
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Chirality, band structure, and localization in waveguide
quantum electrodynamics

Imran M. Mirza, Jeremy G. Hoskins, and John C. Schotland
Phys. Rev. A 96, 053804 — Published  2 November 2017

DOI: 10.1103/PhysRevA.96.053804

http://dx.doi.org/10.1103/PhysRevA.96.053804


Chirality, Band Structure and Localization in Waveguide

Quantum Electrodynamics

Imran M. Mirza

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

Jeremy G. Hoskins

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA

John C. Schotland

Department of Mathematics and Department of Physics,

University of Michigan, Ann Arbor, Michigan 48109, USA

Abstract

Architectures based on waveguide quantum electrodynamics have emerged as promising can-

didates for quantum networks. In this paper, we analyze the propagation of single-photons in

disordered many-atom waveguides. We pay special attention to the influence of chirality (direc-

tionality of photon transport) on the formation of localized photonic states, considering separately

the cases of disorder in the atomic positions and in the atomic transition frequencies.
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I. INTRODUCTION

The investigation of light-matter interactions in quantum optics is largely concerned with

the study of systems consisting of a small number of atoms [1]. However, experiments with

cold atom systems [2, 3] have led to the study of light propagation in media consisting of

a large number of densely-packed scatterers [4–6]. Moroever, given the remarkable progress

on the scalability of nanophotonic systems in cavity quantum electrodynamics (QED) [7]

and ion-trapping techniques [8], the control of quantum states of light coupled to complex

atomic media with tunable properties seems to be not far away.

Multi-atom waveguide QED provides a convenient platform to investigate light propaga-

tion in complex atomic media. In addition, enhancement of spin-orbit coupling of light in

nanoscale waveguides leads to the remarkable ability to control the direction of light propa-

gation [9]. In so-called chiral waveguides, light can propagate preferentially in one direction.

Due to this feature, entanglement generation and control [10, 11], photon-photon correla-

tions [12], superradiance/subradiance [13], and selective radiance [14] have been extensively

investigated.

Relatively little attention has been paid to the topic of single-photon transport in many-

body waveguide QED systems. Shen et al. developed a transfer matrix approach for periodic

systems of two-level atoms [15]. Witthaut et al. extended this work to the case of three-

level atoms and considered the effects of position disorder on single photon transport [16].

More recently, Marcuzzi et al. [17] investigated position-disordered Rydberg atom systems

in tight optical traps. Their experiments were performed for a linear array of up to eight

optical tweezers, each containing a single atom, and provided evidence for disorder-induced

suppression of excitation transfer.

In the setting of periodic multi-atom waveguide QED, an important question is to char-

acterize the formation of allowed and forbidden bands for single photon transport. This

topic has been addressed for symmetric waveguides [18–20]. However, the extent to which

chirality can influence band structure and dispersion has not been addressed. In this work,

we show that a small chiral imbalance in group velocities can change the location and width

of bands compared to symmetric waveguide systems.

Anderson localization was first discussed in the context of disordered electronic sys-

tems [21]. Later, the phenomenon has also been extensively investigated in a variety of
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FIG. 1: (Color online) Illustrating the waveguide QED system that is considered in

this paper.

fields including acoustics, elasticity and optics. In classical optics, in addition to Refs.[22–

24], Anderson himself analyzed the problem of localization of electromagnetic waves [25].

More recently, localization has received considerable attention in quantum optical and nano-

photonic systems. For instance, Sapienza et al. have experimentally demonstrated that

atom-photon coupling can be enhanced in cavity QED systems by adding lithographically

controlled disorder in photonic crystal waveguides [26]. Moreover, waveguide QED provides

a platform to study photon localization due to the competition between long-ranged waveg-

uide mediated atomic interactions and atomic disorder with short-ranged correlations. Note

that such competition is generally not present in other quantum optical architectures [27–29].

In this paper, we consider chiral and bidirectional waveguides containing 10–103 two-

level atoms. The effects of two types of disorder are examined: randomness in atomic

positions and in atomic transition frequencies. In both cases, we study the single-photon

transmission coefficient and localization length as a function of the atom-field detuning

and the strength of the disorder. For chiral waveguides, we find that photon transport is

immune to position disorder. However, for frequency disorder localization does occur. For

bidirectional waveguides, both types of disorder lead to localization.

