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Ultracold bosons in optical lattices are one of the few systems where bosonic matter is known to
exhibit strong correlations. Here we push the frontier of our understanding of interacting bosons
in optical lattices by adding synthetic spin-orbit coupling, and show that new kinds of density-
and chiral-orders develop. The competition between the optical lattice period and the spin-orbit
coupling length – which can be made comparable in experiments – along with the spin hybridization
induced by a transverse field (i.e., Rabi coupling) and interparticle interactions create a rich variety
of quantum phases including uniform, non-uniform and phase-separated superfluids, as well as Mott
insulators. The spontaneous symmetry breaking phenomena at the transitions between them are
explained by a two-order-parameter Ginzburg-Landau model with multiparticle umklapp processes.
Finally, in order to characterize each phase, we calculated their experimentally measurable crystal
momentum distributions.

PACS numbers: 67.85.-d,67.85.Hj,67.85.Fg

The physics of spin-orbit coupling (SOC), which links
the spin and momentum degrees of freedom in quantum
particles, is ubiquitous in nature, ranging from the mi-
croscopic world of atoms, such as Hydrogen, to macro-
scopic solid materials, such as semiconductors. Recently,
the effects of SOC have been explored in condensed mat-
ter physics in connection with topological insulators [1],
as well as with topological superconductors [2], and su-
perconductors without inversion symmetry [3]. In these
naturally occurring systems, it is very difficult to con-
trol the magnitude of SOC and yet more difficult to
study correlated bosons. However it is now possible
to create controllable artificial SOC for trapped ultra-
cold fermionic and bosonic atoms [4–9], the physics of
which was recently analyzed theoretically in the contin-
uum limit [4, 10–13] and one-dimensional (1D) optical
lattices [14, 15]. In these cases weak coupling effects were
considered, however one of the emerging frontiers in this
broad area of physics is the interplay of the spin-orbit and
lattice characteristic lengths, which can be made compa-
rable in optical lattice systems, where additional contri-
butions from a Zeeman field and strong local interaction-
splay an important role [16].

In this Rapid Communication, we obtain first the
ground-state phase diagrams for two-component (↑, ↓)
bosons in the presence of artificial SOC, an effective Zee-
man field (created from Rabi coupling and detuning),
and local interactions. With zero detuning, we identify
four phases: uniform, non-uniform and phase-separated
superfluids, along with Mott insulating phases, depend-
ing on interactions. Secondly, we develop a Ginzburg-
Landau theory for further characterizing these phases.
Lastly, we calculate their crystal momentum distribu-
tions, which can be compared with experiments.

To describe the quantum phases of two-component

bosons with SOC, we begin by introducing the indepen-
dent particle Hamiltonian

Ĥ0 =
∑

k

(

b̂†k↑ b̂†k↓

)

(

ǫk↑ − µ ~Ω/2
~Ω/2 ǫk↓ − µ

)(

b̂k↑
b̂k↓

)

(1)

in momentum space. Here, ǫks = −2t[cos(kx + skT ) +
cos ky + cos kz] + s~δ/2 for a three-dimensional (3D) op-
tical lattice and kT = (kT , 0, 0) is the SOC momentum.
The length scale 2π/kT is of the order of the optical lat-

tice spacing a, chosen to be one. The operator b̂†ks de-
scribes a creation of s ∈ {↑, ↓} ≡ {+,−} boson with
momentum k. The chemical potential µ tunes the av-

erage particle density ρ = ρ↑ + ρ↓ ≡ ∑

ks〈b̂
†
ksb̂ks〉/M

with M being the number of lattice sites. In cold-atom
experiments, the effective Zeeman energy Ω · F̂ with
Ω = (Ω, 0, δ) and F̂ being the total angular momentum
operator for spin-1/2 has two parts: spin flips through
the Rabi frequency Ω and a Zeeman shift via the detun-
ing δ. The Hamiltonian above can be engineered in the
laboratory either through Raman processes [4, 5, 17] or
via radio-frequency chips [18, 19].

The diagonalization of Ĥ0 gives two energy branches

Ek± =

(

ǫk↑ + ǫk↓ − 2µ±
√

(ǫk↑ − ǫk↓)
2
+ (~Ω)2

)

/2.

