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This comment is dedicated to the investigation of many-body localization in a quantum Ising
model with long-range power law interactions, r−α, relevant for a variety of systems ranging from
electrons in Anderson insulators to spin excitations in chains of cold atoms. It has been earlier
argued [1, 2] that this model obeys the dimensional constraint suggesting the delocalization of all
finite temperature states in thermodynamic limit for α ≤ 2d in a d-dimensional system. This
expectation conflicts with the recent numerical studies of the specific interacting spin model in Ref.
[3]. To resolve this controversy we reexamine the model of Ref. [3] and demonstrate that the infinite
temperature states there obey the dimensional constraint. The earlier developed scaling theory for
the critical system size required for delocalization [2] is extended to small exponents 0 ≤ α ≤ d.
Disagreements between two works are explained by the non-standard selection of investigated states
in the ordered phase in Ref. [3].

PACS numbers: 73.23.-b 72.70.+m 71.55.Jv 73.61.Jc 73.50.-h 73.50.Td

I. INTRODUCTION

The many-body localization (MBL) transition sepa-
rates two distinguishable thermodynamic behaviors. The
delocalized system acts as a thermal bath for each small
part of it [4, 5] while in the localized system its different
parts are approximately independent and can be charac-
terized by related local integrals of motion [6]. Recent ex-
perimental investigations of many-body localization [7, 8]
are carried out in systems of interacting spins coupled by
the long-range interaction decreasing with distance ac-
cording to power law U(r) ∝ r−α. The interaction expo-
nent α can be modified experimentally [9, 10] and it is
important to understand the effect of power-law interac-
tions on localization.
According to the previous work of one of the authors

(with coworkers) [1, 11] (see also more recent work, Refs.
[2, 10, 12, 13]) the MBL problem in systems with power
law interactions is subject to a dimensional constraint.
This constraint suggests that localization is not possible
in the thermodynamic limit of an infinite system at a
finite temperature if the interaction decreases with the
distance slower than 1/r2d (where d is a system’s dimen-
sion in the case of mixed Ising-Heisenberg interactions).
Dimensional constraints have been derived assuming that
α ≥ d to avoid the single-particle delocalization.
However, recently a disagreement with this dimen-

sional constraint has been reported in Ref. [3] for the
quantum Ising model with the long-range interactions
for α = 0.5, 1 and 1.5. In this paper the spin chain of N
spins described by the Hamiltonian

Ĥ = J
∑

1≤i<j≤L

(1 + hihj)

|j − i|α σz
i σ

z
j +B

L∑

i=1

σx
i (1)

has been investigated, where spins are represented by
Pauli matrices σ and disorder is introduced using ran-
dom parameters hi uncorrelated in different sites i and

uniformly distributed within the domain (−W,W ) while
the parameter W describes the effective disorder. In all
studies the transverse field, B, has been set to 0.6J .

The localization transition has been investigated in
Ref. [3] using level statistics and entanglement en-
tropy. The level statistics have been characterized us-
ing the averaged ratio of successive gaps, < r >, de-
fined according to [14]. The consideration has been lim-
ited to the eigenstates with energies close to the mid-
dle energy between the minimum and maximum energies
Emid = (Emin + Emax)/2 represented by the dimension-
less parameter ǫ = (E − Emin) / (Emax − Emin) (see Ref.
[3] for detail).

Based on the analysis of the level statistics parameter
< r > at ǫ ≈ 59/120 the authors found the localiza-
tion at any disordering W for the smallest interaction
exponents α = 0.5, 1 and size-independent localization-
delocalization transition for α = 1.5 in contrast to the
earlier suggested dimensional constraint [1].

Since systems with long-range interactions are of both
acute fundamental and experimental [7, 8] interest due
to the ubiquity of charge, dipole, magnetic and elastic
forces [1, 11], it is important to understand and interpret
the conflict between the qualitative analysis [1, 2, 10–
12] leading to the aforementioned dimensional constraint
and the numerical results of Ref. [3]. The consideration
of the earlier work [2] has been limited to the interaction
exponents α ≥ d and its extension to smaller exponents
0 ≤ α < d is another problem of interest. These problems
are investigated in the present work.