The paper is organized as follows. In section II we consider the theory of chiral waveguides

and discuss photon transport in both periodic and disordered settings. In Section III, we

focus on the non-chiral situation. In Section IV and V, we discuss the band structure and

disorder respectively, for both small and symmetric waveguide problems. Finally, in Section

VI, we close with a discussion of our results.
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II. CHIRAL WAVEGUIDES

When confined to subwavelength scales, light shows the remarkable feature of enhanced

spin-orbit coupling, enabling the creation of chiral waveguides. Here, chirality is defined

as an imbalance in the left and right waveguide emission directions or atom-field coupling

strength [9, 30–32]. In recent years, chiral waveguide QED has undergone tremendous

development [30, 33] in which up to 90% directionality has been reported. We note that chiral

waveguides are similar to a waveguide-coupled ring resonators, in which light propagation

is also unidirectional [34].

In this paper we consider the following scenario for both chiral and bidirectional waveg-

uides. A collection of two-level atoms (also referred to as qubits or emitters) is side-coupled

to a one-dimensional lossless and dispersionless waveguide. This model can be experimen-

tally realized in a number of different physical settings including cadmium selenide quantum

dots interacting with silver nanowires [35], Josephson junctions in microwave transmission

lines [36], Cesium atoms coupled to photonic crystal waveguide [13], and silicon-vacancy

color centers coupled to diamond nanowaveguides [37].

We consider the following Hamiltonian for a multiatom chiral waveguide system as illus-

trated in Fig.1 with VLj
= 0 and VRj

= Vj:

Ĥ =
∑
j

(ωj − iγj)σ̂†j σ̂j +

∫
dxĉ†(x)

(
ω0 − ivg

∂

∂x

)
ĉ(x)

+
∑
j

∫
dxδ(x− xj)

[
Vj ĉ
†(x)σ̂j + h.c.

]
.

(1)

The first term in (1) corresponds to the Hamiltonian of the atoms, the second term to the

Hamiltonian of the quantized field, and the third term to the interaction between the atoms

and the field. Here we work in units where ~ = 1, have employed the method of real-space

quantization [15, 38] and have made the rotating wave approximation. The position of the

jth atom is denoted xj and its transition frequency is ωj with j = 1, . . . , N . In addition, ω0

is the frequency around which waveguide dispersion relation has been linearized, vg is the

group velocity of the photon in the waveguide and γj is the rate of spontaneous emission

of the jth atom. The atomic lowering operator is denoted σ̂j and the field operator ĉ(x)

annihilates a photon at the position x. The nonvanishing commutation relations are given
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by [
ĉ(x), ĉ†(x′)

]
= δ(x− x′) , {σ̂i, σ̂†j} = δij . (2)

Finally, Vj is the evanescent coupling of the atom to the waveguide continuum.

The quantum state of the system in the subspace of zero and one excitations is of the

form

|Ψ〉 =

∫
dxϕ(x)ĉ†(x) |∅〉+

∑
j

ajσ̂
†
j |∅〉 , (3)

where aj is the probability amplitude for the jth atom, ϕ(x) is the one-photon amplitude

and |∅〉 is the ground state of the atom-waveguide system. The equations obeyed by a and

ϕ can be obtained by substituting the above expression for |Ψ〉 into the time-independent

Schrödinger equation Ĥ |Ψ〉 = ~ω |Ψ〉, where ω is the frequency of the photon. We thus

obtain

−ivg
∂ϕ(x)

∂x
+

N∑
j=1

Vjajδ(x− xj) = (ω − ω0)ϕ(x) , (4a)

V ∗j ϕ(xj) = (ω − ωj + iγj)aj . (4b)

Eliminating aj from (4a) yields the following equation for ϕ:

−ivg
∂ϕ(x)

∂x
+

N∑
j=1

vjδ(x− xj)ϕ(x) = (ω − ω0)ϕ(x), (5)

where vj = |Vj|2/ (ω − ωj − iγj). The solution to (5) can be obtained by observing that in

between the atoms, when x 6= xj, ϕ(x) = Aeiqx, where the wavenumber q = (ω−ω0)/vg and

A is constant. Thus ϕ is of the form

ϕ(x) =



eiqx, x < x1,

t1e
iqx, x1 ≤ x ≤ x2,

...

tNe
iqx, x > xN .

