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Spatial and momentum correlations are important in the analysis of the quantum states and
different phases of trapped ultracold atom systems as a function of the strength of interatomic
interactions. Identification and understanding of spin-resolved patterns exhibited in two-point cor-
relations, accessible directly by experiments, are key for uncovering the symmetry and structure
of the many-body wavefunctions of the trapped system. Using the full configuration interaction
method for exact diagonalization of the many-body Hamiltonian of N = 2 − 4 fermionic atoms
trapped in single, double, triple, and quadruple wells, we analyze both two-point momentum and
space correlations, as well as associated noise distributions, for a broad range of interparticle con-
tact repulsion strengths and interwell separations, unveiling characteristics allowing insights into
the transition, via an intermediate phase, from the non-interacting Bose-Einstein condensate to the
weakly interacting quasi-Bose-Einstein regime, and from the latter to the strong-repulsion Tonks-
Girardeau (TG) one. The ab-initio numerical predictions are shown to agree well with the results of
a constructed analytical model employing localized displaced Gaussian functions to represent the N
fermions. The two-point momentum correlations are found to exhibit damped oscillatory diffraction
behavior. This diffraction behavior develops fully for atoms trapped in a single well with strong in-
teratomic repulsion in the TG regime, or for atoms in well-separated multi-well traps. Additionally,
the two-body momentum correlation and noise distributions are found to exhibit “shortsightedness”,
with the main contribution coming from nearest-negihboring particles.

I. INTRODUCTION

Recent groundbreaking experimental progress in time-
of-flight measurements is providing an abundance of in-
formation for the two-point and higher-order momen-
tum correlations of one-dimensional systems with a large
number of trapped bosons [1–12]. Such information re-
flects directly the nature of the correlated many-body
wave function and can be used as a tool to probe theo-
retical models and methodologies; e.g., it has been found
[11] that 1D boson systems deviate from the predictions
[13] (see also Ref. [14]) of the Bogoliubov theory [15] in
the quasi Bose-Einstein condensate (QBEC) regime in-
between the ideal-Bose gas and the strongly correlated
Tonks-Girardeau (TG) regimes.

Motivated by the above developments and the ex-
perimental advances in controlling a few determinis-
tically prepared fermions [16, 17], we present exact
configuration-interaction (CI) results for the two-point
momentum correlations of a few ultracold fermionic
atoms confined in quasi-1D single- and multi-well traps.
Theoretical investigations of two-point space correlations
for a few fermions (electrons) confined in semiconductor
quantum dots abound; for a small sample of earlier litera-
ture, see Refs. [18–20]. Several studies of two-point space
correlations have also been reported for a few trapped ul-
tracold atoms [21–26], but the corresponding theoretical
predictions for the momentum correlations, which can
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be directly compared to time-of-flight measurements, are
still missing. (Studies of two-point momentum correla-
tions for bosons in the TG regime are also lacking [11].)

Based on configuration-interaction (CI) calculations,
this paper provides a complete range of ab-initio two-
point momentum-correlation maps (including noise dis-
tributions) for a small number N of ultracold trapped
fermions, as a function of the strength g of the short-
range repulsion, the total spin (S, Sz), and for both
the cases of a single-well or a multi-well trap with dif-
ferent interwell separations. Our main finding is that
at the Tonks-Girardeau regime the momentum correla-
tions exhibit a signature pattern of damped diffraction
oscillations associated with a typical distance-scale aris-
ing from the emergent spatial particle localization in
this regime. Control of the typical diffraction length is
achieved by increasing the interwell separation in singly-
occupied multi-well traps, resulting in a larger number
of visible diffraction minima. The diffraction behavior of
two-point momentum correlations was reported first by
Coulson for the case of the natural H2 molecule, aim-
ing at gaining momentum-space insights into molecular
bonding [27]. It readily lends an interpretation of the
Tonks-Girardeau regime as a special limit in the context
of a general unified theory of Wigner-molecule formation
in finite systems with strongly repulsive interparticle in-
teractions [18, 21, 22, 24, 25], in particular, here, ultra-
cold Wigner molecules (UCWM) [24, 25].