Below we show that the discrepancy between the two
approaches originates from the specifics of the model, Eq.
(1), considered in Ref. [3] and the associated choice of
the representative energy Emid (see Fig. 2). The dimen-
sional constraint for the states with energies close to zero
(corresponding to infinite temperature) is investigated in
Sec. II while the analysis of the middle energy states is
performed in Sec. III.
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II. ZERO ENERGY STATES (T = ∞)

The states with energy E can be formally character-
ized by the temeprature defined from the standard ther-
modynamic average 〈E(T )〉 = 1

Q

∑
iEie

−Ei/(kBT ). The

infinite temperature states approximately correspond to
most probable states at a nearly zero energy where differ-
ent spins are uncorrelated, while the states considered in
Ref. [3] correspond to small negative temperatures where
the system is ferromagnetically ordered as discussed be-
low. The use of the term ”temperature” is well justified
in the delocalized regime where the system equilibrates
while it is more formal in the localized regime.
For zero energy states the consideration of Ref. [15]

can be applied to the present problem. Strong or weak
interaction regimes are applicable, in either case the criti-
cal randomness parameter, W , should increase to infinity
in the thermodynamic limit N → ∞. In the limit of in-
terest of a large number of spins, N , one can neglect the
unity term compared to the product hihi in the definition
of the interaction, Eq. (1), provided that W ≫ 1.
Here we briefly repeat some qualitative arguments

from Ref. [15]. Each spin i is subjected to a longitu-
dinal field Φi =

∑
j Jijσ

z
j , where Jij = Jhihj/|i − j|α.

For fully random spin projections (infinite temperature
limit) the longitudinal field Φi is zero in average and it is
distributed nearly uniformly within the domain (−σ, σ)
where the size of the domain can be estimated as

σ ∼
√∑

j

J2
ij ∼





JW 2, if α > d/2,

JW 2
√
ln(N), if α = d/2,

JW 2N1/2−α/d, if α < d/2.

. (2)

The localization-delocalization transition is associated
with resonant spins i satisfying the condition |Φi| < B
and the probability of such resonance can be estimated
as Pres ∼ B/σ. The total number of spin resonances
per state is given by Nres = NPres. According to Ref.
[15] the delocalization transition can be determined by
the condition Nres ln(JN/B) ∼ 1 in the case of a strong
interaction, JN = J/Nα > B. It turns out that the
interaction is indeed strong for α ≤ d and the localization
delocalization transition is determined as

1 ∼





N B
JW 2

c

ln(N1−α/d), if d ≥ α > d/2,

N B
JW 2

c

√
ln(N), if α = d/2,

N1/2+α/d B
JW 2

c

ln(N), if α < d/2,

(3)

where the parameter Wc estimates the critical random-
ness corresponding to the localization transition.
The case of α > d corresponding to the weak interac-

tion regime has been considered in Ref. [15]. In that case
it has been found in accordance with earlier studies [1]
that the delocalization inevitably takes place in the ther-
modynamic limit for α < 2d and the critical disordering,
Wc at a finite number of spins N is determined as

N2−α/dB ∼ JW 2
c . (4)

W
√

N
√

ln(N)
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FIG. 1. The level statistics (< r >) vs. disordering W (inset)
or rescaled disordering according to Eq. (3) for interaction
exponent α = 0.5 and different numbers of spins N = 10, 11,
12, 13, 14, 15 and 16.

Both estimates in Eqs. (3) and (4) are valid assuming
Wc ≫ 1 which takes place at a sufficiently large number
of spins (N).

To verify the theoretical predictions, Eqs. (3) and (4),
we analyzed numerically the level statistics performing
exact diagonalization of the Hamiltonian, Eq. (1), for the
states at zero energy, corresponding to the infinite tem-
perature limit and for a number of spins 10 ≤ N ≤ 16.
The results are presented in Fig. 1, for power law inter-
action exponent α = 0.5 and for the states of even parity
with respect to the symmetry transformation σz → −σz

of the Hamiltonian, Eq. (1), as in Ref. [3]. All curves are
averaged over 1000 realizations of random interactions as
in Ref. [3].