(6)

To obtain the coefficients tj, we integrate (5) over the interval [xj − ε, xj + ε], where ε is a

small positive number. This yields the jump condition

ivg[ϕ(xj + ε)− ϕ(xj − ε)] = vjϕ(xj). (7)
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Next, we regularize the discontinuity in ϕ according to

ϕ(xj) = lim
ε−→0

[ϕ(xj + ε) + ϕ(xj − ε)] /2 (8)

and introduce the quantity Γj = |Vj|2/2vg. Eq. (7) thus becomes

ϕ(xj + ε) = Tjϕ(xj − ε), (9)

where

Tj =
ω − ωj + i(γj − Γj)

ω − ωj + i(γj + Γj)
. (10)

Finally, by using (6) we arrive at the recursion relation

tj = Tjtj−1, (11)

which allows us to determine the amplitude ϕ.

To study the transport of single photons, we define the transmission coefficient T =

|ϕ(xN)/ϕ(x1)|2, which upon making use of (6) and (11) becomes

T =
N∏
j=1

|Tj|2 . (12)

As expected, if γj = 0 (no losses), then T = 1 and the system behaves as an all-pass filter.

A. Periodic arrangement

Eq. (11) is applicable to both periodic and disordered arrangements of atoms. In the

periodic case, unlike the bidirectional setting discussed in section III, there is no band

structure and the transmission is independent of the period. On the other hand, it is

convenient to distinguish three regimes when γj 6= 0: undercoupled (γj > Γj), overcoupled

(γj < Γj), and critically coupled (γj = Γj). As is evident from the single atom case, which

we show in Fig. 2(a), in the critical coupling regime the transmission reaches its minimum

value. In Fig. 2(b), we plot the transmission for different numbers of identical atoms in the

critical coupling regime. As we increase the number of atoms, we notice the width of the

region of low transmission grows and for a 100-atom chain, transmission is suppressed for a

wide range of frequencies.

6



FIG. 2: (Color online) Transmission of a single photon in a chiral system consisting of

(a) 1 and (b) 2, 5, 10, 50 and 100 periodically arranged identical atoms (ωj = ω1 and

γj = γ for all j). In (a) the solid green, red dotted-dashed and blue dashed lines

represent the over-, critical- and under-coupled regimes, respectively. In (b) we have

chosen the critical coupling case with γ = Γ.

B. Disordered arrangement

We now introduce disorder in the multi-atom chain and investigate the occurence of single

photon localization. For recent studies on localization in photonic systems, see for instance

[27–29, 39, 40]. In what follows and for the rest of the paper, all random variables are

generated from a Gaussian probability density of the form

P (x) =
1√

2πσ2
e−(x−x)2/2σ2

, (13)

where x is the mean and σ being the standard deviation is a measure of the strength of the

disorder.

1. Frequency disorder

Here we consider the case of frequency disorder, in which we assume that the atomic

transition frequencies are random. This type of disorder can be present in optically trapped

Rydberg atoms, either due to non-uniformity of the applied potential or when beam focusing

is inhomogeneous [41, 42]. We begin by calculating the average transmission and then

compute the localization length.

7



Suppose that the detunings δj = ω−ωj are independent and identically distributed Gaus-

sian random variables. Making use of (10) and (11), we find that the average transmission

for an N -atom chain is given by

〈T 〉 =

∫ N∏
j=1

dδjP (δj)|Tj|2 (14)

= 〈|τ |2〉N . (15)

Here

〈|τ |2〉 =

∫
dδP (δ)|τ |2, (16)

where

τ =
δ + i(γ − Γ)

δ + i(γ + Γ)
. (17)

It is easily seen that

|τ |2 = 1−
[
(γ + Γ)2 − (γ − Γ)2] ∫ ∞

0

e−λ(δ
2+(γ+Γ)2)dλ. (18)

Carrying out the indicated average over δ with 〈δ〉 = δ̄ yields

〈|τ |2〉 = 1− 4γΓ

∫ ∞
0

exp
[
−λ(γ + Γ)2 − λδ

2

1+2λσ2

]
√

1 + 2λσ2
dλ, (19)

which allows us to calculate the average transmission from (15) .

