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Abstract

We computationally study the effects of dissipations on correlated two-photon transport in waveg-

uide quantum electrodynamic systems. We show that in the dissipative regime, the two-photon

correlation signatures remain prominent even when the two-photon transport can be described

by a single-photon picture. Moreover, by varying the dissipations, the photonic correlation can

have an induced transition from bunching to antibunching, and vice versa, depending on the input

quantum state.
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Dissipations, resulting from the interplay between the physical system of interest and

its ambient environment, are ubiquitous in all quantum nanophotonic systems [1–3]. One

of the central goals in quantum nanophotonics is to generate photonic entanglement via

atom-mediated photon-photon interactions [4–6]. In general, dissipations are considered

deleterious that undermine photonic entanglement and impair photon transport (e.g., total

transmissions and reflections in one-dimensional systems). On the other hand, from the

perspective of microscopic scattering, photonic dissipations are manifestations of photon

leakages from the system of interest to the external environment. For initially entangled

photons in the system, the entanglement should persist even after some of the photons

are scattered out of the system (perhaps shared with other degrees of freedom in the en-

vironment). Conventionally, it is convenient to discuss the dynamics of the states that are

restricted to the system only, and phenomenologically parametrize the effects of photon leak-

ages by a set of few parameters. By doing so, it is obvious that photon transport is degraded

by the dissipations. However, it is not clear, as a priori, how photonic entanglement is af-

fected by dissipations. In this article, we computationally study the effects of dissipations

on the photonic entanglement and the photon transport in waveguide quantum electrody-

namic (wQED) systems. We confirm that when the dissipation increases, the transport

metrics quickly degrade and exhibit no correlation signatures. Nonetheless, our results also

reveal that even in this dissipative regime, the photons are still correlated (bunched or an-

tibunched). That is, the correlation persists even when the transport metrics are described

by a single-photon picture. Moreover, by varying the dissipations, the photon correlation

can have a crossover from bunching to antibunching, and vice versa, depending on the input

quantum state.

To begin with, we describe the wQED systems of interest. We focus on three fundamental

configurations that are building blocks for more complicated systems: Fig. 1(a), a single two-

level atom (in practice, the atom can be a genuine atom [7, 8], a superconducting qubit [9],

or a quantum dot [10]); Fig. 1(b), a two-level atom coupled to a single-mode cavity [11, 12];

and Fig. 1(c), a two-level atom coupled to a ring-resonator [13, 14]. Each basic configuration

is further coupled to a single-mode photonic waveguide. For each configuration, photons are

injected into the waveguide from the left and, after scattering, the photonic correlation is

numerically determined.
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(a) (b) (c)

FIG. 1. Schematics of three wQED configurations of interest. (a) Single-atom case. (b) Atom-

cavity case. (c) Atom-ring-resonator case. For each configuration, Γ is the decay rate into the

waveguide. ω denotes the resonant frequency. γ is the intrinsic dissipation rate. g represents the

coupling strength between the atom and the resonator. The subscripts a, c, and r denote the atom,

cavity, and the ring-resonator, respectively. |2〉 denotes the incoming two-photon Fock state.

Single-atom configuration. The Hamiltonian describing the system of Fig. 1(a) is

Ha

~
=

∫

dx
(

c†R(x)(−ivg∂x)cR(x) + c†L(x)(ivg∂x)cL(x)

+Vaδ(x)
[

(c†R(x) + c†L(x))a
†
gae + a†eag(cR(x) + cL(x))

] )

+(ωe − iγa)a
†
eae + ωga

†
gag,

(1)

where c†R(x) (cR(x)) denotes the creation (annihilation) operator for a right-moving photon

at position x. c†L(x) and cL(x) are analogously defined for a left-moving photon. a†g (ag) is

the creation (annihilation) operator of atomic ground state with energy ~ωg. a
†
e, ae, and ωe

are similarly defined for the excited state. ωa ≡ ωe − ωg is the atomic transition frequency.

vg is the group velocity in the waveguide, and Va is the atom-photon coupling (V 2
a /vg ≡ Γa

is the atomic decay rate into the waveguide) [15]. γa is the atomic dissipation rate.

Here, we discuss how dissipations are incorporated by γa. For photon leakages, the

external environment can be characterized into two scenarios. On one hand, the external

environment contains an excitable medium (reservoir), thereby resulting in secondary photon

scattering and absorptions by the medium. On the other hand, the environment can be non-

excitable, and is described by photonic propagating channels. It has been shown that the

photonic dissipations in both cases can be parametrized by a single parameter −iγa in the

atomic transition frequency [16, 17]; and the photonic dynamics of the combined system

(system + environment) can be described by a reduced Hamiltonian (including −iγa) and
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a restricted eigen-state (omitting the degrees of freedom in the reservoir or propagating

channels). The restricted two-photon state is

|Φa(t)〉 =
(

∫

dx
∑

j=R,L

ej(x, t)c
†
j(x)e

−iωeta†eag

+

∫∫

dx1dx2

∑

j,l=R,L

φjl(x1, x2, t)e
−iωgt

c†j(x1)c
†
l (x2)√
2

)

|∅〉.
(2)

|∅〉 is the vacuum state that has no waveguided photons, and the atom is in the ground

state. eR(L) denotes the single-photon probability amplitude wherein one photon is absorbed

by the atom and the other waveguided photon is moving to the right (left). φRL denotes the

two-photon probability amplitude for the RL branch wherein one photon is moving to the

right and the other to the left. φRR, φLR, and φLL are similarly defined (see Appendix A for

the equations of motion to describe the two-photon transport dynamics).