Delocalization clearly takes place at a sufficiently small
disordering, W , where the average ratio parameter has a
plateau at < r >≈ 0.53. This contrasts with the state-
ments of Ref. [3] for small interaction exponent α = 0.5
and the reason for this discrepancy is the difference in the
energy of the considered system states as detailed below
in Sec. III.

At very small disordering, W ≤ 0.1, the ratio parame-
ter deviates from the plateau. This is due to the system
reflection symmetry atW = 0, which breaks the Hamilto-
nian into two non-interacting blocks causing level degen-
eracy. There is no localization for W → 0 as was verified
by an analysis of the participation ratios of eigenstates,
which is comparable to the total number of states and
does not even decrease at W → 0 (not shown here). This
symmetry can be broken by increased disordering or by
alternating the spin-spin zz − yy interaction similarly to
Ref. [16] where the phase factor is proposed for interact-
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ing particles in a closed one-dimensional chain.
We also analyzed the level statistics in the model con-

sidered in Ref. [17] and found the localization threshold
scaling for small transverse fields consistent with Eq. (3)
for α = 0.5 for states with zero energy. The details will
be published separately.
It is expected that the localization threshold Wc ap-

proaches infinity in the thermodynamic limit as Wc ∼√
N ln(N) for α = 0.5 (see Eqs. (3)). The shifts

of the transition between delocalization and localization
regimes towards larger disordering W is seen in the in-
set of Fig. 1. To examine the relevance of the transi-
tion point dependence on size we rescaled the parameter
of disorder as indicated in x-axis of Fig. 1 similarly to
Ref. [2]. For small interaction exponent, α = 0.5, this
rescaling places the transitions to nearly the same curve
confirming the qualitative predictions of Eq. (3).
The qualitative agreement with the theory predictions

also takes place for α = 1 and 1.5 (not shown) though
at α = 1.5 the dependence on the number of spins is
relatively weak, Wc ∼ N1/4, to be completely conclusive.

III. MIDDLE ENERGY STATES.

According to Ref. [3] the middle energy states have
energies around Emid = (Emax + Emin)/2. In the
Sherrington-Kirkpatrick model [18] different interactions
are of a random sign so the middle energy Emid = 0

ǫ
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FIG. 2. Density of states (DoS) normalized to 1 for α = 0.5
vs. relative energy ǫ = (E −Emin)/(Emax −Emin) for typical
disordering parameter W = 1 and different numbers of spins
shown near each graph. Middle energy states with ǫ = 0.5 are
indicated by dotted line, while two dashed lines restrict the
domain corresponding to zero energies at different numbers
of particles. The inset shows dependencies of the maximum,
minimum and middle energies on the number of spins.

corresponds to the infinite temperature which is not true
for the long range interactions of identical signs in Eq.
(1).
The absolute values of the minimum and maximum

energies are different for the model given by Eq. (1).
The maximum energy corresponds to ferromagnetic or-
dering determined as σz

i = 1 (or −1) for small dis-
ordering W ≪ 1, or as σz

i = sign(hi) (or −sign(hi))
otherwise. The ferromagnetic ordering can take place
in spin chains with ferromagnetic interaction decreasing
with distance slower than 1/r2 [20–24]. In the model
described by Eq. (1) the transition is relevant for the
states with large energy corresponding to negative tem-
peratures. For small interaction exponent α < d the
energy of this state increases with the number of spins

superlinearly as Emax ∝ N
d−α

d .
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FIG. 3. Level statistics, < r >, for α = 0.5 vs. relative energy
ǫ = (E−Emin)/(Emax−Emin) and absolute energy (inset) for
typical disordering parameter W = 1 and different numbers
of spins shown near each line. The middle energy states and
zero energy states are denoted similarly to Fig. 2 in the main
graph and in the reversed way in the inset.