By analogy to the theory of disordered electronic systems [43–45], we define the localiza-

tion length ξ by

ξ−1 = − lim
N→∞

〈lnT 〉
N

, (20)

where the average is over all detunings δj. It is easily seen from (12) and (18) that

〈lnT 〉 = N〈ln |τ |2〉 (21)

and thus

ξ−1 = −〈ln |τ |2〉. (22)

In the critical coupling regime with γ = Γ, we can perform the above average explicitly and

thus obtain

ξ−1 = − 2Γ√
2πσ2

∫ ∞
−∞

ln

(
1− 1

1 + x2

)
e−(2Γx−δ)2/2σ2

dx. (23)
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FIG. 3: (Color online) Average transmission and localization length for a

frequency-disordered chiral waveguide in the critical coupling regime. (a) δ̄ = 0 and

(b) δ̄ = Γ.

In Fig. 3, we plot the average transmission and localization length as a function of the

strength of the disorder σ and the average detuning δ̄. We first consider the case δ̄ = 0. We

find that the system is purely reflecting (〈T 〉 = 0) when σ = 0. This is a consequence of

the fact that the system is both on resonance and critically coupled. We note that as σ is

increased the transmission increases, as does the localization length. Next we consider the

case δ̄ = Γ. Here we see that even when σ = 0, the system is off resonance and the average

transmission is nonvanishing. Note the presence of a minimum in the localization length

near σ = Γ.

2. Position disorder

We now consider the effect of position disorder of the atoms in the chain. It follows

immediately from (12) that the transmission T does not depend on the position of the

atoms. Thus in chiral waveguides we see that transport is immune to position disorder.
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III. BI-DIRECTIONAL WAVEGUIDES

We consider the following Hamiltonian for a multiatom bidirectional waveguide

Ĥ =
∑
j

(ωj − iγj)σ̂†j σ̂j +

∫
dxĉ†R(x)

(
ω0 − ivR

∂

∂x

)
ĉR(x) +

∫
dxĉ†L(x)

(
ω0 + ivL

∂

∂x

)
ĉL(x)

+
∑
m,j

∫
dxδ(x− xj)

[
Vmj ĉ

†
m(x)σ̂j + h.c.

]
.

(24)

The first term in (24) is the Hamiltonian of the atoms. The second and third terms are

the Hamiltonian of the waveguide, which supports left- and right-going modes with group

velocities vR and vL, respectively. Here the the sum is over m ∈ {R,L}. The destruction of

a single photon in the left (right) waveguide continuum at position x is represented by the

field operator ĉL(x)(ĉR(x)). The nonvanishing commutation relations for field operators are

given by [
ĉm(x), ĉ†n(x′)

]
= δmnδ(x− x′). (25)

The third term in (24) accounts for the interaction between the quantized field and the

atoms, with Vmj denoting the corresponding coupling, which is chosen to be real-valued.

The waveguide described by the Hamiltonian (24) is said to be bidirectional. If vR = vL

and VRj = VLj the waveguide is referred to as symmetric. Evidently, the extreme case with

either vR or vL vanishing corresponds to a chiral waveguide.

We consider a one-photon quantum state of the form

|Ψ〉 =
∑
m

∫
dxϕm(x)ĉ†m(x) |∅〉+

∑
j

ajσ̂
†
j |∅〉 . (26)

Here ϕR(x), (ϕL(x)) is the one-photon amplitude in the right (left) waveguide continuum. As

in section II, the equations obeyed by the amplitudes can be obtained from the Schrödinger

equation. We thus obtain

−ivR
∂ϕR(x)

∂x
+

N∑
j=1

VRj
ajδ(x− xj) = (ω − ω0)ϕR(x), (27a)

ivL
∂ϕL(x)

∂x
+

N∑
j=1

VLj
ajδ(x− xj) = (ω − ω0)ϕL(x), (27b)

VRj
ϕR(xj) + VLj

ϕL(xj) = (ω − ωj + iγj)aj. (27c)
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FIG. 4: (Color online) Illustrating the transmission and reflection amplitudes at the

location of each atom.