To numerically determine the two-photon transport and the correlations, a two-photon

Fock state is injected from the left. The incoming Fock state is an uncorrelated two-photon

product state wherein each photon is resonant with the atom, and has a Gaussian waveform

φ(x) = 1/(2πσ2)1/4 exp[−(x − xo)
2/4σ2 + iωox/vg] (ωo = ωa is the center frequency). The

numerical initial condition is φRR = φin = φ(x1)φ(x2) at t = 0. Here, σΓa/vg = 15 so that

the photon has a narrow bandwidth Γa/30 (xo ≈ −3.6σ is the initial position of the photon,

and has no direct relevance of numerical results). The equations of motion are obtained

from the Schrödinger Equation i~∂t|Φa〉 = Ha|Φa〉, which are numerically evolved to obtain

the full spatiotemporal dynamics of the system (see Ref. [18] for details). In particular,

such a numerical procedure yields, after scattering, the two-photon transmitted (φRR), two-

photon reflected (φLL), and one-transmitted-one-reflected (φRL and φLR) wavefunctions,

which provide complete information on the two-photon transport and correlations. We note

that such an approach is also applicable to a weak coherent state input (see Ref. [18]).

Transport. After scattering, the photon transport properties are characterized by three

quantities, T2 (both photons are transmitted), R2 (both reflected), and TR (one transmitted,

the other reflected), respectively. T2 is numerically evaluated by the two-photon transmitted

flux
∫∫

dx1dx2|φRR(x1, x2)|2. R2 and TR are similarly defined. We visualize the transport

properties by representing the triplet (T2, R2, TR) as a point in a three-dimensional plot

(Fig. 2(a)). When γa varies, the triplet traces out a curve C (blue curve, the arrow indicates

the direction of the increasing γa). To obtain deeper insight on the photon correlation, we
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FIG. 2. Visualization of the two-photon transport metrics in the dissipative single-atom case.

(a) Trajectory for correlated (C) and uncorrelated (C′) transport properties when varying γa. The

points P1, P2, P3, and P4 on C represent the cases when γa/Γa = 0, 0.62, 0.85, and 1.5, respectively.

The primed points denote the corresponding points on C′. (b) ζ, ζT , ζR and ζTR as a function of

γa.

also plot the trace of the triplet based upon the single-photon picture. From the single-

photon picture, the two-photon transport is the joint probability of the transports of two

independent photons. Specifically, the uncorrelated two-photon transport is given by T2 =

T 2
1 , R2 = R2

1, TR = 2T1R1, where T1 and R1 are single-photon transmission and reflection

coefficients, respectively (T1, R1) = ((γa/Γa)
2/(1 + γa/Γa)

2, 1/(1 + γa/Γa)
2). When varying

γa, the triplet of the uncorrelated two-photon transport traces out a curve C′ (red curve). It

can be shown that C′ lies on a surface because the constraint
√
T2+

√
R2+

√
2TR = 1 holds

∀ γa/Γa (noting that C does not lie on this surface). By definition, any point representing a

scattering process that does not lie on C′ indicates a two-photon correlation.

For a given γa, the transport properties of the correlated and uncorrelated systems are

represented by P and P ′, respectively. For example, P1 and P ′
1 describe the case for γa = 0.

We now define the distance ζ between the two curves as the distance of two corresponding
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TABLE I. Numerical metrics of scattered photons in RR and LL branches in the dissipative single-

atom case.

γa
Γa

ζ(γa) T2,cor(%) g
(2)
RR(0) SRR

a R2,cor(%) g
(2)
LL(0) SLL

a

0 0.062 1.6 85 B 95 0.025 A

0.62 0.011 2.1 0.98 B 14 0.062 A

0.85 0.0071 4.3 0.0039 A 8.3 0.08 A

1.5 0.0027 12.7 0.51 A 2.5 0.13 A

a S represents the photon statistics, which can be bunching (B) or antibunching (A).

point for the same γa, ζ ≡
√

ζ2T + ζ2R + ζ2TR, where ζT = T2,cor − T2,uncor, and ζR, ζTR are

similarly defined. Fig. 2(b) plots ζ as a function of γa. As expected, ζ monotonically

decreases and approaches to zero rapidly when γa increases. For example, when γa = 1.5Γa,

ζ degrades to only 2.7×10−3. Thus, for large dissipations, the two-photon transport metrics

essentially exhibit no correlation signatures, and indeed can be predicted from a single-

photon picture.

Correlation. Here, we study the effects of dissipations on photonic correlation by ex-

amining the second-order correlation function g(2)(τ). Numerically, g(2)(τ) = |φ(xm, xm +

vgτ)|2/
∫

dx′|φ(x′, xm)|2
∫

dx′|φ(x′, xm+vgτ)|2, where xm is a reference position (see Ref. [18]).

