(ξ) if
you choose g(−ξ) to be even and g̃ (iξ) to be odd. Notice
that this differs from the two-generator Wigner-Weyl-
Moyal formalism where the Weyl symbol of an operator
ρ̂ is found by just its trace with the reflection operator.

In this paper, we will define our Weyl symbol as the
even Grassmann polynomial. Instead of pulling out the
even terms of Eq. 51 or Eq. 62 to construct g(ξ), an easier
way to find the Weyl symbol is to find the Pauli matrix
representation of the operator, and then dequantize using
Eq. 43. In this way, we can find that the Weyl symbol
for any one-qubit pure state is

g(ξ) =
1

2
(1 + (αiξrξq + βiξpξq + γiξpξr)) , (63)

where α2 + β2 + γ2 = 1, for α, β, γ ∈ R.

We can identify ξq± ≡ 1
2 (1∓ iξpξr) with the one-qubit

computational basis states.
In the usual two-generator Wigner formalism, integrat-

ing over one of the generators produces a marginal prob-
ability over the other. For instance, for the Wigner func-
tion of a state ρ̂:∫ ∞

−∞
ρx(xp, xq)dxp = 〈q|ρ̂|q〉 . (64)

Similarly, the expectation value of operator Ô of such
a state is:

(2π~)−1

∫ ∞
−∞

∫ ∞
−∞

ρx(xp, xq)Ox(xp, xq)dxpdxq = Tr
(
Ôρ̂
)
.

(65)

where Ox(xp, xq) is the Weyl symbol of the operator Ô.
Unlike its two-generator analog, the three-generator

Weyl symbol cannot generally produce scalar values after
partial traces; it is a map to G3 after all, not R. To pro-
duce a real value, a three-generator Weyl symbol must
traced over all of its three degrees of freedom. Taking
such a full trace of g(ξ), multiplied by the odd Weyl
symbols of operators representing observables, produces
expectation values. Marginals can be obtained as a spe-
cial case of expectation values.

For instance, we can find that the state ρ̂ ≡ |Ψ〉 〈Ψ| =
|1〉 〈1| = 1

2 (1− iξ̂pξ̂r) and so has the corresponding Weyl

symbol ρ(ξ) = 1
2 (1 − iξpξr). Using the Grassmann in-

tegral equations (Eqs. 23-26), it can be seen that taking
the trace with the odd Weyl symbols of the computa-
tional basis states, q±(ξ) = 1

2 (iξpξrξq ± ξq), produces the
expectation value of the eigenstates of q̂ ≡ σ̂z:

2i

∫
ρ′(ξ)q±(ξ)dξrdξqdξp =

{
|Ψ(0)|2 = 0 for −,

|Ψ(1)|2 = 1 for +.
(66)

When taken together, these results produce the marginal
|Ψ(q)|2. In general the expectation values of the pro-
jectors onto all the eigenstates of an observable give the
marginal distribution of that observable along that cor-
responding degree of freedom.

Furthermore, taking the trace with the odd Weyl sym-
bol of non-projective operators produces the usual full
expectation values as well. For instance, taking the ex-
pectation value of the odd Weyl symbol of q̂, q̃(ξ) = ξq,
with ρ(ξ) produces:

2i

∫
ρ(ξ)ξqdξrdξpdξq = 1, (67)

which is equal to Tr (ρ̂σ̂z) as expected.
Like in the usual Wigner formalism, a trace corre-

sponds to an integral over all of phase space and we ex-
pect valid Wigner functions to be normalizable on phase
space. Taking the trace of ρ(ξ) with its odd symbol ρ̃(ξ)
shows that it is a valid normalized state:

2i

∫
ρ′(ξ)

1

2
(−ξpξqξr + ξq)dξrdξqdξp = 1. (68)
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From this perspective, the odd representation ρ̃(ξ) is
the characteristic function of the discrete Wigner func-
tion expressed by the even representation; it is related to
the even representation, by the Grassmann Fourier trans-
form, though neither are a true (quasi-)probability distri-
bution without incorporating integration over dual Weyl
symbols. In this way, compared to the two-generator
Wigner-Weyl-Moyal formalism, the odd representation
can be related to the chord representation, while the even
representation is similar to the center representation.
This is further supported by noting that the even mono-
mials forms a subalgebra of G3 and the odd monomials do
not. Another difference compared to the two-generator
Wigner-Weyl-Moyal formalism, is that the three gener-
ator “center function”, g(ξ), of operator ĝ is found by
taking either the trace of ĝ with the translation or reflec-
tion operators (see Eq. 51 and Eq. 62) and pulling out
the even terms, instead of just taking hte trace of q̂ with
the reflection operator (Eq. 10).

When constructing the Wigner-Weyl-Moyal formalism
for odd d with the two generators p and q instead, which
are quantized by setting their commutator instead of an-
ticommutator equal to i~δkl, it is easy to show that the
associated operators cannot be bounded – they must be
supported on an infinite Hilbert space. As a result, the
Hilbert space must by “discretized” by invoking periodic
boundary conditions and setting ~ appropriately. How-
ever, this “breaks” the commutator, which is no longer
a scalar. On the other hand, constructing the Weyl for-
malism for d = 2 with three generators, as we did here by
quantizing ξ1, ξ2, ξ3 when we set their anticommutator
equal to i~δkl, produces associated operators that can be
bounded — they can be supported on a finite Hilbert
space. Therefore, there is no need to further “discretize”
the Hilbert space by invoking periodic boundary condi-
tions etc., as is necessary in the two-generator case.

Perhaps the most disconcerting difference between the
two- and three-generator Weyl symbols is that whereas
the two-generator symbols are maps from (Z/dZ)n ×
(Z/dZ)n to R, the three-generator symbols map from G3

to G3, or equivalently, from (V n, V n, V n) (since the argu-
ment of g(ξ) is ξ ≡ (ξnp , ξ

n
q , ξ

n
r )) to G3. This may appear

strange at first glance, but the Grassmann elements that
make up G3 can be given a simple representation as ma-
trices, which can serve to demystify their nature. This
representation is given in the Appendix.

V. CLASSICALITY OF CLIFFORD GATES ON
STABILIZER STATES

For odd d dimensions, positive maps and non-negative
(discrete) Wigner functions can be associated with clas-
sical gates and states that are not capable of quantum
speed-up [11]. This can also be formalized by finding
that their propagator is complete when truncated at or-
der ~0, whereas an operation that makes use of quantum
resources requires at least order ~1 [23]. In this section we

obtain the same results for d = 2 with the three-generator
formalism using the Grassmann algebra.

A. Propagator ~ Expansion

Since we’ve restricted our Weyl symbol to only con-
tain even terms and we want the Hamiltonian to be real,
a Hamiltonian for a single qubit must have the Weyl
symbol H = − i

2

∑
k,l,m εklmbkξlξm up to a constant,

for real coefficients bk. Since ξk are real, it follows that
H∗ = H using the analog to complex conjugation defined
in Eq. 19.