Eliminating aj from the above, we find that the following equations are obeyed by ϕR and

ϕL:

−ivR
∂ϕR(x)

∂x
+
∑
j

VRj
δ(x− xj)

ω − ωj + iγj

(
VRj

ϕR(x) + VLj
ϕL(x)

)
= (ω − ω0)ϕR(x), (28a)

ivL
∂ϕL(x)

∂x
+
∑
j

VLj
δ(x− xj)

ω − ωj + iγj

(
VRj

ϕR(x) + VLj
ϕL(x)

)
= (ω − ω0)ϕL(x), (28b)

When x 6= xj, the amplitudes ϕR(x) and ϕL(x) are given by ϕR(x) = ARe
iqRx and ϕL(x) =

ALe
−iqLx. Here qR = (ω − ω0)/vR, qL = (ω − ω0)/vL are the wavenumbers associated with

the right and left field amplitudes, respectively, and AR and AL are constant. Thus, we

obtain

ϕR(x) =



eiqRx, x < x1,

t1e
iqRx, x1 ≤ x ≤ x2,

...

tNe
iqRx, x > xN .

(29)

and

ϕL(x) =



r1e
−iqLx, x < x1,

r2e
−iqLx, x1 ≤ x ≤ x2,

...

rNe
−iqLx, xN−1 ≤ x ≤ xN ,

0, x > xN .

(30)

where rN+1 = 0 and t0 = 1. See Fig. 4. In order to obtain the coefficients tj and rj we
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integrate (28) over the interval [xj − ε, xj + ε], which yields the jump conditions

−ivR

[
ϕR(xj + ε)− ϕR(xj − ε)

]
+

VRj

ω − ωj + iγj

(
VRj

ϕR(xj) + VLj
ϕL(xj)

)
= 0, (31a)

ivL

[
ϕL(xj + ε)− ϕL(xj − ε)

]
+

VLj

ω − ωj + iγj

(
VLj

ϕL(xj) + VRj
ϕR(xj)

)
= 0. (31b)

Regularizing ϕm by

ϕm(x) = lim
ε−→0

[ϕm(xj + ε) + ϕm(xj − ε)] /2, (32)

and introducing the quantities ΓRj
= V 2

Rj
/2vR and ΓLj

= V 2
Lj
/2vL, we obtain

ϕR(xj + ε) =

(
∆j − iΓRj

∆j + iΓRj

)
ϕR(xj − ε)− i

√
vL
vR

√
ΓRj

ΓLj

∆j + iΓRj

(
ϕL(xj + ε) + ϕL(xj − ε)

)
,(33a)

ϕL(xj + ε) =

(
∆j + iΓLj

∆j − iΓLj

)
ϕL(xj − ε) + i

√
vR
vL

√
ΓLj

ΓRj

∆j − iΓLj

(
ϕR(xj + ε) + ϕR(xj − ε)

)
, (33b)

where ∆j = ω − ωj − iγj. Using Eq. (29) and (30) we obtain the recursion relations

tj =

(
∆j − iΓRj

∆j + iΓRj

)
tj−1 − i

√
vL
vR

√
ΓRj

ΓLj

∆j + iΓRj

(
rje
−i(qR+qL)xj + rj+1e

−i(qR+qL)xj

)
, (34a)

rj+1 =

(
∆j + iΓLj

∆j − iΓLj

)
rj + i

√
vR
vL

√
ΓLj

ΓRj

∆j − iΓLj

(
tje

i(qR+qL)xj + tj−1e
i(qR+qL)xj

)
. (34b)

Next, we write transmission and reflection coefficients in terms of the free propagation phase

accumulated by the photon as it propagates through the waveguide between two consecutive

emitters:

tj = t̃je
−i(qR+qL)xj/2, rj = r̃je

i(qR+qL)xj−1/2, (35)

which defines r̃j and t̃j. After some rearrangement, (34) can be expressed in the form of the

matrix recursion relation  t̃j

r̃j+1

 = Tj

t̃j−1

r̃j

 . (36)