For δ = 0 and small ~Ω/t, the lower branch Ek− has
two degenerate minima at kx ≈ ±kT and ky = kz = 0.
The two minima approach as Ω is increased, and eventu-
aly they collapse into a single minimum at k = 0 when
~Ω/t ≥ 4 sinkT tankT . This double-minimum structure,
the introduction of a new length scale 1/kT and the in-
teractions between particles

Ĥint =
1

2

∑

kq

∑

ss′

Uss′ b̂
†
ksb̂

†
k+qs′ b̂k−qs′ b̂ks (2)
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provide additional contributions that are absent in the
standard spinless Bose-Hubbard system [20]. In this
work, we explore the special case where the same spin
repulsions Uss are nearly identical (U↑↑ ≈ U↓↓ = U), but
the opposite spin repulsion is different from U , that is,
U ≥ U↑↓ = U↓↑ ≥ 0. For instance, in the case of a mix-
ture of the mF = 0 (↓) and mF = −1 (↑) states from
the F = 1 manifold of 87Rb, these repulsions are nearly
identical (U↑↑ ≈ U↓↓ ≈ U↑↓) [21].
We first investigate the regime of weak repulsive inter-

actions (U ≪ tρ). The bosonic fields b̂ks can be written

as b̂ks =
∑′

q

√
Mψqsδk=(q,0,0) + âks, where

√
Mψqs and

âks describe the Bose-Einstein condensate (BEC) with
momentum k = (q, 0, 0) and the residual bosons outside
the condensate, respectively. Considering the single and
double minima features of Ek− within the first Brillouin
zone, we allow for multiple BECs with different momenta
and take the sum

∑′
q to be over the set of possible mo-

menta {q} along the (kx, 0, 0) direction. The energy per
site of the condensates is

E0

M
=

′
∑

q

(

ψ∗
q↑ ψ∗

q↓

)

(

ǫk↑ − µ ~Ω/2
~Ω/2 ǫk↓ − µ

)(

ψq↑

ψq↓

)

+

′
∑

{qi}

[

U

2

∑

s

ψ∗
q1s
ψ∗
q2s
ψq3sψq4s + U↑↓ψ

∗
q1↑ψ

∗
q2↓ψq3↓ψq4↑

]

,(3)

where the sum
∑′

{qi}
is over momenta qi satisfying mo-

mentum conservation q1 + q2 = q3 + q4 [mod 2π].
After minimization of Eq. (3) with respect to ψqs and

{q}, we find four different ground states as shown in
Fig. 1(a) for the weak-coupling regime with parameters
U = t/ρ, U↑↓ = 0.9U , and kT = 0.2π. In the superfluid
phases (SF±), the set of BEC momenta {q} consists of
a single value (q̄ > 0 in SF+ and −q̄ < 0 in SF−) since
the detuning δ tilts the single-particle spectrum and lifts
the degeneracy of the double minima in Ek−. In these
“single-q” states, the particle density is uniform, while
the phase of the condensate spatially varies with pitch
vector (±q̄, 0, 0). In the striped superfluid (ST) phase for
relatively small ~Ω/t, a BEC is formed with two different
momenta −q̄1 and q̄2 due to a double-minimum disper-
sion in Ek−. The interference of these two momenta leads
to a non-uniform density profile along the x direction,
resulting in a stripe pattern. Moreover, the scattering
process under momentum conservation q1 + q2 = q3 + q4
with q3 = q4 = −q̄1 and q2 = q̄2 (or vice-versa) gives rise
to a higher harmonic component with q1 = −2q̄1 − q̄2
(or q1 = q̄1+2q̄2). Similar processes generate higher har-
monics with interval q̄1+q̄2, thus making the set {q} have
a large number of different momenta −q̄1 + n(q̄1 + q̄2),
where n is an integer. Higher harmonic generation is ar-
gued not to be qualitavely important in the continuum
limit [13] or in weak 1D optical lattices [14], but in our
case of deep 3D optical lattices this mechanism plays a
crucial role in the stabilization of stripe phases commen-
surate with the underlying optical lattice, as discussed
below.

FIG. 1: (color online). Ground-state properties in the weak-
coupling regime with U/t = 1/ρ and U↑↓ = 0.9U . (a) Phase
diagram of detuning δ versus Rabi frequency Ω for kT = 0.2π.
The thick red (thin black) curves denote first- (second-) order
transitions and the black dots indicate multicritical points. In
the δ > 0 (δ < 0) region to the left side of the dash-dotted
line, the SF− (SF+) exists only as a metastable state. (b)
Roton-like softening in the elementary excitations for quasi-
momentum k = (kx, 0, 0) and ~Ω/t = 0.4. We set ~δ/t = 0.4
(in SF+) for the dotted lines and ~δ/t = 0.06 (at the SF+-ST
boundary) for the solid lines. (c) The kT dependence of the
ground state when ρ↑ = ρ↓ (δ = 0). The yellow and darker
green regions limited by the black-dashed and red lines are
the CSF and period-locked ST phases illustrated in (e). (d)
The plateaux in q̄ of the CSF and period-locked ST phases as
a function of kT for ~Ω/t = 1.0. The dashed lines denote the
width of dominant plateaux with commensurate wavenumber
q̄. (e) Density (the size of dots) and chiral (the direction of
arrows) patterns in the commensurate phases.