The plan of the paper is as follows: We begin in Sec.
II with a short description of the theoretical methodol-
ogy developed and used in this work, including: (i) the
CI method for exact diagonalization of the many-body
Hamiltonian ofN optically-trapped ultracold atoms (Sec.



2

II A), (ii) ab-initio numerical calculations of one- and
two-point real-space and momentum-space correlation,
and noise, functions, (Sec. II B) and (iii) analytic model-
ing of the above-noted correlation functions, illustrated
in detail for the case of two-particles with a discussion
of two-particle interference pattern and correlation-map
derivation (Sec. II C). In Sec. III we display and dis-
cuss the results of our CI calculations for the following
cases: (A) Two fermions in a single quasi-1D well with an
emphasis on the dependence on the inter-atomic interac-
tion strength and the Tonks-Girardeau limit, including
an illustration of the shortsightedness of the two-body
momentum noise distribution, (B) Two fermions in a
quasi-1D double-well, and (C) Three fermions trapped in
quasi-1D single or triple wells, with an emphasis on spin-
resolved, versus spin-unresolved, two-point correlation
maps. Sec. IV is devoted to comparisons between the ab-
initio CI numerically calculated two-point spin-resolved
(and spin unresolved) correlations in real and momen-
tum space for two, three, and four ultracold fermionic
atoms trapped in double, triple, and quadruple wells.
We summarize our wok in Sec. V. In the Appendices,
we give explicit expressions for the analytically-derived
two-point correlation functions for two (including also
two-point noise functions), three, and four atoms, as well
as the effective Heisenberg Hamiltonians for three and
four well-localized atoms. We note that, for a small num-
ber of repelling trapped particles (electrons in semicon-
ductor quantum dots and ultracold fermions or bosons),
the mapping of the microscopic many-body Hamiltonian
onto spin-chain-type, effective Heisenberg Hamiltonians
has been demonstrated recently and it constitutes an on-
going active area of research; for electrons in semiconduc-
tor quantum dots see Refs. [19, 20], for ultracold fermions
or bosons in quasi-1D traps see Refs. [24, 25, 28–36].

II. METHODS

A. Many-body Hamiltonian

In this paper we employ the configuration-interaction
(CI) method (referred to also as exact diagonalization
method) to determine the solution of the two-dimensional
N -body fermionic Hamiltonian

HMB =

N∑
i=1

H(i) +

N∑
i=1

N∑
j>i

V (ri, rj), (1)

where H(i) represents the single particle part of the
many-body Hamiltonian and V (ri, rj) represents the in-
teraction term, with ri ≡ (xi, yi) and rj ≡ (xj , yj) being
the space coordinates of the ith and jth particle respec-
tively. The single particle part H(i) of the Hamiltonian
contains the kinetic energy term and a single-particle
external confining potential; in this paper we consider

double-, triple-, and quadruple-well confinements in a lin-
ear arrangement.

The external confining potential has been extensively
described in [24, 25]. The relevant potential parameters
for this paper are the inter-well spacing dw, which is in-
dicated in our figures (obviously, dw = 0 for a single
well) and the value of εb (determining the interwell bar-
rier height) which is taken to be 0.5 throughout the pa-
per. Each of the parabolic confining wells is characterized
by two harmonic frequencies, h̄ωx (along the long x-axis
of the well) << h̄ωy (along the y direction), resulting in
a (quasi-onedimensional) needle-like shape confinement,
so that only the lowest-in-energy single-particle space or-
bital in the y-direction is populated. In our calculations
h̄ω = h̄ωx = 1 kHz, and h̄ωy = 100 kHz (hereafter we
drop for convenience the subscript x). In experimen-
tal realizations of quasi-1D (needle-shape) confinement,
a similar strategy is employed, with a ratio of 10-250 be-
tween the transverse and longitudinal confining frequen-
cies [11, 16, 17]. The interaction term is given by