The absolute value of the minimum (ground state) en-
ergy, however, increases with the number of spins only
proportionally to this number since the ground state en-
ergy is determined by the negative Fourier transform of
spin-spin interaction that does not diverge with the num-
ber of spins, N [25]. Consequently, for α ≤ d the mid-
dle energy increases superlinearly with the number of
spins as Emid ≈ Emax/2. This trend is illustrated for
α = 0.5 in the inset of Fig. 2 which means that the
middle energy states considered in Ref. [3] correspond
to the many-body density of states remarkably smaller
than its maximum at energies close to zero. This is illus-
trated by numerical calculations of the density of states
for α = 0.5 shown in Fig. 2 as a convolution of the ac-
tual density of states with a normalized gaussian function
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with σ = 0.005 in units of ǫ.

It is natural to expect delocalization to be suppressed
for states with reduced density [15, 26] in agreement with
the observations of Ref. [3]. This is illustrated in Fig. 3,
where the level statistics parameter, < r >, is shown as
the function of energy under the same conditions α = 0.5
and W = 1 as in Fig. 2. The plateau at energies close to
0 corresponding to delocalization (< r >≈ 0.53) does not
extend to the middle energy states. The average ratio,
< r >, remains significantly smaller than the delocaliza-
tion limit, 0.53, for other disordering parameters W as
shown in Fig. 4, where level statistics for α = 0.5 are
plotted together with the same dependencies from Ref.
[3]. However, in Ref. [3] similar graphs are plotted ver-
sus the disorder W 2 of squared random parameters hi

(see Eq. (1)), which falls into (−W 2,W 2) range for hi

generated in (−W,W ) domain. The explanation of the
change in notation from W to W 2 in Ref. [3] appears to
have been overlooked.
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FIG. 4. The dependence of level statistics, < r >, for middle
energy states (α = 0.5) on a disordering parameter W for
different numbers of spins. The results of the present work
are shown vs. W (bottom axis), while the results of Ref. [3]
are shown vs. the disorder of squared random parameters h
(see Eq. (1)), which is equivalent to W 2 (top axis). Vertical
lines mark the data range in Ref. [3] (see Fig. 3a there).

How does one understand and interpret the delocaliza-
tion transition for middle energy states having reduced
density? The enhancement of the localization can be nat-
urally expected because of the reduction in the number
of accessible states. A very strong enhancement of lo-

calization under similar conditions has been found in a
random energy model [26] while in a more realistic spin
glass model with binary interactions strong enhancement
takes place only below the spin glass phase transition
point [15], where the majority of spins is substantially
frozen out.
The middle energies most probably correspond to or-

dered phases in the cases of power-law interactions for
α = 0.5 and 1. Indeed, the superlinear scaling of mid-
dle energies with the number of spins suggests that the
majority of spins (around 3/4) are ferromagnetically or-
dered for weak disordering, W ≪ 1, or along random
fields hi for strong disordering. Accordingly, the analy-
sis of MBL based on level statistics should be performed
with caution since the states with opposite average spin
projections are separated by macroscopic barriers. Con-
sequently, the localization criterion based on level statis-
tics [14] may not be applicable. This can explain why
the delocalization limit < r >≈ 0.53 is not reached for
the middle energy states for α ≤ 1.
Another reason for strong enhancement of localization

in the ordered phase is large typical spin-flip energies
increasing as N1−α (

√
N for α = 0.5). This can sup-

press the delocalization of eigenstates in the Fock space
as observed in Ref. [3] though the delocalization is still
possible (cf. Ref. [15]). Its analysis is beyond the scope
of the present comment.

IV. CONCLUSION

It is demonstrated that systems with long range power
law interactions (α < d) inevitably delocalize in the ther-
modynamic limit, similarly to the previously investigated
case d ≤ α < 2d. The modified scaling of the critical sys-
tem size needed for the delocalization is suggested, Eq.
(3), for the case of infinite temperature.
The contradiction of this dimensional constraint to the

results of the recent paper [3] for the specific interacting
spin model, Eq. (1) has been examined. The results
conflict with each other for slowly decreasing interaction
α < 1 because the eigenstates of the problem investigated
in Ref. [3] belong to an ordered phase.
The investigated model demonstrates a clear suppres-

sion of delocalization in the ordered phase that can be
an interesting subject for future experimental and theo-
retical studies.
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