Given such a real quadratic Hamiltonian H, we can
construct a self-adjoint linear operator

E = exp iH
~∂2

∂ξ2 (69)

such that Eξ = ξ′. The Cayley parametrization relates
this unitary matrix E to an antisymmetric matrix A:

E = (A− iI)(A+ iI)−1 (70)

and so

E = exp

(
iH

~∂2

∂ξ2 t

)

= exp

(∑
k

εklmbkt

)
(71)

=

[
I +

∑
k

εklm
bk
b

tan

(
b

2
t

)]

×

[
I −

∑
n

εnop
bn
b

tan

(
b

2
t

)]−1

,

where b = |b|.
This parametrization in terms of an antisymmetric ma-

trix is useful since we can identify
∑
k εklm

bk
b tan

(
1
2bt
)

with the quadratic part of the generating action:

S(ξ; t) = εklm
bk
b

tan

(
1

2
bt

)
ξlξm, (72)

and follow the usual approach set by the traditional two-
generator Wigner-Weyl-Moyal formalism [25]. Since we
have chosen to represent our three-generator Weyl sym-
bols by even polynomials, this is the full action up to a
constant.

We can now proceed to construct the Weyl symbol of
the semiclassical propagator

U(ξ; t) = N exp(iS(ξ; t)/~), (73)

and solve for N by enforcing the Weyl symbol of
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Û(t)Û†(t) = Î using Eq. 54:

1(ξ) =

∫
U(ξ1; t)U(ξ2; t)e

~
2 ∆3(ξ,ξ1,ξ2) (74)

=

∫
e
i
~Bklξkξl+

i
~Bklξkξl+

~
2 (ξ1+ξ)(ξ2+ξ)dnξ1dnξ2

=

∫
e
i
~Bklξkξl+

i
~Bklξkξl+

~
2 ξ1ξ2dnξ1dnξ2,

where Blm ≡ εklm bk
b tan(bt/2).

From the Gaussian integral identity (Eq. 39),

=⇒ 1

|N |2
=
[
det(B− Ĩ)

]1/2
, (75)

where

B =

(
B 0
0 B

)
, (76)

and

Ĩ =

(
0 I
I 0

)
. (77)

Therefore,

N =
[
det(B− Ĩ)

]−1/4

, (78)

up to a phase.

Using the Cayley parameterization (Eq. 70) and the
fact that detE(t) = 1 ∀t,

[
det(B− Ĩ)

]− 1
4

=
[
det(I −B2)

]− 1
4 = [det(I ±B)]

− 1
2 .

(79)

Making use of the inverse Cayley parametrization,

A = i(I + E)(I − E)−1, (80)

allows us to rewrite

N = [det(I ±B)]−
1
2 = 2−d[det(I + E)]

1
2 , (81)

up to a phase.

Hence,

U(ξ, t) =

[
det

(
I + S

~∂2

∂ξ2

)]− 1
2

exp

(
i

~
S(ξ; t)

)
(82)

= 2−d
[
det

(
I + e

iH
~∂2

∂ξ2

)] 1
2

exp

(
i

~
S(ξ; t)

)
.

Notice that the prefactor is in the numerator instead
of the denominator, as in the usual two-generator Weyl
symbol.

Substituting in our harmonic Hamiltonian and gener-
ating action, we find

U(ξ, t) = cos

(
1

2
bt

)
exp

[
−2i

~
εklm

bk
b

tan

(
1

2
bt

)
ξlξm

]
,

(83)
in agreement with Berezin’s Weyl symbol of the propa-
gator (Eq. 2.36 in [21]), which he found through the full
Feynman path integral.

Note that the semiclassical expression for the propaga-
tor in Eq. 83, as in all such semiclassical treatments sim-
ilar to the primitive Van Vleck-Morette-Gutzwiller prop-
agator [30–32], must only be correct up to O(~). How-
ever, here there are no higher order ~ corrections and
this expression is exact. In other words, the semiclassi-
cal propagator (defined as the propagator treated up to
order ~) is equivalent to full quantum propagator for a
qubit. Indeed, its associated operator is well-known:

Û(t) = exp

[
− i

2
b · σ̂t

]
, (84)

(or, equivalently, Eq. 91 shown below). This is not the
case for d > 2, as has been shown [23, 24], where higher
than ~1 corrections generally exist, and a sum over more
than one classical trajectory must be taken.

This can also be seen by noting that the equation for
the evolution of the generators ξk can be written as [25]

d

dt
ξk ≡ {{H, ξk}} = {H, ξk}P.B. +O(~2), (85)

where {{}} is the Moyal bracket. The O(~2) terms corre-
spond to polynomials with power 2 and higher and so are
zero [33]. It follows that the Grassmann evolution cap-
tures the dynamics up to order ~1 and is a full quantum
treatment.

Since the propagation under every Hamiltonian can be
treated at order ~1, and so its path integral consists of
only one term, it follows that if the global phase can
be neglected we can simply keep the absolute value of
the propagator’s prefactor. This corresponds to the van
Vleck prefactor of the propagator:

|U(ξ, t)| =

∣∣∣∣∣2−d
[
det

(
I + e

iH
~∂2

∂ξ2

)] 1
2

∣∣∣∣∣ =

∣∣∣∣cos

(
1

2
bt

)∣∣∣∣ ,
(86)

and is the ~0 part of the propagator.
If we can keep track of the ξ states propagated to,

then the propagator for an associated Hamiltonian can
be truncated at order ~0 like this (up to a global phase).
This can be determined by finding the orbit of the sad-
dle point trajectories, or Grassmann equations of mo-
tion, which will generally be linear combinations of the
Grassmann generators, ξp, ξq and ξr. We call this set
of points the Weyl phase space points, in analogy to the
two-generator Wigner-Weyl-Moyal phase space, for rea-
sons which will become clear.

The more relevant question becomes how many Weyl
phase space ξ points do we have to keep track of when
we truncate like this. In particular, we would like a finite
set. Such a finite phase space can be found by reexpress-
ing the propagation of a Weyl symbol g(ξ) in terms of a
transformation of its ξ argument:
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gt(ξ) =

∫
U∗(ξ1; t)g(ξ2 + ξ1 − ξ)U(ξ2; t)e

i
~ ∆3(ξ,ξ1,ξ2)d3ξ1d3ξ2

= |det(I + E)|
∫
g(ξ2 + ξ1 − ξ)e

2
~

[
i
∑
k,l,m εklm

bk
b tan( 1

2 bt)ξ1lξ1m−iεklm
bk
b tan( 1

2 bt)ξ2lξ2m−(ξ1ξ2+ξ2ξ+ξξ1)
]
d3ξ1d3ξ2

= |det(I + E)|
∫
g(ξ′1)e

2
~

[
i
∑
k,l,m εklm

bk
b tan( 1

2 bt)ξ
′
2l(ξ

′
1+ξ)m+ξ′2(ξ′1−ξ)

]
d3ξ′1d3ξ′2 (87)

= |det(I + E)|
∫
g(ξ′1)δ

i∑
k,m

εklm
bk
b

tan

(
1

2
bt

)
(ξ′1 + ξ)m + I(ξ′1 + ξ)

d3ξ′1

gt(ξ) = g(EUξ),

where EU is related to the Hessian of the underlying
Hamiltonian of the unitary gate U :

EU = exp

(
iHU

~∂2

∂ξ2 t

)
, (88)

for HU = − i
2

∑
k,l,m εklmbkξlξm in the treatment above.

If we consider the {ξp, ξq, ξr} to be the three-generator
Weyl phase points, then unitary matrices that take these
elements to themselves (as opposed to linear combina-
tions) are the discrete analogs of continuous operations
that preserve phase space area. We will see that these
gates have underlying Hamiltonians that are quadratic
with restricted coefficients and that the Clifford gates
fall into this class.