Here the transfer matrix Tj is given by

Tj =

 eiφj/s∗j −p∗j/s∗je−iφj

−pjeiφj/sj e−iφj/sj

 , (37)

where

sj =
∆j − i(ΓRj

− ΓLj
)

∆j + i(ΓRj
+ ΓLj

)
, pj =

−2i
√

ΓRj
ΓLj

∆j + i(ΓRj
+ ΓLj

)
, φj = (qR + qL)(xj − xj−1)/2. (38)
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Note that using the above transfer matrix formalism, we recover the results of Shen and Fan

[38, 46] in the special case ΓRj
= ΓLj

, corresponding to a symmetric waveguide. The net

transfer matrix M of the N atom system is given by

M =
∏
j

Tj :=

M11 M12

M21 M22

 . (39)

The net transmission coefficient is given by the formula T = |tN |2 and the reflection coeffi-

cient is then R = |r1|2. Note that 0 ≤ T ≤ 1 since 0 ≤ |tj|2 ≤ 1 for all j. Alternatively, when

γ = 0, it can be seen that T = |1/M22|2, which is a general property of transfer matrices

[43].

IV. BAND STRUCTURE

In this section we consider the band structure that arises for periodic arrangements

of atoms in bidirectional waveguides. We begin by focusing on single photon dispersion

properties and then consider the effects of back reflections (deviations from chirality).

See [18, 20, 38] for the case of symmetric waveguides.

A. Dispersion relation

To study the dispersion characteristics of a single photon, we invoke the periodicity of

the infinite lattice and consider solutions of the form

t̃j = teijKL and r̃j+1 = reijKL, (40)

where K is the wavenumber and L is the lattice spacing. By inserting these solutions in

(36), we find t
r

 = e−iKLT

t
r

 , (41)

which means that eiKL is an eigenvalue of T . Thus

det(T − eiKLI) = 0, (42)

where I is the 2× 2 identity matrix. Eq.(42) becomes, for γ = 0, the dispersion relation

cos(KL) =
{∆2 − (Γ2

R − Γ2
L)} cos(qR + qL)L/2 + 2∆ΓR sin(qR + qL)L/2

∆2 + (ΓR − ΓL)2
. (43)
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FIG. 5: (Color online) Dispersion relations for two different inter-atomic separations.

(a) Small back reflections: the parameters are γ = 0, ΓR = 0.1ω1, vL = 10vR

(ΓL = 0.1ΓR) and lattice constant L = 0.5λ where λ ≡ 2πvR/ω1. (b) Symmetric

waveguides: the parameters are γ = 0,Γ = 0.1ω1 and lattice constant L = 0.5λ.

This result agrees with [19, 20] for the case of symmetric waveguides with ΓR = ΓL.

In Fig. 5(a) we consider small back reflections and plot the dispersion relation for two

inter-atomic separations. We observe that larger inter-atomic separations create a larger

number of branches. In particular, for larger separations a tiny window of forbidden bands

opens up. A similar but wider band gap arises for smaller inter-atomic separations. We see

that even a small chiral imbalance can produce sufficient destructive interference to form

forbidden bands. Moreover, smaller inter-atomic separations produce bigger gaps.

In Fig. 5(b) we plot the dispersion relation for symmetric waveguides. In this situation

the dispersion relation (43) becomes

cos(KL) = cos(qL) +
2Γ

∆
sin(qL), (44)

where qR = qL = q. Similar to the case of small back reflections, we note that the band

gap structure can be engineered by altering the separation between the atoms. Beyond

this general feature, in the symmetric case, the width and the locations of the band gaps

are considerably changed. For instance, the tiny forbidden gap appearing at ∼ 1.2ω1 for

small back reflections has been shifted to ∼ 2ω1 for the symmetric problem, where ω1 is the

transition frequency. Moreover, when we compare Fig. 5(a) and Fig. 5(b), we see that the

dispersion curve appearing at ω = ω1 with KL . 0.5 for the small back reflection problem
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does not appear.

B. Small back reflections

We consider a bidirectional waveguide with small back reflections (ΓR � ΓL). In Fig. 6(a),

(b) and (c), we plot the transmission and reflection coefficients T and R as a function of

frequency and the number of atoms. For the single-atom case, we find that due to the small

atom-waveguide interaction in the backwards (left) direction, T is very large at resonance.