When ~Ω/t is large, the SF+ and SF− phases are con-
tinuously connected at δ = 0 through the conventional
superfluid (SF0) with zero-momentum BEC. However,
when ~Ω/t has intermediate values, a direct first-order
transition from SF+ to SF− takes place, and thus the
spin population difference ρ↓−ρ↑ exhibits a sudden jump
from positive to negative. Therefore, in the experimental
situation where ρ↑ = ρ↓, the system is unstable against
spatial phase separation (PS) of spin-down-rich SF+ and
spin-up-rich SF− states.
The quadratic part of the Hamiltonian in terms of âks,

ĤB =
∑

k â
†
kH

(2)
k âk, is a generalized Bogoliubov Hamil-

tonian [22] and includes quantum fluctuations outside the

condensate perturbatively. We diagonalize ĤB numeri-
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cally [22, 23], and obtain the spectrum of elementary ex-
citations. In Fig. 1(b) we show typical excitation spectra
of the SF+ states. In the SF+ (SF−) phase, the excita-
tion energy of a roton-like minimum at a finite quasimo-
mentum approaches zero as δ is decreased (increased),
and the softening of the roton-like mode induces the ST
transition, similar to the standard superfluid-supersolid
transition [24]. The momentum of the roton-like exci-
tations largely determines the characteristic reciprocal
vector q̄1 + q̄2 of the ST state. Furthermore, the SF±-
ST transition can also be first order as indicated by the
red solid line shown in Fig. 1(a). In this case, the en-
ergy gap of roton-like excitations jumps discontinuously
to zero at the SF±/ST boundary, playing the role of an
order parameter for the first-order phase transition. The
phase boundary where the roton minimum jumps dis-
continoustly corresponds to the location of the Maxwell
construction, where the free energy of the two phases
have the same value. This is a generic feature of first
order (discontinuous) phase transitions. The roton mini-
mum has hysteretic behavior and remains finite in the re-
gion of metastability of the hysteresis curve before jump-
ing to zero when sweeping from the SF± to ST phases.
Upon a reverse sweep from ST to SF± the roton min-
inum remains at zero below the phase boundary and then
jumps discontinuously back to a finite value at the end of
the metasbility region. Such behavior is similar to those
encountered in continuum models of spin-orbit coupled
Bose-Einstein condensates [25, 26].

The weak coupling phase diagram shown in Fig. 1(a)
reveals ground states which are very similar to those in
the continuum limit [4, 10–13], where the band structure
due to the optical lattice is not important. However,
the phase diagram of SOC momentum kT /π versus ~Ω/t
at ρ↓=ρ↑, shown in Fig. 1(c), illustrates the remarkable
competition between the reciprocal vector of the under-
lying optical lattice and characteristic vector q̄1 + q̄2 of
the ST phase. In the spin symmetric case (ρ↑ = ρ↓), the
two wavevectors q̄1 and q̄2 are equal, that is, q̄1 = q̄2 ≡ q̄
leading to q̄1 + q̄2 = 2q̄. The phase diagram in the range
of kT = π to 2π is exactly the same as that of Fig. 1(c)

since the lattice Hamiltonian Ĥ0 + Ĥint is invariant un-
der the gauge tranformation b̂ks → b̂k+(π,0,0)s, as easily
verified by direct substitution.

When kT is nearly commensurate to the lattice recipro-
cal wavenumber 2π, such as kT ≈ π/4, 2π/3, and π/2, the
pitch vector q̄ of the ST state spontaneously takes an ex-
act commensurate value over a finite range of kT . Higher
harmonic generation due to interactions and to umklapp
process q1 + q2 − q3 − q4 = 2πn with nonzero integer n
favor commensurate phases, since their energy is lower
than those of incommensurate ones. As a result, the
curve of q̄/π versus kT /π exhibits multiple plateaux in
the ST phase [Fig. 1(d)]. In particular, when kT ≈ π/2,
BEC occurs with only two momenta ±q̄ = ±π/2 since
all the higher-harmonics momenta are reduced to ±π/2
due to the Brillouin zone periodicity. In this special case
where q̄/π = 1/2, the interference of the two momenta