Note that in general such a matrix EU exists for qubit
evolution under all unitary gates U since the Grassmann
algebra enforces all underlying Hamiltonians to be max-
imally quadratic. However, only Hamiltonians with ap-
propriate coefficients produce E matrices that take these
Weyl phase space points to themselves. The latter evo-
lutions are of interest to us because they restrict us to
only dealing with a finite set of ξ Weyl phase space points
and so allow us to truncate to order ~0 with a finite set
of terms. However, in general, most unitary gates U do
not possess such appropriate coefficients and so such a
truncation to order ~0 produces an infinite set of points
to keep track of (corresponding to all the quantum states
they reach—i.e. their orbit in Hilbert space).

In other words, we define a 3n × 3n matrix EÔ such
that  ξ′p

ξ′r
ξ′q

 = EÔ

 ξp
ξr
ξq

 , (89)

for operators Ô which can be treated to order ~0, where
EÔ is related to the Hessian of HÔ, the Hamiltonian as-

sociated with unitary gate Ô, which takes discrete Weyl
phase space points ξα to other Weyl phase space points
ξβ (and not linear combinations of them) [23].

This is equivalent to the ~0 limit of the two-generator
propagator which takes Weyl phase space points to them-
selves via a symplectic (area-preserving) matrix M and
vector α [25].

B. Clifford Gates

Again, consider the quadratic and real Hamiltonian,

H(ξ) = − i
2

∑
k,l,m

εklmbkξlξm. (90)

As we found above, the corresponding propagator is

Ĝ(t) = exp(−itĤ) = Î cos
b

2
t− iσ̂ · n sin

b

2
t, (91)

where b = |b| and n = b/b.
From Eq. 41, the equations of motion of the Grassmann

elements are

d

dt
ξk = iH

~∂

∂ξk
= εklmblξm. (92)

The Clifford gate set consists of the one-qubit
Hadamard and phase shift gates and the two-qubit
controlled-not (CNOT) gate.

For the one-qubit Hadamard F̂ gate,

F̂ =
1√
2

(
1 1
1 −1

)
=

1√
2

(Ẑ + X̂), (93)

it follows from Eq. 91 that if we set t = π, then b = 1
and n = (1, 0, 1)/

√
2. Hence,

HF̂ = − i√
2

(ξrξq + ξpξr). (94)

Hence, under the Hadamard the Grassmann elements
evolve in time under the equations of motion

d

dt
(ξp, ξq, ξr) =

1√
2

(ξr,−ξr,−ξp + ξq), (95)

which, when solved for the time t = π, or using Eq. 88,
produce:

(ξ′p, ξ
′
q, ξ
′
r) = (ξq, ξp,−ξr). (96)

For the one-qubit phase shift gate P̂ ,

P̂ =

(
1 0
0 i

)
=
e
πi
4

√
2

(Î − iẐ), (97)
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it follows that, ignoring its overall phase, setting t = π/2,
implies that b = 1 and n = (0, 0, 1). Hence,

HP̂ = −iξpξr. (98)

The associated equations of motion are:

d

dt
(ξp, ξq, ξr) = −(ξr, 0,−ξp). (99)

Now solving for the equations of motion for the time
t = π/2, or using Eq. 88, reveals that

(ξ′p, ξ
′
q, ξ
′
r) = (−ξr, ξq, ξp). (100)

For the two-qubit CNOT gate Ĉab,

Ĉab =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (101)

=
1

2
(Î + X̂b + Ẑa − X̂bẐa). (102)

It follows that since Ĉ2
ab = Î,

eiθĈab = Î cos θ + iĈab sin θ. (103)

Setting θ = π/2 reveals that

Ĉab = −i exp i
π

4

(
Î + Ẑb + X̂a − ẐbX̂a

)
, (104)

and so, setting t = π

HĈab
= − i

4
(ξpbξrb + ξraξqa + iξpbξrbξraξqa) (105)

(up to a constant). Rewriting this as
1
4 (1− iξpbξrb) (1− iξraξqa) we find that this can be
thought of as a product of Eq. 90, Ha(ξa)Hb(ξb), where
ba = bb = 1, na = (1, 0, 0), and nb = (0, 0, 1).

The associated equations of motion that are non-zero
are:

d

dt
ξra = −1

4
ξqa(1 + iξpbξrb),

d

dt
ξqa =

1

4
ξra(1 + iξpbξrb),

d

dt
ξpb = −1

4
ξrb(1 + iξraξqa),

d

dt
ξrb =

1

4
ξpb(1 + iξraξqa), (106)

d

dt
(ξraξpbξrb) = − i

4
ξqa ,

d

dt
(ξqaξpbξrb) =

i

4
ξra ,

d

dt
(ξpbξpaξra) = − i

4
ξrb .

d

dt
(ξrbξpaξra) =

i

4
ξpb ,

Solving these equations of motion for the time t = π
reveals that the only odd monomials that change are:

ξra → iξraξrbξpb ,

ξraξpbξrb → −iξra ,
ξqa → iξqaξrbξpb ,

ξqaξpbξrb → −iξqa , (107)

ξrb → iξrbξqaξra ,

ξrbξqaξra → −iξrb ,
ξpb → iξpbξqaξra ,

ξpbξqaξra → −iξpb .
As we will see in Section V E, the factor 1

2 (1 − iξpbξrb)
is the projector on the +1 eigenstate of the Ẑb operator
while the factor 1

2 (1− iξrqξqa) is the projector on the +1

eigenstate of the X̂a operator. In other words, Eq. 106
shows that the evolution of qubit a is conditioned on
qubit b being in a position state ( 1

2 (1− iξpbξrb)), and the
evolution of qubit b is conditioned on qubit a being in a
momentum state ( 1

2 (1− iξpaξra)). A similar structure
was observed for odd d

As can be seen from the equations of motion for the
three Clifford gates, their evolution takes the discrete
states ξk to other discrete states ξ′k. This is due to
the Hamiltonians associated with these operators being
quadratic with appropriate coefficients (for ~ = 2 and t
equal to fractions of π). As a result, following the argu-
ment made in Section V A, it follows that they can be
treated by the Weyl propagator truncated at order ~0.
We will shortly see that this is generally not the case for
a gate set that produces universal quantum computation.

C. T-Gate

To extend the Clifford gate set to a universal quantum
gate set, it is only necessary to add the T-gate, defined
as the square root of the phase-shift gate:

T̂ =

(
1 0

0 e
πi
4

)
=

1

2

(
(1 + e−

πi
4 )Î + (1− e−πi4 )Ẑ

)
.

(108)
For t = π/2, it follows that the Hamiltonian is the same
as for the phase-shift, except halved:

HT̂ = − i
2
ξpξr. (109)

The equations of motion are:

d

dt
(ξpξq, ξr) = −1

2
(ξr, 0,−ξp). (110)

Now solving for the equations of motion for the unit
time interval reveals that that

ξ′p =
1√
2

(ξp − ξr), (111)

ξ′r =
1√
2

(ξp + ξr), (112)
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and

ξ′q = ξq. (113)

Unlike the Clifford operators, the T-gate takes the dis-
crete states ξk to linear combinations of ξk. This is due to
the fact that its corresponding Hamiltonian is no longer
quadratic with coefficients that are integers. Thus, in
terms of the stabilizer operator basis, it cannot be treated
by the Weyl propagator truncated at order ~0, and the
full ~1 expression must be used; the T-gate takes the
Weyl phase space points to linear combinations of Weyl
phase space points.