V (ri, rj) =
g

σ2π
e−(ri−rj)

2/σ2

. (2)

In this paper we use σ =
√

2l0/10 = 0.1833 µm where
l0 is the harmonic oscillator length l20 = h̄/(M6Liω) with
M6Li = 10964.90me being the mass of 6Li. The division
of l0 in the expression for σ by a factor of ten is motivated
by the need to model short-range, contact-like interac-
tions. Any Gaussian width σ that is much smaller than
the harmonic oscillator length l0 along the x-direction is
suitable and yields essentially identical final results.

Common values for g in this paper are given below,
in both atomic units (energy in Rydberg and length in
Bohr-radius units, a0) and in h̄ω l20 (often used in de-
scribing experimental setups):

g [Ry a20] g [h̄ω l20]
0.0001 0.5486
0.001 5.486
0.01 54.86

B. Configuration-interaction method, correlation
functions, and noise distributions

Details of our CI methodology and the single-particle
external confining potential can be found in Refs. [18,
22, 24, 25]. A CI many-body wave function ΦNCI has
good total-spin S and spin-projection Sz quantum num-
bers and is specified as a superposition of Slater deter-
minants ΨN built out of spin-and-space orbitals ϕi(w)
[w → (r, σ)] belonging to a given single-particle basis
set; i.e.,

ΦNCI =
∑
J

CJΨN
J . (3)

In expansion (3), we use all the determinants that can
be built out from a basis set of K single-particle spin-
orbitals. The number K is allowed to increase stepwise.
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When the result converges with respect to the number
(K) of the spin-orbitals in the basis, one obtains an exact
diagonalization of the many-body Hamiltonian defined in
Eq. (1) [37, 38]; the converged CI is often termed “full

CI”.
Given an N -particle wavefunction Φ(w1,w2, . . . ,wN ),

the two-point real-space correlation function normalized
to unity is given as

P(w1,w
′
1,w2,w

′
2) =

∫ ∞
−∞

Φ†(w′1,w
′
2,w3, . . . ,wN )Φ(w1,w2,w3, . . . ,wN )dw3 . . . dwN , (4)

where wi represents the space ri and spin coordinate σi of particle i. The one-point real-space correlation function
normalized to unity is obtained as

ρ(w1,w
′
1) =

∫ ∞
−∞

Φ†(w′1,w2,w3, . . . ,wN )Φ(w1,w2,w3, . . . ,wN )dw2 . . . dwN =

∫ ∞
−∞
P(w1,w

′
1,w2,w2)dw2. (5)

We note that the physically relevant quantities for the purpose of this paper are the diagonal parts of the correlation
functions. The off-diagonal parts are used as auxiliary quantities to Fourier transform from real-space to momentum
space and vice versa. For the two-body and one-body momentum correlation functions, the physically relevant
diagonal parts are obtained via the following Fourier transforms:

G(q1,q2) =
1

4π2

∫
e−iq1·(w1−w′1)e−iq2·(w2−w′2)P(w1,w

′
1,w2,w

′
2)dw1dw

′
1dw2dw

′
2, (6)

and

τ(q) =
1

2π

∫ ∞
−∞

e−iq·(w1−w′1) ρ(w1,w
′
1)dw1dw

′
1, (7)

where qi represents the momentum ki and spin coordi-
nate σi of particle i. Once one has obtained the one-point
and two-point correlation functions, the calculations of
noise distributions in real PN and momentum GN space
are straightforward:

PN (w1,w2) = P(w1,w1,w2,w2)− ρ(w1,w1)ρ(w2,w2),
(8)

and

GN (q1,q2) = G(q1,q2)− τ(q1)τ(q2). (9)