In Fig. 3(a), we plot the probability density (|φ|2) of the scattered photons for the γa = 0

case (see [19] for the animations of the scattering processes). |φRR|2 for two transmitted

photons in Quadrant I (RR branch) is localized along x1 = x2, indicating photonic bunching

because two photons tend to be collocated at the same spatial point [20]. We find numeri-

cally that T2,cor ≈ 1.6% while the single-photon picture gives T2,uncor = 0. The numerically

computed g
(2)
RR(τ) (red curve in Fig. 3(a)) is peaked at τ = 0 (g

(2)
RR(0) ≈ 85 ≫ 1), confirming

the bunching behavior. In Quadrant III, |φLL|2 for two reflected photons (LL branch) is

depleted along x1 = x2, and g
(2)
LL(τ) has a dip at τ = 0 (black curve, g

(2)
LL(0) ≈ 0.025 ≪ 1),

both of which confirm the antibunching phenomenon.

We now examine the effects of dissipations by scanning γa in the range of [0, 1.5Γa].

We first focus on the RR branch. When γa increases, the two transmitted photons remain

bunched while the bunching quality degrades as g
(2)
RR(0) decreases. For example, when γa ≈

0.62Γa, g
(2)
RR(τ) still exhibits a peak at τ = 0 and g

(2)
RR(0) ≈ 1 (Fig. 3(b)). When γa is further
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FIG. 3. Numerical results of the photonic correlations in the dissipative single-atom case. (a)

Upper: probability density of the scattered photons for γa = 0. (a) Lower: g(2)(τ) of the RR (red

curve, right) and the LL (black curve, left) branches for γa = 0. (b) γa = 0.62Γa. (c) γa = 0.85Γa.

(d) γa = 1.5Γa. (e) g
(2)
RR(0) (red curve, right) and g

(2)
LL(0) (black curve, left) for varying γa. The P

points correspond to the cases in (a)-(d), respectively, which are the same as in Fig. 2.
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increased to ≈ 0.85Γa, the peak of g
(2)
RR(τ) at τ = 0 disappears and a dip emerges, indicating

that the photon statistics has a crossover, and now exhibits a strong antibunching signature

(g
(2)
RR(0) ≈ 0, Fig. 3(c)) [19]. Two transmitted photons remain antibunched when γa is

further increased throughout the scanning range while the antibunching quality degrades as

g
(2)
RR(0) elevates and approaches to 1. Fig. 3(d) plots the results for the γa = 1.5Γa case.

For the LL branch, we find that two reflected photons remain antibunched throughout the

scanning range so that no crossover occurs. Fig. 3(e) plots g
(2)
RR(0) and g

(2)
LL(0) as a function

of γa, and Table I provides further numerical metrics. Here, we emphasize that when the

correlation transition occurs (Fig. 3(c)), the transport metric ζ already significantly degrades

to 7.1× 10−3, essentially agreeing with the single-photon picture. Thus, the information of

photonic correlation is beyond that of the transport metric. In addition, we note that in

the dissipative regime (Fig. 3(b)-(d)), |φRR|2, |φRL|2, and |φLR|2 spread out to off-diagonal

regions. Such a photonic halo effect has been reported in Ref. [21].

In addition to the resonant Gaussian pulse, we have further investigated other cases of

uncorrelated inputs (including the detuned Gaussian pulse and the two-sided exponentially

decaying pulse, see Appendix A for details). The results indicate that for all uncorrelated

two-photon input cases examined, the crossover occurs only in the RR branch from bunching

to antibunching. A potential candidate to observe the photonic correlation transition is

the superconducting circuit platform [22]. It has been reported that the tunability of the

dissipation of the qubit can be realized by changing the resistance in the circuit [23].

Atom-cavity configuration (Fig. 1(b)). When the cavity is coupled to the atom, for the

same resonant two-photon Gaussian input (ωa = ωc = ωo and Γc/gc = 1), the two transmit-

ted photons (described by |φRR|2) and two reflected photons (described by |φLL|2) exhibit

antibunching and bunching statistics, respectively [24]. We now investigate the photon

correlations when varying the atomic dissipation (γa) and the cavity dissipation (γc) (see

Appendix B for the equations of motion). The numerical results are plotted in Fig. 4. For the

pure atomic dissipation case (γc = 0, γa/gc ∈ [0, 1.5]), the statistics of |φLL|2 has a crossover

from bunching to antibunching (black solid curve), and the statistics of |φRR|2 remains an-

tibunching (not plotted) throughout the scanning range. For the pure cavity dissipation

case (γa = 0, γc/gc ∈ [0, 1.5]), the statistics of |φLL|2 remains bunching (black dashed curve)

while the statistics of |φRR|2 (not plotted) remains antibunching throughout the scanning

range, and no correlation transitions occur. For the case when both dissipations are present
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FIG. 4. Photonic correlations for varying dissipation rates in the dissipative atom-cavity (black

curves, left) and the dissipative atom-ring-resonator (red curves, right) cases.

and equal (γa/gc = γc/gc ∈ [0, 1.5]), the statistics of |φLL|2 has a crossover from bunching

to antibunching (black dashed-dot curve) while the statistics of |φRR|2 remains antibunch-

ing throughout the scanning range (not plotted). Numerically, we find that the correlation

transitions only occur when the atomic dissipation γa 6= 0. We have also investigated the

scenarios when Γc/gc 6= 1 but varies within the range [0.1, 5], and identify qualitatively the

same correlation transition criteria.