D. Phase Space and Non-Negative Probability
Distributions

In the two-generator Wigner-Weyl-Moyal formalism
for odd d, the Wigner function of a stabilizer state can be
interpreted as the real non-negative coefficients in front
of R̂(x), indexed by x, in the expansion of the density

operator basis given by the R̂’s:

ĝ =
∑
x

g(x)R̂(x) (114)

= g(0, 0)R̂(0, 0) + g(1, 0)R̂(1, 0) + . . . .

(115)

The Clifford gates are covariant in terms of these op-
erators, i.e. they take stabilizer density states’ (non-
negative) coefficients in front of these operators and per-
mute them. This permutation can be captured by a sym-
plectic matrix M. In the continuous world a symplectic
matrix can be described as “area-preserving”, while in
the discrete world it is perhaps more appropriate to de-
scribe its action as a permutation of coefficients, which
by defintion is bijective and hence lossless.

In the three generator Wigner-Weyl-Moyal formalism,
a very similar interpretation is possible. However, since
qubit Clifford gates are also a three-design, it is not pos-
sible to express their action on any such operator basis in
a covariant manner [17]. Nevertheless, a natural analog
to Eq. 114 is:

ĝ = g(ξ̂) (116)

= 1 + gpr ξ̂pξ̂r + grpξ̂r ξ̂p

+gpq ξ̂pξ̂q + gqpξ̂q ξ̂p

+grq ξ̂r ξ̂q + gqr ξ̂q ξ̂r.

Simplifying the products of Pauli matrices above, we
can write

ĝ = g(ξ̂) (117)

= 1 + gpξ̂p + gr ξ̂r + gq ξ̂q

−g-pξ̂p − g-r ξ̂r − g-q ξ̂q. (118)

In this way, we can express the operator basis as:

{1, ±ξ̂p, ±ξ̂r, ±ξ̂q}, (119)

for one degree of freedom (one qubit). Note that plus and
minus signs are only necessary when no longer using the
even representation of this operator basis, which is per-
haps less cosmetically appealing. More degrees of free-
dom correspond to products of these phase space points.
For instance, for two qubits they are:

{ÎaÎb, ±ξ̂pa Îb, ±ξ̂ra Îb, ±ξ̂qa Îb,±Îaξ̂pb , ±Îaξ̂rb , ±Îaξ̂qb ,
±ξ̂pa ξ̂pb , ±ξ̂pa ξ̂rb , ±ξ̂pa ξ̂qb ,±ξ̂ra ξ̂pb , ±ξ̂ra ξ̂rb , ±ξ̂ra ξ̂qb ,
±ξ̂qa ξ̂pb , ±ξ̂qa ξ̂rb , ±ξ̂qa ξ̂qb}. (120)

These are nothing more than the well-known stabilizer
operators [34]! We thus see that in the two-generator
Wigner-Weyl-Moyal formalism the operator basis con-
sists of the reflection R̂-basis operators whereas in the
three-generator Wigner-Weyl-Moyal formalism the op-
erator basis consists of stabilizer operators. While the
R̂-operators are Hilbert-Schmidt orthogonal, the stabi-
lizer operators are not. This is expected since we know a
Hilbert-Schmidt orthogonal operator basis cannot remain
invariant under Clifford operators as they are a three-
design [17].

As a result, it is easy to construct a local hidden vari-
able theory to describe qubit stabilizer propagation us-
ing a non-negative probability distribution related to the
three-generator Wigner-Weyl-Moyal formalism. We de-
fine such a probability distribution ḡ, where ḡ : Z/6Z→
R, to consist of the coefficients in front of the stabilizer

operators of g(ξ̂) (excluding the trivial identity operator):

ḡ = (gp, gr, gq, g-p, g-r, g-q) (121)

for one degree of freedom. This takes integers to the real
line and is non-negative for stabilizer states. In partic-
ular, suitably normalized,

∑
x ḡ(x) = 1 and can be in-

terpreted as a classical probability on the phase space
of even Grassmann elements. Wallman et al. found
the same non-negative probability distribution for sta-
bilizer states by considering the octahedral group for one
qubit [22].

For a one-qubit Clifford gate V̂ ∈ {F̂ , P̂}, it follows
that there exists a 6 × 6 permutation matrix P V̂ such
that

ḡ(x) →̂
V
ḡ(P V̂ x). (122)

In particular,

P F̂ =


0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

 , (123)
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and

P P̂ =


0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 . (124)

Similarly, for two degrees of freedom (two qubits):

ḡ = (gp0, gpp, gpr, gpq, gr0, grp, grr, grq,

gq0, gqp, gqr, gqq, g-p0, g-pp, g-pr, g-pq, (125)

g-r0, g-rp, g-rr, g-rq, g-q0, g-qp, g-qr, g-qq).

For the two-qubit Clifford gate Ĉab, it follows that there
exists a 30 × 30 permutation matrix PĈab

that obeys
Eq. 122.

The Clifford operators in the previous section take the
Weyl phase space points in Eq. 121 and Eq. 125 to them-
selves. In other words, they conserve phase space area,
and, if framed in terms of two conjugate degrees of free-
dom, would be a symplectic transformation.

Lastly, as in the two-generator formalism, the indices
that enumerate the operator basis can be associated with
Weyl phase space points. It follows here that the phase
space grows as 2 × 4n − 1 for n qubits. We will show in
the next section that stabilizer states are only defined, i.e.
have positive probabilities, on 2×3n of these points. Note

that this does not mean that there are
(

2×4n−1
2×3n

)
stabilizer

states possible for n qubits, as most combinations are not
allowed. Indeed, the relationship between the number of

possible stabilizer states with n is 2( 1
2 +O(1))n2

[19].

E. Stabilizer State Representation

The stabilizer states for one qubit correspond to the
six eigenstates of the X̂, Ŷ , and Ẑ operators. As such
their Weyl symbols, or Wigner functions, are easy to find
and correspond to

ξp± ≡
1

2
(1± iξrξq), (126)

ξq± ≡
1

2
(1± iξpξr), (127)

ξr± ≡
1

2
(1± iξpξq). (128)

The operators corresponding to these Wigner functions
can be found by replacing the Grassmann elements by
their corresponding scaled Pauli matrices and 1 with the
identity matrix. The resultant operators are the usual
projectors onto the associated eigenvectors.

To extend this definition of stabilizer states to more
than one qubit, we use the following definition of stabi-
lizer states:

Definition A stabilizer state is defined as any state
reached by Clifford gates from an initially prepared
|0 . . . 0〉 state (in the Z basis).

Since we have shown that Clifford gates Ô are captured
at order ~0, or equivalently, take positive elements—the
stabilizer states—to themselves, the |0 . . . 0〉 state is a
tensor product of 1

2 (1 + ξpξr) non-negative states, it fol-

lows that Ô |0 . . . 0〉 is non-negative as well.

VI. WIGNER FUNCTION WITH TWO
GENERATORS

As discussed in the Introduction, the usual two-
generator discrete Weyl symbol is formulated as a peri-
odization and discretization of the continuous Weyl for-
malism. However, if the same Weyl-Heisenberg operators
(Eq. 1) that are used to define the translation operators
in odd d are applied to even d, they no longer form a sub-
group of SU(d). As a result, we will show that their their

dual R̂ij operators (see Eq. 132), can no longer be inter-
preted as reflection operators in phase space that take
each Weyl phase space point ξ to another, independently
of all others.