C. Analytic modeling: Two-particle interference
pattern and correlation map derivation

The microscopic numerical CI evaluation of the cor-
relation functions defined in Sec. II B are complemented
by analytical expressions extracted from a simple model
of localized particles represented by displaced Gaussian
orbitals in the spatial Hilbert space. In this section and
the Appendices, we display such analytical modeling for
two, three, and four fermions. Here we illustrate in some
detail the derivation of such interference formulas for two
particles, allowing a rather immediate generalization to

more complex cases, like N = 3 and N = 4 particles; the
analytical expressions for the noise function forN = 2 are
given in Appendix A, and the two-point real-space and
momentum-space correlation functions for N = 3 and
N = 4 particles, as well as the corresponding Heisenberg
model Hamiltonians, are given in Appendices B, C, and
D. For simplicity the calculations are done here in one-
dimension, with the generalization to higher dimensions
being rather straightforward.

This analytic modeling grasps the main physics of par-
ticle localization in the case of repulsive two-body inter-
action. Moreover, it offers immediate insight why the
particle localization (induced by the separated wells, as
well as by Wigner-molecule formation in the case of a sin-
gle well) produces a characteristic signature of a damped
diffraction pattern in the two-point momentum correla-
tions. In this modeling, we assume that the spatial part
of the jth particle is approximated by a displaced Gaus-
sian function (each localized at a position dj),

ψj(x) =
1

(2π)1/4
√
s

exp

(
− (x− dj)2

4s2

)
, (10)

where s denotes the width of the Gaussian functions.
The single-particle orbital ψj(k) in the momentum

Hilbert space is given by the Fourier transform of ψj(x),

namely ψj(k) = (1/
√

2π)
∫∞
−∞ ψj(x) exp(ikx)dx. Per-
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forming this Fourier transform, one finds

ψj(k) =
21/4
√
s

π1/4
exp(−k2s2) exp(idjk). (11)

Eq. (11) explicitly illustrates how the displacement dj in
the real space (associated with particle localization) gen-
erates a plane-wave behavior [the factor exp(idjk)] in the
momentum space. As is calculated explicitly below, in
the case of several localized particles, these plane-wave
factors produce interference diffraction patterns in the
two-body momentum correlations that depend in gen-
eral on the characteristic mutual distances 2dij = di−dj
between the particles. One of the main conclusions from
the analytic modeling, however, is that these interference
patterns are primarily controlled by the minimum dis-
tance 2d = d1− d2 between adjacent particles. Moreover
the interference patterns do not extend in the full range
of momenta −∞ < k < ∞, because they are damped
by the damping factor A(k) = exp(−2k2s2) (see below)
which is the square of the exponential in Eq. (11).

As a consequence, the two-point momentum correla-
tion function (derived from the many-body wavefunc-
tion) focuses on properties associated with the small-
est interparticle distance in the multiparticle system –
that is, it provides information associated with nearest-
neighbor particles. This shortsightedness suggests that
information extracted from investigations of two-point
momentum distributions for finite (small) numbers of
particles (for which reliable many-body results can be
obtained computationally, i.e., using full CI and exact
Hamiltonian diagonalization as described in this work),
could enhance in a significant way the understanding of
properties of larger systems under similar conditions (for
example, similar interparticle interaction strength) for
which reliable many-body solutions are complex and of-
ten unknown (see below).

To compare the spin-resolved two-body CI correlations
with those derived from the analytic model, we need to
guarantee that the approximate many-body wave func-
tions of the analytic model conserved the total spin S
and its projection Sz, a property that is automatically
satisfied in the microscopic CI approach in the absence
of energy degeneracies. In the analytic modeling, we need
to construct appropriate total-spin eigenfunctions which
obey the branching diagram [20, 25, 39] of total-spin mul-
tiplicities and other properties described in detail in Ref.
[39]. For localized particles, where (as described above)
the spatial part of the wave function can be approximated

by the displaced Gaussian functions, the complex task of
determining the appropriate total-spin components sim-
plifies because these can be readily obtained as total-spin
eigenfunctions through the exact vector solutions of an
effective Heisenberg Hamiltonian [19, 20, 24, 25, 28–36].
We stress that we need to obtain here exact solutions of
the Heisenberg Hamiltonian, a task that is feasible for a
small number N of particles. It is pertinent also to re-
mark explicitly that, for the purpose of this work, specif-
ically for analyzing the properties of the two-body corre-
lation functions (particularly in the strongly-interacting
highly-correlated regime), use of the most familiar mean-
field solutions [40], most often employed for the descrip-
tion of larger particle systems, will not suffice.