Atom-ring-resonator configuration (Fig. 1(c)). When a ring-resonator is coupled to the

resonant atom (ωa = ωr and Γr/gr = 0.35), the transmission spectrum exhibits three dips

[25]. When a two-photon Gaussian input is operating at the left dip frequency (which can

result in a large atomic excitation [25]), the two transmitted photons (described by |φRR|2)
and two reflected photons (described by |φLL|2) exhibit bunching and antibunching statistics,

respectively [21]. We now investigate the photon correlations when varying the atomic

dissipation (γa), and the resonator dissipation (γr) (see Appendix C for the equations of

motion). As shown in Fig. 4, for both the pure atomic dissipation case (γr = 0, γa/gr ∈ [0, 1],

red solid curve), and the pure resonator dissipation case (γa = 0, γr/gr ∈ [0, 1], red dashed
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curve), the statistics of |φRR|2 makes a transition from bunching to antibunching while the

statistics of |φLL|2 (not plotted) remains antibunching throughout the scanning range. The

case when both dissipations are present is not examined here as the left transmission dip

disappears when γa = γr ≈ 0.6gr. We have also investigated the scenarios when Γr/gr 6= 0.35

but varies within the range [0.1, 0.75], and identify qualitatively the same transition criteria.

out
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FIG. 5. Photonic correlations in the dissipative single-atom case with an entangled two-photon

input. (a) Probability density of the incoming two-photon bound state. (b) Probability density of

the scattered photons for γa = 0. (c) γa = 0.4Γa. Here, |φRR|2 (the probability density in Quadrant

I) is multiplied by two to aid the visualization. (d) g
(2)
RR(0) (red curve, right) and g

(2)
LL(0) (black

curve, left) for varying γa. The blue dots correspond to the cases in (b) and (c), respectively. The

numerical values for one unit scale is (a) 0.11, (b) 0.03, and (c) 0.022, respectively.

Entangled two-photon input case. It is of great interest to investigate the effects of dis-

sipations on the photonic correlation for an entangled two-photon input. Here, we con-
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sider a special class of entangled inputs, i.e., the two-photon bound state [26], which is a

photonic bound state of two photons, and has been experimentally confirmed [5]. As il-

lustrated in Fig. 5(a), the incoming bound state is represented by a wavefunction that is

extended along x1 = x2, while is squeezed in the transverse direction. The functional form

is given by φE = exp[−Γa|x1 − x2|/vg + iωo(x1 + x2)/vg − (x1 − xo)
2/4σ2 − (x2 − xo)

2/4σ2]

(σΓa/vg = 5, ωo = ωa, xo/σ = −2.1) [26]. When γa = 0, as shown in Fig. 5(b), the two trans-

mitted photons (described by |φRR|2) and the two reflected photons (described by |φLL|2)
are both antibunched [19]. When γa increases to ≈ 0.11Γa, the statistics of |φRR|2 makes a

transition from antibunching to bunching (g
(2)
RR(0) ≈ 0.22). When γa is further increased, the

statistics of |φRR|2 and |φLL|2 remains bunching and antibunching throughout the scanning

range, respectively. Fig. 5(c) plots the case of a further increased γa = 0.4Γa, and Fig. 5(d)

plots g
(2)
RR(0) and g

(2)
LL(0) as a function of γa. We have further investigated the class of inputs

by generalizing φE so that the entanglement properties are different (see Appendix A for

details). We find that for the class of inputs investigated, the transition in the RR branch

now is changed from bunching to antibunching. The results indicate that the direction of

the correlation transition depends on the entanglement of the input.

In this article, we computationally study the dissipation-induced correlation transition

in wQED systems. Such a phenomenon may provide a recipe for the design of fundamental

nodes of quantum-optical networks in the presence of dissipations [27, 28], and could tremen-

dously enable the manipulation of photon entanglement [29] via dissipation-engineering tech-

niques [30, 31]. Moreover, our results may also provide significant insights for studies on the

effects of dissipations in quantum many-body systems [32].

This work was supported in part by NSF ECCS Grant No. 1608049.

Appendix A: Dynamics for various inputs and induced correlation transition

For the single-atom configuration, we examine the dynamics for various inputs to investi-

gate the relation between the input states and the induced correlation transition. To begin

with, we provide the information of the equations of motion. By applying the Schrödinger

equation i~∂t|Φa(t)〉 = Ha|Φa(t)〉, and equating the coefficients for each basis, one obtains
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φ̇RR(x1, x2, t) = −vg(∂x1
+ ∂x2

)φRR − i
Va√
2
[δ(x1)eR(x2, t) + δ(x2)eR(x1, t)]e

−iωat,

φ̇RL(x1, x2, t) = −vg(∂x1
− ∂x2

)φRL − i
Va√
2
[δ(x1)eL(x2, t) + δ(x2)eR(x1, t)]e

−iωat,

φ̇LR(x1, x2, t) = vg(∂x1
− ∂x2

)φLR − i
Va√
2
[δ(x1)eR(x2, t) + δ(x2)eL(x1, t)]e

−iωat,

φ̇LL(x1, x2, t) = vg(∂x1
+ ∂x2

)φLL − i
Va√
2
[δ(x1)eL(x2, t) + δ(x2)eL(x1, t)]e

−iωat,

ėR(x, t) = −vg∂xeR − γaeR − i
Va√
2
[φRR(0, x, t) + φRR(x, 0, t) + φRL(x, 0, t) + φLR(0, x, t)]e

iωat,

ėL(x, t) = vg∂xeL − γaeL − i
Va√
2
[φLL(0, x, t) + φLL(x, 0, t) + φLR(x, 0, t) + φRL(0, x, t)]e

iωat.