The generalized phase space translation operator (of-
ten called the Weyl operator) for qudits with prime or
odd d can be defined as a product of the shift and boost:

T̂ (λp,λq) = ω−λp·λq(d+1)/2ẐλpX̂λq , (129)

where λ ≡ (λp,λq) ∈ Z/dZ define the chord phase space,
and ω ≡ exp 2πi/d. Notice that for d = 2 and setting ω =

expπi/2, T̂ (1, 1) = Ŷ , and so the T̂ operators correspond
to the Pauli matrices and identity matrix.

The translation operators obey the following group re-
lations of the Weyl-Heisenberg group:

T̂ (λ2) T̂ (λ1) = ωλ
T
1 Jλ2 T̂ (λ1 + λ2) , (130)

for

J =

(
0 −In
In 0

)
, (131)

and In the n× n identity matrix.
We define R̂(x) as the symplectic Fourier transform of

T̂ (λ):

R̂(xp,xq) = d−n
∑

λp,λq∈
(Z/dZ)n

e
2πi
d (λp,λq)J (xp,xq)

T

T̂ (λp,λq).

(132)

For odd d these R̂(x) operators can be seen to be a
reflection (actually an inversion) around x. Their trace

with an operator Ô defines the two-generator Weyl sym-
bol of Ô:

Ox(x) = Tr(R̂(x)†Ô). (133)

When this is expressible for a unitary gate as a single
exponential with a quadratic argument (the action) with
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integer coefficients, the operator can be treated at order
~0 [23].

As a result, for the operators Ô that can be treated
at order ~0, we can define the 2n-vector αÔ and an
2n × 2n symplectic matrix MÔ with entries in Z/dZ
such that [26]:(

xp′
xq′

)
= MÔ

[(
xp
xq

)
+

1

2
αÔ

]
+

1

2
αÔ, (134)

which is associated with the quadratic action

SÔ(xp,xq) = αT
Ô
J
(
xp
xq

)
+(xp,xq)BÔ

(
xp
xq

)
, (135)

where BÔ is a real symmetric 2n × 2n matrix that is
related to MÔ by the Cayley parameterization [35]:

JBÔ =
(
1 + MÔ

)−1 (
1−MÔ

)
(136)

=
(
1−MÔ

) (
1 + MÔ

)−1
.

This is no longer the case for d = 2. Operators Ô
that can be treated at order ~0 cannot be described by
a simple matrix M and vector α. This is because T̂ and
R̂ don’t accomplish the expected translation and reflec-
tions. The R̂ operator, upon which the center (Wigner)
representation is built, from Eq. 132 is:

R̂(xp, xq) (137)

=
1

2

[
(−1)xq Ẑ + (−1)xpX̂ + i(−1)xp+xqX̂Ẑ + Î

]
.

This agrees with Eq. 10 in Wootters’ original deriva-
tion [9]. When applied to the stabilizer state |0〉 (in the
Z basis) for instance, we find:

R̂(x) |0〉 (138)

=
1

2

[
((−1)xq + 1) |0〉+

(
(−1)xp − i(−1)xp+xq

)
|1〉
]
.

It follows that

R̂(x) |0〉 =


|0〉+ 1−i

2 |1〉 for x = (0, 0),
1+i
2 |1〉 for x = (0, 1),

|0〉 − 1−i
2 |1〉 for x = (1, 0), and

1−i
2 |1〉 for x = (1, 1).

(139)

Therefore, this only takes a stabilizer state to another for
x = (1, 1) and x = (0, 1).

As a result, the two-generator Wigner-Weyl-Moyal for-
malism, which establishes a relationship between the cen-
ter of reflection operators and “center” representations
(or Weyl symbols), is not possible for d = 2. Nev-
ertheless, these discrete d = 2 Wigner functions are a
perfectly valid representation of a quantum state, they
just no longer have the usual Wigner-Weyl-Moyal (cen-
ter and chord) formalism underpinning them. Further-
more, when expressed as symplectic matrices, the Clif-
ford operators in this discrete Wigner formalism are not
state-independent, as we shall show shortly.

To analyze the effect of the Clifford group gates on sta-
bilizer states in this two-generator representation, we will
instead first consider their three-generator Grassmann
representation and use the following map between the
Grassmann three-generator algebra G3 stabilizer states
and those of the two-generator algebra C2:

1− iξrξq 7→ δp,1 (140)

1 + iξrξq 7→ δp,0 (141)

1− iξpξr 7→ δq,1 (142)

1 + iξpξr 7→ δq,0 (143)

1− iξpξq 7→ δp,q (144)

1 + iξpξq 7→ δp,1⊕q, (145)

where ⊕ denotes mod 2 arithmetic and p, q ∈ {0, 1}.
This mapping is illustrated in Fig. 1.

A. Stabilizer States

The stabilizer states under the two-generator formal-
ism are non-negative (see Fig. 1). Indeed, we can apply
Corollary 3 from [23] to the prime d = 2 case here. This
Corollary shows that a “mixed” representation is always
possible: where each degree of freedom is expressed in
either the p- or q-basis:

Corollary 1 For prime d, if Ψ is a stabilizer state for
n qudits, then there always exists a mixed representation
in position and momentum such that:

Ψθβx,ηβx(x) =
1√
d

exp

[
2πi

d

(
xTθβxx+ ηβx · x

)]
,

(146)
where xi can be either pi or qi.

The proof for this follows the same lines as those in [23].
Thus there are six one-qubit stabilizer states: the

two position or Ẑ-states, the two momentum or X̂-
states ( 1√

2
(|0〉 ± |1〉), and the two diagonal or Ŷ -states

( 1√
2
(|0〉± i |1〉) shown in Fig. 1. As a result of their expo-

nential form with imaginary argument in Eq. 146, they
are non-negative.

Though the stabilizer states are non-negative in this
two-generator case, the Clifford gates are not single ex-
ponentials with quadratic arguments that can be treated
at order ~0. In particular, the phase shift gate in center
representation is

Px(xp, xq) =
1√
2

(
e
πi
2 + eπixq

)
, (147)

up to an overall phase, while the Hadamard gate in center
representation is

Fx(xp, xq) =
1√
2

(
e−πixp + eπixq

)
. (148)

The sum over more than one exponential term is emblem-
atic of the fact that they cannot be rewritten in terms
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FIG. 1. Qubit stabilizer states. a) and b) are position or Ẑ-
states with Weyl symbol 1 ± iξpξr, c) and d) are momentum

or X̂-states with Weyl symbol 1 ± iξqξr, and e) and f) are

diagonal or Ŷ -states with Weyl symbol 1 ± iξpξq.

of a single symplectic M matrix and vector α acting on
(xp, xq) [23].

We recall the evolution under the Hadamard gate for
the three generators ξ′p

ξ′q
ξ′r

 =

 0 1 0
1 0 0
0 −1 0

 ξp
ξq
ξr

 . (149)

This simply describes an exchange of p- and q-states,
and as such can be described by an evolution on the two
generators p̂ and q̂ by using the following stability matrix

MF̂ =

(
0 1
−1 0

)
, (150)

when the stabilizer states being propagated are p- or q-
states. However, for r-states, Eq. 149 shows that the
state must instead be translated by (1, 0) or (0, 1), since
the Hadamard operator exchanges the r-states them-
selves, and the above MF matrix leaves the r-states in-
variant on p-q Weyl phase space.