However, for the case of multiple atoms a band structure is formed. When N = 100, the

band gaps are clearly visible and the specific range of frequencies on and near resonance

where transmission is completely suppressed can be seen.

C. Symmetric waveguides

We now consider the case of symmetric waveguides with equal group velocities (ΓL = ΓR).

In this situation, the atom excitation, transmission and reflection amplitudes for the single

atom problem simplify to

a =

√
2vΓ

∆ + 2iΓ
, t =

∆

∆ + 2iΓ
, r =

−2iΓ

∆ + 2iΓ
. (45)

In Fig. 7 we plot the transport properties of the system. In the single atom case, the net

reflection coefficient manifests a Lorentzian profile with unit value of R at resonance. In the

multiple atom scenarios, a full photonic band gap emerges, which allows for the possibility

of generating frequency comb patterns [47]. However, as compared to the case of small back

reflections, the width of the gap is larger on resonance. For N = 10, the off-resonance bands

appear as thin peaks with decreasing heights as we move away from resonance.

V. EFFECTS OF DISORDER

A. Evidence for localization

For chiral waveguides, we were able to establish the existence of localization and calculate

the localization length analytically. However, for bidirectional waveguides an analysis along

the same lines is not straightforward. Instead, we seek numerical evidence for localization
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FIG. 6: (Color online) Single-photon transmission and reflection in a waveguide with

small back reflections. (a) 1, (b) 10 and (c) 100 periodically arranged identical atoms.

The parameters are γ = 0, ΓR = 0.1ω1, vL = 10vR (ΓL = 0.1ΓR) and lattice constant

L = 0.5λ.

FIG. 7: (Color online) Single-photon transmission and reflection in a symmetric

waveguide. (a) 1, (b) 10, and (c) 100 periodically arranged identical atoms. The

parameters are γ = 0,Γ = 0.1ω1 and lattice constant L = 0.5λ.

by following (20) and plotting 〈lnT 〉 as a function of the number atoms N . In Fig. 8

we consider four cases that we will study in detail in later sections: position disorder in

symmetric waveguides or with small back reflections, and frequency disorder in symmetric

waveguides or with small back reflections. For position disorder (Fig. 8(a) and (b)) we have

taken the mean atomic separation to be λ/2 with disorder strength σ = λ and fixed atomic

transition frequency ω1. For frequency disorder (Fig. 8(c)), we consider an off resonant

situation with mean transition frequency 2ΓR for small back reflections and Γ for symmetric

waveguides. The disorder strength σ is set to be ΓR(Γ). Moreover, a periodic lattice of

atoms is considered with L = λ/2. In all cases, we see that 〈lnT 〉 decreases linearly with
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FIG. 8: (Color online) Dependence of 〈lnT 〉 on the number of atoms N for position

disorder. Here ω = 2ω1 for (a) symmetric waveguide and (b) small back reflections

with ΓL = 0.1ΓR is considered. The mean interatomic separation is λ/2 and the

strength of the disorder σ = λ. (c) Frequency disorder. A periodic chain of atoms is

considered with a lattice constant L = λ/2. The strength of the disorder for small

back reflections (symmetric waveguides) is σ = ΓR (Γ) and the mean is 2ΓR (2Γ). We

have set γ = 0 (no spontaneous decay) and performed the average over 104 realizations

of the disorder. The error bars are too small to be displayed.

N , consistent with (20). Based on this result, we compute the localization length according

to (20).

B. Small back reflections

1. Position disorder

We begin by considering a position-disordered 10 atom chain. In Fig. 9(a), we see that

the band structure observed in the corresponding periodic setting has disappeared (for com-

parison see Fig. 6(b)). In addition, on resonance a small region of minimal transmission

forms. In Fig. 9(b) we plot the localization length ξ as a function of frequency ω. We find

that ξ reaches its minimum value at resonance, where the system is almost completely re-

flecting. Far from resonance, ξ is considerably enhanced due to the increased transmission.