(A1)

Using this set of equations of motion, we numerically evolve the dynamics and record the

information of scattered photons for a specified dissipation rate γa. Then, we scan γa

to investigate the correlation transitions and repeat such investigations for various inputs.

In particular, the inputs can be classified into two types based upon their entanglement

property, i.e., the unentangled input (product state of single photons) and the entangled

input (entangled state of photons). For the unentangled input, we first examine the Gaussian

pulse (for both the resonance and the off-resonance cases), which is the typical optical

excitation scheme for experiments. Moreover, motivated by the advent of wavefunction

engineering technique, we further examine the pulse with a different functional form, i.e.,

the resonant two-sided exponentially decaying pulse. Such a waveform is of interest as it

has a higher single-photon and two-photon atomic excitation efficiency than the Gaussian

pulse (see below). For the entangled input, we examine the two-photon bound state and a

generalized bound state.

Here, we present the numerical results. For the Gaussian pulse to be resonant with

the atom, we require the pulse duration to be much larger than the spontaneous emission

time, i.e., σΓa/vg = 15 so that σ/vg ≫ 1/Γa. Hereafter, for brevity, we shall use the time

scale instead of the length scale to describe the photon waveform. The two quantities are

connected by the relation, [length] = [time] × vg. To be specific, we take the spontaneous

emission time 1/Γa = 1 ns, and the Gaussian pulse duration is 2σ/vg = 30 ns. Here, the

pulse duration is defined as the full width evaluated at which the single-photon probability

density decays to 1/e of the maximal value. The numerical results have been discussed
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FIG. 6. g(2)(τ) for the detuned Gaussian input in the single-atom case. (a) and (b) correspond to

the case of ω01 = ωa + 0.6Γa, ω02 = ωa − 0.6Γa for varying γa. (a) γa = 0. (b) γa = 0.7Γa. (c) and

(d) correspond to the case of ω01 = ωa + 0.8Γa, ω02 = ωa − 0.8Γa for varying γa. (c) γa = 0. (d)

γa = 0.7Γa.

previously and presented in Fig. 3. For the off-resonant Gaussian input, we assume a special

detuned Gaussian pulse wherein the center frequencies of two constituent photons, ω01 and

ω02, have opposite detuning with the atom (i.e., ω01 = ωa + 0.6Γa, ω02 = ωa − 0.6Γa) while

other parameters are the same as the resonant Gaussian pulse. We investigate such a pulse to

understand the effect of the parameter space to deepen our understanding of the correlation

transition. The correlation of scattered photons is shown in Fig. 6. When γa = 0, as shown in

Fig. 6(a), g
(2)
RR(τ) (red curve) exhibits a peak around τ = 0, indicating that two transmitted

photons are bunched. g
(2)
LL(τ) (black curve) exhibits a dip around τ = 0, indicating that two

reflected photons are antibunched. When γa is varied in the range of [0,Γa], the statistics

of |φRR|2 undergoes a transition from bunching to antibunching at γa ≈ 0.1Γa while the

statistics of |φLL|2 remains antibunching throughout the range. Fig. 6(b) plots the case for

γa = 0.7Γa wherein the g
(2)
RR(0) now exhibits a dip, indicating photon antibunching statistics

in the RR branch. We further investigate the correlation transitions when the detuning varies
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in the range of [0,Γa], and find that the correlation transition occurs only when the detuning

is smaller than 0.7Γa. For instance, when the detuning is 0.8Γa (i.e., ω01 = ωa + 0.8Γa and

ω02 = ωa−0.8Γa), the statistics of both |φRR|2 and |φLL|2 does not undergo a transition with

a increasing γa. Fig. 6(c) and (d) plot the results for γa = 0 and γa = 0.7Γa, respectively,

wherein the statistics of both |φRR|2 and |φLL|2 remains antibunching. In addition to the

opposite detuning case, we also investigate the case when ω01 and ω02 have the same detuning

in the range of [0,Γa], and confirm qualitatively the same transition behavior from bunching

to antibunching in the RR branch (not plotted).

For the resonant two-sided exponentially decaying pulse, each individual photon follows

a two-sided exponentially decaying waveform of φ(x) =
√

Γa/vg[e
−Γa(x−xo)/vgθ(x − xo) +

eΓa(x−xo)/vgθ(xo − x)]eiωox/vg . θ(x) is the Heavistep function and ωo = ωa. xo ≈ 4.95vg/Γa

is the center of the wavepacket, which has no relevance to our results as long as the initial

position is far enough from the atom. Such a pulse can excite higher single-photon and

two-photon atomic excitations than the aforementioned long Gaussian pulse because it has

a bandwidth of Γa in a Lorentzian spectral line shape to match the atom-photon interaction

bandwidth. Fig. 7(a) plots the incoming two-photon wavepacket, which resembles a dia-

mond. When γa = 0, two transmitted photons (described by |φRR|2) are bunched while two

reflected photons (described by |φLL|2) are antibunched, as shown in Fig. 7(b). Fig. 7(c)

plots the corresponding g(2)(τ) for both branches to confirm the photon statistics. When γa

is varied in the range of [0,Γa], the statistics of |φRR|2 undergoes a transition from bunching

to antibunching at γa ≈ 0.4Γa while the statistics of |φLL|2 remains antibunching. Fig. 7(d)

plots the scattered photons for γa = 0.67Γa, and Fig. 7(e) plots the corresponding g(2)(τ),

both indicating that the statistics of |φRR|2 now becomes antibunching.