Similarly, under the phase shift gate the three genera-
tors evolve by: ξ′p

ξ′q
ξ′r

 =

 0 0 −1
0 1 0
1 0 0

 ξp
ξq
ξr

 . (151)

Therefore, the phase shift is a q-shear in two-generator
space, which leaves the q-states alone and shears the p-
state so they become r-states. This can be expressed
in the two-generator picture by the following stability
matrix when the states being propagated are p- or q-
states:

MP̂ =

(
1 1
0 1

)
, (152)

Again, for r-states, this evolution is incorrect. For r-
states the phase-shift gate acts as a p-shear in two-
generator Weyl space, which takes r-states to p-states.
A p-shear is equivalent to a q-shear followed by a trans-
lation by (1, 0) or (0, 1) (when the boundary conditions
are periodic). Therefore, r-state evolution must be fol-
lowed by such a translation in the two-generator Weyl
picture if MP̂ is used.

To summarize, for the one-qubit Clifford gates (con-
sisting of the Hadamard and phase shift gates), when the
state is a position or momentum state the corresponding
stability matrix is applied by itself,

WÔ|q〉,Ô|p〉(x) = W|q〉,|p〉(MÔx), (153)

while for the state |r〉 = 1√
2
(|0〉 ± i |1〉), the translation

vector r is also applied:

WÔ|r〉(x) = W|r〉
(
MÔx+ r

)
, (154)

where r can be equivalently (1, 0) or (0, 1). In the
Aaronson-Gottesman tableau algorithm [19], this is
equivalent to the binary arithmetic : “set ri := ri ⊕
xiazia” since xia = zia = 1 iff qubit a is in an r-state.

Since the two-generator center representations for the
phase-shift gate in Eqs. 147 and 148 aren’t in a single ex-
ponential term as for odd d (see [23]), their path integral
treatment requires terms up to ~1 in general. However,
we have shown that it is still possible to propagate a sta-
bilizer state classically with a single corresponding M
matrix of the Clifford gate operator if this is done state-
dependently, in agreement with Aaronson-Gottesman’s
tableau algorithm [19]. More precisely, though an all en-
compassing matrix MÔ that characterizes the Clifford

gate Ô evolution cannot be defined, we have shown that
a state-dependent vector r remedies the problem.

Similarly, recalling the evolution for the three genera-
tors under the controlled-not gate to be Eq. 107, we see
that this is an inversion of qa- and ra-states if qubit b is in
the q+b state (the +1 eigenstate of Ẑb) and an inversion
of pb- and rb-states if qubit a is in the p+a state (the +1
eigenstate of Xa).

We can again define an associated stability matrix for
the two-generator case:

MĈab
=

 1 −1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 , (155)

Generally,

WĈab|α〉(x) = W|α〉(MĈab
x), (156)

however when a is in an r-state and b is in a p-state, or a
is in a p-state and b is in a r-state, then the translation
vector r is also applied:

WĈab|r〉(x) = W|r〉

(
MĈab

x+ r
)
, (157)
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State of a State of b Vector r

p p 0

q q 0

r r 0

p q 0

q p 0

p r (1, 0, 0, 0)

r p 0

q r 0

r q (1, 0, 0, 0)

TABLE I. r-vector cases for the CNOT gate.

where r can be equivalently (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), or (0, 0, 0, 1). This is summarized in Table I.

In the Aaronson-Gottesman’s tableau algorithm, this
is equivalent to the binary arithmetic “set ri := ri ⊕
xiazib(xib ⊕ zia ⊕ 1)”.

Therefore, we see that compared to the odd d case, the
state to be propagated determines how the corresponding
M matrix is used. In particular, whether the state is a
p or q-state or an r-state determines whether the vector
r is added or not.

B. Contextuality

It is thus possible to express the evolution of Clifford
gates in the two-generator Wigner-Weyl-Moyal formal-
ism to lowest order in ~0—equivalent to the above M
matrices—as long as the path integral is made depen-
dent on the state.

Therefore, a key different aspect to describing qubit
Clifford gates with the two-generator center represen-
tation is that though they still take Weyl phase space
points to themselves, they don’t treat Weyl phase space
points independently of each other. This means that it
is not possible, unlike in the odd d case, for stabilizer

two-generator qubit Wigner states W (x) to be evolved
by W (MÔx) for a single symplectic MÔ correspond-

ing to Clifford gate Ô. This is possible to accomplish
in three-generator Weyl evolution, where arbitrary qubit
stabilizer Wigner states ρ(ξ) can be evolved by ρ(EÔ) for
some unitary EÔ, which can be associated with a permu-
tation matrix PÔ.

Discrete Wigner quasi-probability distributions can be
thought of as hidden variable theories, where the Weyl
phase space points correspond to the hidden variables,
when the quasi-probabilities are non-negative [5]. Fol-
lowing this prescription, the state-dependence of the two-
generator Wigner-Weyl-Moyal formalism makes its asso-
ciated hidden variable theory non-local because the evo-
lution of any hidden variable Weyl phase space point
depends on the other phase space points, in particular,
which of the others have positive support.

It can further be shown that this two-generator hid-
den variable theory implies preparation contextuality; if
a mixed state ρ̂, which is a convex combination of x-, y-
or z-stabilizer state basis elements |φk〉,

ρ̂ =
∑
k

Pk |φk〉 〈φk| , (158)

can be transformed by some unitary operator Û such that

ρ̂ =
∑
i,j,k

PkÛijÛ
∗
ik |φj〉 〈φk| =

∑
k

∣∣∣φ̃k〉〈φ̃k∣∣∣ , (159)

for some
∣∣∣φ̃k〉 that are also subnormalized x-, y- and z

stabilizer states, then the two ensembles require a dif-
ferent hidden variable theory for Clifford evolution. De-
spite the equality of the density operator from these two
preparation schemes, the two-generator hidden variable
theory for their evolution under Clifford gates is different
for one compared to the other; it is thus dependent on
the context.

As an example, we can consider the mixed state

ρ̂ = cX+ |X+〉 〈X+|+ cX− |X−〉 〈X−|+ cZ+ |Z+〉 〈Z+|+ cZ− |Z−〉 〈Z−| (160)

= cX+ |X+〉 〈X+|+ cX− |X−〉 〈X−|+ cY |Y+〉 〈Y+|+ cY |Y−〉 〈Y−| (161)

+(cZ+
− cY ) |Z+〉 〈Z+|+ (cZ− − cY ) |Z−〉 〈Z−| ,

where |α±〉 〈α±| denotes the projector onto the +1 and

−1 eigenstate of α̂ ∈ {X̂, Ŷ , Ẑ} and cα± ≥ 0 such that
Tr ρ̂ = 1. The x- and z-basis preparation must evolve
under a different two-generator hidden variable theory
compared to the y-basis. Thus the preparation in the
ensemble denoted by line 160 evolves under a different
hidden variable theory compared to the ensemble denoted
by line 161 for non-zero cY .

As a result, the two-generator hidden variable theory

is non-local and is (preparation-)contextual. It is a con-
textual description of a non-contextual process.

This is not the case for the three-generator formal-
ism which we described in Section V. There we found
that the three generator Weyl phase space points evolve
independently. Stabilizer state propagation therefore de-
pends on the average ρ̂, not on its particular realization
or preparation in a basis. Therefore, the associated hid-
den variable theory to the three-generator formalism for
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qubit stabilizer state propagation under Clifford gates is
local and non-contextual.