These trends suggest the possibility of forming frequency-dependent localized states due to

small back reflections. In Fig. 9(c) we consider a position-disordered chain with N = 103

atoms. We plot the dependence of the localization length ξ on the strength of disorder

σ. We assume that the system is tuned away from resonance (to allow transmission) and
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FIG. 9: (Color online) Localization with small back reflections. In all plots vL = 10vR

(equivalently ΓL = 0.1ΓR). In (a) and (b) γ = 0, N = 10, the mean spacing is λ/2 and

the disorder strength σ = 2λ. The average is performed over 500 realizations of the

disorder. (a) Average transmission 〈T 〉 as a function of frequency ω for position

disorder. (b) Localization length ξ versus ω for position disorder. (c) Localization

length ξ versus σ for position disorder. The atomic spontaneous emission rate γ and

atom-waveguide coupling rate ΓR have been varied in different curves. Here the mean

spacing is λ/2, ω = 1.6ω1, N = 103 and 104 realizations. (d) ξ versus σ for frequency

disorder while varying atomic spontaneous emission rate γ. The atomic spacing is set

to be λ/2, mean frequency is 3ΓR, N = 103 and number of realizations is 104.

consider the cases of weak and strong coupling of the atoms to the waveguide. We find that

ξ is a decreasing function of σ and that ξ is smaller for strong coupling. We also explore

the effect of spontaneous emission on ξ. As expected, we find that spontaneous emission is

the dominant mechanism to destroy photon transport and the dependence of ξ on σ is very

weak.
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FIG. 10: (Color online) Localization in a symmetric waveguide. The parameters are

the same as in Fig. 9.

2. Frequency disorder

In Fig. 9(d) we plot ξ versus σ for frequency disorder. The system is taken far from

resonance and shows large transmission for small disorder with γ = 0. For γ 6= 0 the

transmission remains very small for all values of σ. The overall behavior is similar to that

of position disorder.

C. Symmetric waveguides

We now consider the case of symmetric waveguides, following along the same lines as the

discussion of waveguides with small back reflections. The results are presented in Fig. 10.

We see that the behavior of the transmission and localization length mirrors that in Fig. 9.

However, it is important to note that for symmetric waveguides, the scale of ξ is decreased

by an order of magnitude compared to waveguides with small back reflections. We also note

that if the frequency of the photon ω lies in a bandgap of the corresponding periodic system,

then the dependence of the localization length on the strength of the disorder is generally

19



not decreasing (data not shown).

Our results exhibit similarities and differences compared to studies of photon localization

reported in other quantum optical settings. For instance, Schwartz et al. [28] and Lehini

et al. [27] have experimentally shown that an increase in the strength of disorder can

transform extended states into exponentially localized states in a one-dimensional array of

waveguides. Similarly, Javedi et al. [39] have discussed the emission profile of InAs quantum

dots in disordered photonic crystal waveguides. They have experimentally demonstrated

the enhancement of the Purcell factor by an order of magnitude when the quantum dot

is in resonance with an Anderson localized mode. The general feature of suppression of

transmission due to increasing disorder strength [27] is also present in our waveguide QED

system. However, the question of how chirality [30] influences the formation of localized

states is a novel aspect of this problem.

VI. DISCUSSION

We have investigated the problem of single-photon transport in chiral and non-chiral

waveguide QED. We have considered the band structure that arises from periodically ar-

ranged atoms and have studied the effects of disorder in atomic positions and transition

frequencies. Our conclusions may be summarized as follows.

The absence of backscattering in chiral waveguides precludes the existence of band struc-

ture in periodic systems. In addition, chiral systems are immune to position disorder and

do not exhibit localization. However, localization does arise in chiral waveguides with fre-

quency disorder, a setting in which it is possible to calculate the average transmission and

localization length analytically.

Bidirectional waveguides generally exhibit a band structure for periodic systems. The

width and location of the bands is controlled by the symmetry of the waveguide. We

have found that both positional and frequency disorder lead to localization and that the

localization length takes the smallest value at resonance for both types of bidirectional

waveguides. For position disorder, strong atom-waveguide coupling generally leads to smaller

localization lengths compared to systems with weak coupling. Similar to other quantum

optical studies, we have found that the effect of disorder is to decrease transport, which in

this work relates to the interplay between disorder and chirality.
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[32] I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato,
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