For the entangled input, we first investigate the case for a two-photon bound state input

φE. Specifically, the temporal scales of φE can be described by two quantities, i.e., transverse

and longitudinal durations, as shown in Fig. 8(a). The transverse duration (corresponding to

the length perpendicular to the x1 = x2 axis) is determined by Γa, which is 1/(
√
2Γa) ≈ 0.7 ns

(still adopting 1/Γa = 1 ns). The longitudinal duration (corresponding to the length along

the x1 = x2 axis) is determined by the Gaussian modulation, which is 2σ/vg = 10 ns.

ωo = ωa so that both photons are resonant with the atom. The initial position of the bound

state is xo ≈ −2.1σ, and have no direct relevance to our numerical results. The numerical

results have been discussed previously and shown in Fig. 5.
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FIG. 7. Numerical results for the unentangled input of the resonant two-sided exponentially de-

caying pulse in the single-atom case. (a) Wavefunction density plot of the incoming wavepacket.

(b) Wavefunction density plot of the scattered photons when γa = 0. (c) g(2)(τ) of the scattered

photons when γa = 0. (d) Wavefunction density plot of the scattered photons when γa = 0.67Γa.

(e) g(2)(τ) of the scattered photons when γa = 0.67Γa. The numerical values for one unit scale is

(a) 0.022, (b) 0.0057, and (d) 0.0032, respectively.

We further investigate the case of a generalized form of the bound state, φ′
E = exp[−Γm

a |x1−
x2|m/vmg + iωo(x1 + x2)/vg − (x1 − xo)

2/4σ2 − (x2 − xo)
2/4σ2] (m = 2, 3, and 4), using the

same parameter set as φE . Here, we note that the incoming two photons are still bunched,

but the input state now has a different transverse duration. In particular, the transverse

duration is
√
2/(21/mΓa) (e.g., 1 ns, 1.12 ns, and 1.19 ns for m = 2, 3, and 4, respectively)

while other temporal properties of φ′
E are the same as φE. We first examine the case when

the input is φE′ for m = 2. As shown in Fig. 8(b), when γa = 0, two transmitted photons

(described by |φRR|2) are bunched while two reflected photons (described by |φLL|2) are an-
tibunched. We now vary γa in the range of [0,Γa], and observe that the statistics of |φRR|2

undergoes a transition from bunching to antibunching at γa ≈ 0.6Γa while the statistics of
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FIG. 8. Wavefunction density plot. (a) The incoming two-photon bound state |φE |2. (b) and (c)

plot the scattered photons for the entangled input φ′
E (m = 2) with varying γa. (b) When γa = 0.

(c) When γa = 0.7Γa. The numerical values for each unit scale is (a) 0.11, (b) 0.027, and (c) 0.014,

respectively.

|φLL|2 remains antibunching throughout the scanning range. Fig. 8(c) plots the scattered

photons for γa = 0.7Γa wherein both transmitted and reflected photons are antibunched.

For the cases of m = 3 and m = 4, we observe qualitatively the same transition behaviors,

both occurring at γa ≈ 0.5Γa (not shown).

Here, we summarize the relation between the input state and the induced correlation

transition, as illustrated in Fig. 9. Based upon the inputs investigated, we draw the following

conclusions. For the unentangled input case, we have examined the resonant, off-resonant

Gaussian pulses, and the resonant two-sided exponentially decaying pulse to confirm that

the transition only occurs in the RR branch from bunching to antibunching. The transition

from antibunching to bunching is not observed. For the entangled input case, we confirm the

correlation transitions for both the two-photon bound state φE and the generalized bound

state φ′
E in the RR branch whereas the direction is different. The transition direction for

φE is from antibunching to bunching whereas from bunching to antibunching for φ′
E.

Appendix B: Equations of motion for atom-cavity configuration

For the atom-cavity configuration (Fig. 1(b)), we provide the information of the Hamil-

tonian, the general state, and the equations of motion. The reduced Hamiltonian describing
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FIG. 9. Illustration of the relation between the input state and the induced correlation transition.

The abbreviations represent, A: antibunching; B: bunching; G: resonant and off-resonant Gaussian

pulses; and T-E: resonant two-sided exponentially decaying input. φE and φE′ are the two-photon

bound state and the generalized bound state, respectively. The non-black solid arrows indicate

that the correlation transitions have been numerically confirmed for particular types of input that

are specified by the abbreviations and variables. The non-black dashed arrow indicates that the

correlation transition from antibunching to bunching for the unentangled input is not observed.