Finally, in our previous analysis of the two-generator
Wigner-Weyl-Moyal formalism for odd d-dimensional qu-
dits [23], we found that non-contextuality was associated
with the ability to treat Clifford gate evolution on stabi-
lizer states by a finite-sum path integral truncated at ~0.
This association also holds here for qubits. Namely, the
three-generator Wigner-Weyl-Moyal formalism is able to
treat Clifford gate evolution of qubit stabilizer states by
a finite-term path integral truncated at order ~0 and can
be described as a non-contextual hidden variable the-
ory for this task. On the other hand, the two-generator
Wigner-Weyl-Moyal formalism requires higher than or-
der ~0 to produce a finite-term path integral describing
Clifford gate evolution on stabilizer states, and it is also
a contextual hidden variable theory.

VII. PAULI MEASUREMENT

We have shown so far that under the three-generator
Wigner-Weyl-Moyal formalism, the Weyl symbols of sta-
bilizer states are non-negative and can be defined over
a discrete Weyl phase space. We also showed that Clif-
ford gates are positive maps in this formalism and can
be formulated in terms of permutation matrices acting
on the discrete Weyl phase space, such that they take
non-negative states to other non-negative states.

What remains to complete the Clifford operations are
measurements in the Pauli basis. Unlike the prepara-
tion and unitary propagation part of Clifford operations,
which are manifestly non-contextual from the point of
view of preparation contextuality, Clifford measurements
can be contextual (from the point of view of measurement
contextuality). A well-known example of this is demon-
strated by the Peres-Mermin square [36, 37] shown in
Table II. Here we show that the three-generator Wigner-
Weyl-Moyal formalism is contextual for Pauli measure-
ments in the Peres-Mermin square because its Weyl sym-
bols for measurement operators Π produce expectation
values depending on the measurement context that can-
not be represented by the average of an indicator func-
tion, IΠ ∈ [0, 1], with the previously defined associated
probability distributions ḡ for stabilizer states.

The Weyl symbols (ξrξq, ξpξq, ξpξr) of single qubit
Pauli (σ̂p, σ̂r, σ̂q) observables are positive maps; they
take Weyl phase space points to themselves. The Weyl
symbols of the projection operators onto their eigenstates
are also positive. Any multiqubit Clifford measurement
can be reexpressed as a sequence of Clifford gates and
then a single qubit measurement. Therefore, every step
has an associated Weyl symbol that is non-negative and
so the Weyl symbols of multiqubit Pauli measurements
take stabilizer states to themselves.

Nevertheless, the three-generator Wigner-Weyl-Moyal
formalism is contextual for the Peres-Mermin measure-
ments in a very similar way that the two-generator

Meas. # 1 Meas. # 2 Meas. # 3 Outcome

Meas. # 1 σ̂p1 σ̂p2 σ̂p1 σ̂p2 +1

Meas. # 2 σ̂r2 σ̂r1 σ̂r1 σ̂r2 +1

Meas. # 3 σ̂p1 σ̂r2 σ̂r1 σ̂p2 σ̂q1 σ̂q2 +1

Outcome +1 +1 −1
HHH

HH−1
+1

TABLE II. The Peres-Mermin Square [36, 37]. Every observ-
able commutes with every other observable in its row and col-
umn, but anticommutes with the other four observables. Tak-
ing the measurements row-wise produces only +1 outcomes
(by Eq. 45), while the measurements column-wise produce
two +1 outcomes and a −1 outcome, the product of which is
−1 as shown in the bottom-rightmost cell. Hence, the context
of the measurement scheme determines the outcomes.

Wigner-Weyl-Moyal formalism was contextual for uni-
tary qubit Clifford gates. We showed that the two-
generator formalism, also described by the Aaronson-
Gottesman tableau algorithm, has positive but contex-
tual transformation of qubit stabilizer states under Clif-
ford gates because its hidden variable theory depends on
the state or preparation context. In the three-generator
formalism, we will show measurement contextuality by
demonstrating that the associated hidden variable the-
ory depends on the measurement context. In particu-
lar, we will show that the context of the measurements
changes the associated three-generator Weyl symbol’s ex-
pectation values for the measurements (and therefore any
associated permutation matrix). In this way, the three-
generator Wigner-Weyl-Moyal formalism describes a con-
textual measurement process contextually. Therefore, the
three generator Wigner-Weyl-Moyal formalism has a pos-
itive but contextual transformation [38] of stabilizer staes
under Pauli measurements.

A. Peres-Mermin Square

Measurement contextuality can be seen in the Peres-
Mermin square (see Table II) where every entry con-
tains a two-qubit Pauli measurement of the form σ̂ασ̂β
for α, β ∈ {p1, p2, q1, q2, r1, r2}, which has the associated
Weyl symbol 1

4

∑
jk εαjkξjξk

∑
lm εβlmξlξm. Every ob-

servable in the table commutes with the other observ-
ables in its row and column and anticommutes with the
other four observables in the table. Thus we can make all
the measurements in the Peres-Mermin square row-wise
or column-wise and compare the results obtained.

The first row of measurements σ̂p1 , σ̂p2 , and σ̂p1 σ̂p2
are associated with the projector-valued measurements

Π̂
(m11)
11 , Π̂

(m12)
12 and Π̂

(m13)
13 for m11,m12,m13 ∈ {+1,−1}.
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These have the associated projectors,

Π̂+
11 = |+〉 〈+| ⊗ I,

Π̂−11 = |−〉 〈−| ⊗ I,
Π̂+

12 = I⊗ |+〉 〈+| ,
Π̂−12 = I⊗ |−〉 〈−| , (162)

Π̂+
22 = (|++〉 〈++|+ |−−〉 〈−−|),

Π̂−22 = (|+−〉 〈+−|+ |−+〉 〈−+|).

These projectors have associated Weyl symbols:

Π+
11(ξ1, ξ2) =

1

2
(1 + iξr1ξp1),

Π−11(ξ1, ξ2) =
1

2
(1− iξr1ξp1),

Π+
12(ξ1, ξ2) =

1

2
(1 + iξr2ξp2),

Π−12(ξ1, ξ2) =
1

2
(1− iξr2ξp2), (163)

Π+
22(ξ1, ξ2) =

1

4
(1 + iξr1ξp1)(1 + iξr2ξp2)

+
1

4
(1− iξr1ξp1)(1− iξr2ξp2),

Π−22(ξ1, ξ2) =
1

4
(1 + iξr1ξp1)(1− iξr2ξp2)

+
1

4
(1− iξr1ξp1)(1 + iξr2ξp2).

The outcome of the row’s measurements is determined
from just two Π±ij projector-value measures (since the

product of outcomes in the row must equal +1), and
choosing any pair of Π±ij is equivalent to choosing the

context of the measurement [5].
There is a single measurement that simulates these two

compatible measurements. This is the measurement with
the projectors:

Π
(mR1,1

,mR1,2
)

R1
=

1

4

(
I⊗ I +mR1,1

σ̂p1 ⊗ I (164)

+mR1,2I⊗ σ̂p2 +mR1,1mR1,2 σ̂p1 σ̂p2
)
.

The associated projectors are thus

Π
(mR1,1

,mR1,2
)

R1
= |mR1,1,mR1,2〉 〈mR1,1,mR1,2| (165)

for mR1,1,mR1,2 ∈ {+1,−1}. These have associated
Weyl symbols

Π
(mR1,1

,mR1,2
)

R1
(ξ1, ξ2) =

1

4
(1− imR1,1ξr1ξq1) (166)

×(1− imR1,2ξr2ξq2).