FIG. 2: (color online). Ground-state phase diagrams in the
(t/U ,µ/U) plane, obtained by the Gutzwiller self-consistent
calculations for different values of ~Ω/t. We set the other
parameters as U↑↓ = 0.9U , kT = 0.2π, and ρ↑ = ρ↓ (δ = 0).

does not lead to striped density pattern, but to Z2 chiral
symmetry breaking. This state is analogous to the chi-
ral superfluid (CSF) state, which has been discussed in
Bose-Hubbard ladders [27–30]. In the present case, the
3D lattices for the two spin components and the Rabi
couplings play the role of rails and rungs, respectively,
of a synthetic “two-leg ladder” in four (three spatial plus
one extra spin) dimensions as illustrated in Fig. 1(e). For
other commensurate ST phases, where q̄/π takes an irre-
ducible fraction ζ/η with ζ and η being integers, the su-
perfluid phases break Zη symmetry, but preserve a stripe
pattern in the atom density. The stabilization of these
commensurate phases is a specific feature of spin-orbit
coupled systems in optical lattices with interactions and
are completely absent in interacting continuum systems.
In addition to the interplay between different

length/momentum scales discussed above, another par-
ticular feature of lattice systems is the existence of Mott
insulator (MI) phases induced by strong interactions and
commensurate particle fillings. To describe the Mott
physics in the presence of SOC and Zeeman fields, we
employ the Gutzwiller variational method [22]. Under
the assumption that the ground state is given by a direct
product state in real space, the Hamiltonian is mapped
into inequivalent single-site problems connected via mean

fields ψis ≡ 〈b̂is〉, where b̂is is the spin-s boson operator
at lattice site i. To deal with the nonuniformity of the ST
phases, we solve a set of self-consistency equations with
2000 mean fields ψis along the x direction for each spin
and thus the momentum resolution is δkx ∼ 0.001π, while
the y and z directions are assumed to be uniform [22]. In
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FIG. 3: (color online). Nonuniform superfluid-insulator tran-
sitions at ρ = 2 for (a) U↑↓ = 0.9U and (b) U↑↓ = 0.2U . We
set kT = 0.2π and ρ↑ = ρ↓ (δ = 0). The vertical dashed
line in (a) marks ~Ω/t = 0.72. The enlarged view of the re-
gion indicated by the dashed box in (b) is shown in (c). The
fourth-order Ginzburg-Landau coefficients and the value of q̄
along the MI transition line of (c) are plotted in (d).

the ST phase, the inhomogeneous state is a result of the
length scale introduced by the SOC, while in the absence
of SOC a new length scale leading to a supersolid state
appears due to long-range interactions [31].

Figure 2 shows phase diagrams in the µ/U -t/U plane
for several values of Ω in the spin symmetric case ρ↑ = ρ↓
(δ = 0). In Fig. 2(a), where there is no spin hybridization
(Ω = 0), the phase boundaries of the MI lobes are iden-
tical to those in the absence of SOC [32] since the gauge

transformation b̂ks → b̂k+skT s eliminates the momen-
tum transfer kT from the problem. The even-filling Mott
transitions become first order in a two-component Bose-
Hubbard model for large inter-component repulsions (for
example, U↑↓ & 0.68U when ρ = 2) [32–35]. In the su-
perfluid phase outside the Mott lobes for kT 6= 0, the
spin-down and spin-up bosons independently form the
SF+ state with q̄ = kT and SF− with −q̄ = −kT , respec-
tively.

When the Rabi frequency Ω is non-vanishing, the two
spin components mix, forming a nonuniform ST state
with two opposite momenta −q̄ and q̄ and their associ-
ated higher harmonics. Figure 2(b) shows that the tran-
sition from the odd-filling MI to the ST phase occurs
via an intermediate SF0 state. A direct transition to the
ST state occurs only for very small ~Ω/t (not shown:
~Ω/t . 0.04 for ρ = 1). As seen in Figs. 2(c-d), when the
value of ~Ω/t is increased, the SF0 phase also emerges
near the tip of the even-filling MI lobes, and eventually
joins other SF0 regions. The SF+ and SF− states only
phase separate for small fillings ρ . 1 and a very narrow
region around the ρ = 2 MI lobe for large ~Ω/t.