The black arrows denote the direction of the induced correlation transition.

such a system, Hc, is described by

Hc

~
=

∫

dx
(

c†R(x)(−ivg∂x)cR(x) + c†L(x)(ivg∂x)cL(x)

+Vcδ(x)
[

(c†R(x) + c†L(x))c + c†(cR(x) + cL(x))
] )

+(ωc − iγc)c
†c+ (ωe − iγa)a

†
eae + ωga

†
gag

+gc(c
†σ− + σ+c),

(B1)

where c† (c) denotes the creation (annihilation) operator for the cavity mode. Vc is the

cavity-photon coupling strength (V 2
c /vg ≡ Γc is the cavity decay rate into the waveguide).

gc is the atom-cavity coupling strength. The notations regarding the waveguided photon

and the atom are defined the same as those in the single-atom configuration. The general

state of the restricted system, |Φc(t)〉, is
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|Φc(t)〉 =
(

∫

dx
∑

j=R,L

eaj(x, t)c
†
j(x)e

−iωetσ+ +

∫

dx
∑

j=R,L

ecj(x, t)c
†
j(x)e

−i(ωg+ωc)tc†

+

∫∫

dx1dx2

∑

j,l=R,L

φjl(x1, x2, t)e
−iωgt

c†j(x1)c
†
l (x2)√
2

+ ecc(t)e
−i(2ωc+ωg)t

1√
2
c†c† + eac(t)e

−i(ωe+ωc)tc†σ+

)

|∅〉,

(B2)

where eaR(L) denotes the single-photon probability amplitude wherein one photon is absorbed

by the atom and the other waveguided photon is moving to the right (left). ecR(L) denotes

the single-photon probability amplitude wherein one photon excites the cavity mode and

the other waveguided photon is moving to the right (left). ecc is the cavity excitation ampli-

tude wherein both photons excite the cavity mode. eac represents the excitation amplitude

wherein one photon is absorbed by the atom and the other photon excites the cavity mode.

Two-photon wavefunctions φRR, φRL, φLR, and φLL are defined the same as the single-atom

case. By applying the Schrödinger equation i~∂t|Φc(t)〉 = Hc|Φc(t)〉, one determines the

following equations of motion,

φ̇RR(x1, x2, t) = −vg(∂x1
+ ∂x2

)φRR − i
Vc√
2
[δ(x1)ecR(x2, t) + δ(x2)ecR(x1, t)]e

−iωct,

φ̇RL(x1, x2, t) = −vg(∂x1
− ∂x2

)φRL − i
Vc√
2
[δ(x1)ecL(x2, t) + δ(x2)ecR(x1, t)]e

−iωct,

φ̇LR(x1, x2, t) = vg(∂x1
− ∂x2

)φLR − i
Vc√
2
[δ(x1)ecR(x2, t) + δ(x2)ecL(x1, t)]e

−iωct,

φ̇LL(x1, x2, t) = vg(∂x1
+ ∂x2

)φLL − i
Vc√
2
[δ(x1)ecL(x2, t) + δ(x2)ecL(x1, t)]e

−iωct,

ėcR(x, t) = −vg∂xecR − γcecR − i
Vc√
2
[φRR(0, x, t) + φRR(x, 0, t) + φRL(x, 0, t) + φLR(0, x, t)]e

iωct

− i
√
2Vcδ(x)ecc(t)e

−iωct − igceaR(x, t)e
−i∆1t,

ėcL(x, t) = vg∂xecL − γcecL − i
Vc√
2
[φLL(0, x, t) + φLL(x, 0, t) + φLR(x, 0, t) + φRL(0, x, t)]e

iωct

− i
√
2Vcδ(x)ecc(t)e

−iωct − igceaL(x, t)e
−i∆1t,

ėaR(x, t) = −vg∂xeaR − γaeaR − iVcδ(x)eac(t)e
−iωct − igcecR(x, t)e

i∆1t,

ėaL(x, t) = vg∂xeaL − γaeaL − iVcδ(x)eac(t)e
−iωct − igcecL(x, t)e

i∆1t,

ėcc(t) = −2γcecc − i
√
2Vc[ecR(0, t) + ecL(0, t)]e

iωct − i
√
2gceac(t)e

−i∆1t,

ėac(t) = −(γa + γc)eac − iVc[eaR(0, t) + eaL(0, t)]e
iωct − i

√
2gcecc(t)e

i∆1t,

(B3)
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where ∆1 = ωa − ωc describes the frequency detuning between the atom and the cavity

mode. More information about the numerical work can be found in Ref. [24]

Appendix C: Equations of motion for atom-ring-resonator configuration

For the atom-ring-resonator configuration (Fig. 1(c)), we now provide the information of

the Hamiltonian, the general state, and the equations of motion. The reduced Hamiltonian

describing such a system, Hr, is described by

Hr

~
=

∫

dx
(

c†R(x)(−ivg∂x)cR(x) + c†L(x)(ivg∂x)cL(x)

+Vrδ(x)
[

c†R(x)a + a†cR(x) + c†L(x)b+ b†cL(x)
] )

+(ωr − iγr)a
†a + (ωr − iγr)b

†b+ (ωe − iγa)a
†
eae

+ωga
†
gag + gr(a

†σ− + σ+a) + gr(b
†σ− + σ+b).