As a result, if for instance one chooses to measure
in the context corresponding to the projector-valued
measurements Π±11(ξ) and Π±12(ξ), the product of their

expectation values
∫

Π+
11(ξ1, ξ2)ρ(ξ1, ξ2)d3ξ1d3ξ2

and
∫

Π+
12(ξ1, ξ2)ρ(ξ1ξ2)d3ξ1d3ξ2 is condi-

tioned to be equal to the expectation value of

∫
Π

(+1,+1)
R1

(ξ1, ξ2)ρ(ξ1, ξ2)d3ξ1d3ξ2. This means,
for instance, that the hidden variable predicting the
expectation values of Π±12 is different depending on
whether it is measured in context with Π±11 or with
Π±12. Since the three-generator formalism is a faithful
representation of quantum mechanics, it satisfies these
conditions, as can be readily verified. It follows that the
three-generator formalism for that row’s measurement
operators is contextual by the operational description of
the Peres-Mermin square [39]. The same can be found
for the other two rows and the columns.

In this way, the three-generator Wigner-Weyl-Moyal
formalism indicates measurement-contextuality by pro-
ducing different expectation values for the Weyl symbols
of the measurement operators depending on the con-
text of the measurement scheme. In other words, it is
not possible to associate a real valued indicator func-
tion IΠ11

, IΠ12
, IΠ22

∈ [0, 1] that reproduces these results
with the associated ḡ distributions for stabilizer states in
Eq. 121 by

∫
Λ
ḡ(λ)IΠij (λ)dλ for i, j ∈ {1, 2} [5].

We note however, that systems comprised of a sin-
gle qubit stabilizer state, Clifford gates (which necessar-
ily don’t include the two-qubit CNOT gate), and Pauli
measurements on this single qubit, are non-contextual as
shown by Wallman et al. [22], as such indicator functions
I do exists with three generators.

VIII. CONCLUSION

Contextuality has been shown to be a necessary re-
source for universal quantum computation via magic
state distillation for qudits of any odd dimension [4].
The same result has been recently proposed for qubits
that satisfy additional postulates [20]. Furthermore, non-
contextuality has been shown to be equivalent to the
non-negativity of the discrete Wigner functions for odd
d-dimensional qudits [6, 7, 11, 13, 16]. We have extended
these results to d = 2 and shown that Clifford gates on
qubit stabilizer states are non-contextual and that their
appropriate Weyl symbols have associated non-negative
probability distributions. On the other hand, we showed
the Pauli measurements are contextual and different mea-
surement contexts produce different Weyl symbols with
associated expectation values that are appropriately con-
textual.

To demonstrate non-contextuality for qubit stabilizer
states under Clifford gates, we relied on three genera-
tors, p̂, q̂ and r̂, instead of the usual two, p̂ and q̂, to
produce the Wigner-Weyl-Moyal formalism that defines
our Weyl symbols. This was necessary because the Weyl-
Heisenberg T̂ -operator group that forms a basis for the
two-generator formalism is not a subgroup of SU(d) for
even d. Equivalently, since the Clifford gates are a three-
design, it is not possible to express their action on the
R̂-operator basis, which is dual to the Weyl-Heisenberg
T̂ -operator basis, in a covariant manner [17].

We showed that the resultant three-generator Weyl
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symbols of the stabilizer states have associated non-
negative probability distributions whose evolution un-
der Clifford gates can be described by a local and non-
contextual hidden-variable theory. It was further shown
that the three-generator Wigner-Weyl-Moyal formalism
produces Weyl propagators for the Clifford gates that
can be truncated to order ~0 with a finite number of
terms with no loss of information. On the other hand,
T -gates where found to require Weyl propagators that
were expanded up to order ~1, and Pauli measurements
were found to produce contextual three-generator Weyl
symbols.

We showed that employing a two-generator Wigner-
Weyl-Moyal formalism, as has been done for odd d-
dimensional qudits [11, 13, 16, 23, 25], produces a non-
local and contextual description of Clifford gates on
qubits. This produces state-dependent evolution and ex-
plains the Aaronson-Gottesman tableau algorithm’s uni-
tary evolution rules. In other words, the two-generator
Wigner-Weyl-Moyal formalism produces a contextual de-
scription of the non-contextual Clifford gate evolution
process. Equivalently, the two-generator Wigner-Weyl-
Moyal Clifford symbols require a treatment at order ~1

to describe evolution that is possible at order ~0 by three-
generator Weyl symbols.

In summary, this paper shows that the classical na-
ture of Clifford gates on stabilizer states is likely well
characterized for all d-dimensional qudits; it is a non-
contextual process that can be described by a local hid-
den variable theory. An example of such a hidden vari-
able theory involves treating Weyl phase space as the hid-
den variables that evolve independently under classical
harmonic Hamiltonians. For such hidden variable theo-
ries, we have shown that there always exists an appro-
priately defined Wigner-Weyl-Moyal formalism that pro-
duces discrete stabilizer state Wigner functions with as-
sociated probability distributions that are non-negative.
Clifford gates on stabilizer states are just the discrete
analog of harmonic evolution of Gaussian states in the
continuous case, and are thus fully treatable by path in-
tegrals at order ~0 (the classical limit). On the other
hand, the same appropriate Wigner-Weyl-Moyal formal-
ism shows that Pauli measurements, which complete the
set of allowed Clifford operations, can introduce contex-
tuality into a scheme.
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APPENDIX

We can construct a matrix representation of the Grass-
mann generators from the corresponding Clifford algebra.
Consider the generators ξk of left multiplication by ξk and
∂
∂ξk

of left differentiation by ξk, which obey

{
ξk,

∂

∂ξj

}
= δkj . (167)

We can now form the operators qk = ξk + ∂
∂ξk

and pk =

−i(ξk − ∂
∂ξk

) of the Clifford algebra that corresponds to

this Grassmann algebra [40]. These operators satisfy the
relations

{pi, qj} = 0, (168)

{pi, pj} = {qi, qj} = 2δij . (169)

Each Clifford subalgebra generated by the three pk and
qk can be represented by the eight by eight matrices with
complex entries defined over the field C [41, 42]

ξp =
1

2
(qp + ipp) 7→ σ̂x ⊗ Î ⊗ Î + iσ̂y ⊗ Î ⊗ Î , (170)

ξr =
1

2
(qr + ipr) 7→ σ̂z ⊗ σ̂x ⊗ Î + iσ̂z ⊗ σ̂y ⊗ Î , (171)

ξq =
1

2
(qq + ipq) 7→ σ̂z ⊗ σ̂z ⊗ σ̂x + iσ̂z ⊗ σ̂z ⊗ σ̂y,(172)

where 7→ denotes a representation (an algebra homomor-
phism) and ⊗ denotes a matrix outer product. One can
verify that

ξ2
k = (σ̂2

x + i{σ̂xσ̂y} − σ̂2
y) = (Î − Î) = 0 (173)

for all k as expected.

With these matrices in hand, we can see that a Weyl
symbol g(ξ) is really just a a representation of the op-
erator ĝ, which is in the Clifford algebra, in a higher-
dimensional Grassmann algebra. However, the latter
Grassmann algebra is generated by elements whose evo-
lution is governed by a Poisson bracket, and there-
fore function like classical conjugate degrees of freedom,
though instead of commuting with each other, they anti-
commute.
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Khalfan, and Levent Kurt. Grassmann numbers and



21

clifford-jordan-wigner representation of supersymmetry.
In Journal of Physics: Conference Series, volume 411,

page 012009. IOP Publishing, 2013.