To see the interplay between local correlations and spin
mixing, we plot in Figs. 3(a-c) phase diagrams of U/t

FIG. 4: (color online). The crystal momentum distributions

〈b̂†
ks
b̂ks〉 (k = (kx, 0, 0)) of the four different states along the

line of ~Ω/t = 0.72 in Fig. 3(a) (at U/t = 0.5, 1.5, 30, and
44). The contribution from SF+ (SF−) in the PS phase is
plotted by the solid (dashed) lines.

versus ~Ω/t for fixed density ρ = 2. Moreover, the nature
of the superfluid-insulator transition when ρ↑ = ρ↓ can
be described by the Ginzburg-Landau energy

EGL

M
= ξ(k)

(

Φ2
I +Φ2

II

)

+
Γ1

2

(

Φ4
I +Φ4

II

)

+ Γ2Φ
2
IΦ

2
II (4)

up to fourth order of the order parameters ΦI = |Φq̄| and
ΦII = |Φ−q̄| for the BEC with k = (±q̄, 0, 0). Note that
the higher harmonics are negligible in the vicinity of the
transition. The value of q̄ is determined so that the func-
tion ξ(k) attains its minimum value −µ̄ at k = (±q̄, 0, 0).
When µ̄ > 0, the bosons condense at q̄ and/or −q̄ with
q̄ 6= 0, or simply at q̄ = 0. For Γ1 < Γ2, the mini-
mization of Eq. (4) gives |Φq̄| 6= 0 and |Φ−q̄| = 0 (or
vice-versa), and thus the Z2 symmetry related to q̄ or
−q̄ is broken. In this case, the transition from MI to PS
takes place. On the other hand, the condition Γ1 > Γ2

gives |Φq̄| = |Φ−q̄| ≡ Φ 6= 0, resulting in the transition to
the ST or CSF phase. When q̄/π is an irreducible frac-
tion ζ/η, the relative phase φ = Arg(Φq̄/Φ−q̄) is deter-
mined by the minimization of additional η-particle umk-
lapp process, Γ ′

η((Φ
∗
q̄)

η(Φ−q̄)
η + (Φ∗

−q̄)
η(Φq̄)

η) ∝ cos ηφ,
which still has η-fold degeneracy. Thus the ST transition
is associated with U(1) × Zη symmetry breaking about
the global and relative phases of Φ±q̄.
The coefficients ξ(q), Γ1, Γ2 and Γ

′
η are related to the

microscopic system parameters in Ĥ0+ Ĥint by perform-
ing a perturbative expansion based on a direct-product
MI state. For the specific relations see supplemental ma-
terial [22]. We show in Fig. 3(d) the values of Γ1 and Γ2

along the line that separates the MI phase from the oth-
ers as seen in Fig. 3(c). Note that if Γ1 < 0 for Γ1 < Γ2 or
Γ1+Γ2 < 0 for Γ1 > Γ2, the condensates have a negative
compressibility, and the transition becomes first-order.
To assist in the experimental identification of these

quantum phases, Fig. 4 shows the crystal momentum dis-

tribution 〈b̂†ksb̂ks〉, which does not include the effects of
Wannier functions, but can be easily extracted from stan-
dard momentum distribution measurements. We evalu-
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ate 〈b̂†ksb̂ks〉 via the Bogoliubov Hamiltonian ĤB for the
PS and ST states at relatively weak interactions, and via
a generalized Holstein-Primakoff approach based on the
Gutzwiller variational state for the SF0 and MI states in
the strongly coupled regime [22]. Since the PS state con-
sists of independent domains of SF+ and SF−, we plot
the simple average of the two contributions.
As seen in Figs. 4, the momentum distribution of

the PS state exhibits two independent peaks around
k = (q̄, 0, 0) and k = (−q̄, 0, 0), while the ST state shows
additional peaks due to the higher harmonics. The SF0

state exhibits a peak around k = 0 as in the case of a
standard uniform superfluid state, although the reflec-
tional symmetry with respect to kx → −kx is absent for
each spin component. In the MI state, only a broad peak
is observed at the momenta where the condensation oc-
curs in the neighboring superfluid state. The stark differ-
ences between these crystal momentum distributions also
enable the direct imaging of the different phases present
in inhomogeneous trapped systems.

In summary, we investigated the quantum phases of
two-component bosons in optical lattices as a function
of spin-orbit coupling, Rabi frequencies and interactions.
In phase diagrams at zero detuning, we identified four
different regions occupied by uniform, non-uniform and
phase-separated superfluids or Mott insulators. Finally,
we characterized these phases by calculating their crystal
momentum distributions, which can be easily measured
experimentally.
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