(C1)

In particular, the ring-resonator supports two degenerate counter-propagating modes, i.e.,

counter-clockwise (CCW) and the clockwise (CW) modes. a† (a) and b† (b) are the creation

(annihilation) operators for the CCW and CW modes, respectively. Vr denotes the atom-

resonator coupling strength (V 2
r /2vg ≡ Γr is the resonator decay rate into the waveguide

[25]). To illustrate the physics, we assume a perfect ring-resonator wherein both propagating

modes have the same resonant frequency ωr, the same dissipation rate γr, the same atom-

resonator coupling strength gr, and no inter-mode coupling is taken into account. The

notations regarding the waveguided photon and the atom are defined the same as those in

the single-atom configuration. The general state of the restricted system, |Φr(t)〉, is

|Φr(t)〉 =
(

∫

dx
∑

j=R,L

eAj(x, t)c
†
j(x)e

−iωetσ+ +

∫

dx
∑

j=R,L

eaj(x, t)c
†
j(x)e

−i(ωg+ωc)ta†

+

∫

dx
∑

j=R,L

ebj(x, t)c
†
j(x)e

−i(ωg+ωc)tb† +

∫∫

dx1dx2

∑

j,l=R,L

φjl(x1, x2, t)e
−iωgt

c†j(x1)c
†
l (x2)√
2

+ eaa(t)e
−i(2ωc+ωg)t

1√
2
a†a† + ebb(t)e

−i(2ωc+ωg)t
1√
2
b†b† + eab(t)e

−i(2ωc+ωg)ta†b†

+ eaA(t)e
−i(ωe+ωc)ta†σ+ + ebA(t)e

−i(ωe+ωc)tb†σ+

)

|∅〉,
(C2)

where eAR(L) denotes the single-photon probability amplitude when one photon is absorbed

by the atom and the other waveguided photon is moving to the right (left). eaR(L) denotes
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the single-photon probability amplitude wherein one photon excites the CCW mode and

the other waveguided photon is moving to the right (left). ebR(L) denotes the single-photon

probability amplitude wherein one photon excites the CW mode and the other waveguided

photon is moving to the right (left). eaa (ebb) is the excitation amplitude wherein both

photons excite the CCW (CW) mode. eab is the excitation amplitude wherein two photons

excite the CWW and CW modes, respectively. eaA (ebA) denotes the excitation amplitude

wherein one photon is absorbed by the atom while the other photon excites the CCW (CW)

mode. Two-photon wavefunctions φRR, φRL, φLR, and φLL are defined the same as the single-

atom case. By applying the Schrödinger equation i~∂t|Φr(t)〉 = Hr|Φr(t)〉, one determines

the following equations of motion,
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φ̇RR(x1, x2, t) = −vg(∂x1
+ ∂x2

)φRR − i
Vr√
2
[δ(x1)eaR(x2, t) + δ(x2)eaR(x1, t)]e

−iωct,

φ̇RL(x1, x2, t) = −vg(∂x1
− ∂x2

)φRL − i
Vr√
2
[δ(x1)eaL(x2, t) + δ(x2)ebR(x1, t)]e

−iωct,

φ̇LR(x1, x2, t) = vg(∂x1
− ∂x2

)φLR − i
Vr√
2
[δ(x1)ebR(x2, t) + δ(x2)eaL(x1, t)]e

−iωct,

φ̇LL(x1, x2, t) = vg(∂x1
+ ∂x2

)φLL − i
Vr√
2
[δ(x1)ebL(x2, t) + δ(x2)ebL(x1, t)]e

−iωct,

ėaR(x, t) = −vg∂xeaR − γceaR − i
Vr√
2
[φRR(0, x, t) + φRR(x, 0, t)]e

iωct − i
√
2Vrδ(x)eaa(t)e

−iωct

− igreAR(x, t)e
−i∆2t,

ėbR(x, t) = −vg∂xebR − γcebR − i
Vr√
2
[φRL(x, 0, t) + φLR(0, x, t)]e

iωct − iVrδ(x)eab(t)e
−iωct

− igreAR(x, t)e
−i∆2t,

ėaL(x, t) = vg∂xeaL − γceaL − i
Vr√
2
[φRL(0, x, t) + φLR(x, 0, t)]e

iωct − iVrδ(x)eab(t)e
−iωct

− igreAL(x, t)e
−i∆2t,

ėbL(x, t) = vg∂xebL − γcebL − i
Vr√
2
[φLL(x, 0, t) + φLL(0, x, t)]e

iωct − i
√
2Vrδ(x)ebb(t)e

−iωct

− igreAL(x, t)e
−i∆2t,

ėAR(x, t) = −vg∂xeAR − γaeAR − iVrδ(x)eaA(t)e
−iωct − igr[eaR(x, t) + ebR(x, t)]e

i∆2t,

ėAL(x, t) = vg∂xeAL − γaeAL − iVrδ(x)ebA(t)e
−iωct − igr[eaL(x, t) + ebL(x, t)]e

i∆2t,

ėaa(t) = −2γcecc − i
√
2VreaR(0, t)e

iωct − i
√
2greaA(t)e

−i∆2t,

ėbb(t) = −2γcebb − i
√
2VrebL(0, t)e

iωct − i
√
2grebA(t)e

−i∆2t,

ėab(t) = −2γceab − iVr[ebR(0, t) + eaL(0, t)]e
iωct − igr[ebA(t) + eaA(t)]e

−i∆2t,

ėaA(t) = −(γa + γc)eaA − iVreAR(0, t)e
iωct − i

√
2greaa(t)e

i∆2t − igreab(t)e
i∆2t,

ėbA(t) = −(γa + γc)ebA − iVreAL(0, t)e
iωct − i

√
2grebb(t)e

i∆2t − igreab(t)e
i∆2t,

(C3)

where ∆2 = ωa−ωr describes the detuning between the atom and the resonator mode. More

information about the numerical work can be found in Ref. [21].
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