As mentioned earlier, we address in this section the
case of two (N = 2) localized fermions, for which the
corresponding effective Heisenberg Hamiltonian is very
simple, i.e.,

H = J S1 · S2 −
J

4
, (12)

where S1 and S2 are spin operators and J is the coupling
constant. Using the spin-primitives | ↑↓〉 and | ↓↑〉 this
Hamiltonian can be expressed in matrix form as

H = J

(
0 1

2
1
2 0

)
, (13)

with eigenvalues e1, e2 and eigenvectors v1, v2

e1 = −J/2, (14)

e2 = J/2, (15)

v1 =
1√
2

(| ↑↓〉 − | ↓↑〉), (16)

v2 =
1√
2

(| ↑↓〉+ | ↓↑〉). (17)

Naturally, as mentioned earlier, the above Heisenberg-
model solutions pertain to the spin part of the wavefunc-
tions. To include the spatial component of the wavefunc-
tions we need to associate each spin primitive (i.e., | ↑↓〉
or | ↑↓〉) with a determinant of spin-orbitals ψjσ(x) (j de-
notes the j-th space orbital, σ represents the spin). The
corresponding determinants D’s to each primitive are

| ↑↓〉 −→ D↑↓(x1, x2) =
1√
2!

∣∣∣∣ ψ1↑(x1) ψ2↓(x1)
ψ1↑(x2) ψ2↓(x2)

∣∣∣∣ =
1√
2!

(ψ1↑(x1)ψ2↓(x2)− ψ1↑(x2)ψ2↓(x1)) (18)

| ↓↑〉 −→ D↓↑(x1, x2) =
1√
2!

∣∣∣∣ ψ1↓(x1) ψ2↑(x1)
ψ1↓(x2) ψ2↑(x2)

∣∣∣∣ =
1√
2!

(ψ1↓(x1)ψ2↑(x2)− ψ1↓(x2)ψ2↑(x1)). (19)
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We can use the two determinants in Eqs. (18) and (19)
together with the ground-state eigenvector v1 [Eq. (16)]
to form the Heitler-London [41–43] ground-state wave
function ΦHL(x1,x2) and the associated two-body cor-
relation function [see Eq. (4)] PHL(x1,x

′
1,x2,x

′
2), where

the boldfaced x→ (x, σ),

ΦHL(x1,x2) =
1

N2

1√
2

(D↑↓(x1, x2)−D↓↑(x1, x2)) (20)

PHL(x1,x
′
1,x2,x

′
2) = Φ†HL(x′1,x

′
2)ΦHL(x1,x2), (21)

where the factor 1/N2 normalizes the HL wave function.

Specifically, N2 =
√

1 + S2
12, where S12 is the overlap

of the two (in general non-orthogonal) localized space
orbitals; see Eqs. (10) and (11) in Ref. [43].

We stress here that for the case of more than two par-
ticles the additional particle coordinates need to be inte-

grated out to arrive at the two-point correlation function,
e.g., for three particles:

P(x1,x
′
1,x2,x

′
2) = (22)∫ ∞

−∞
Φ†gs(x

′
1,x
′
2,x3)Φgs(x1,x2,x3)dx3; (23)

see Refs. [44, 45] for details.
To proceed further with the Fourier transform, we take

the spin orbitals to have a Gaussian-function spatial part
[see Eq. (10)], that is

ψjσ(x) = ψj(x)σ, (24)

where σ denotes the up (↑ or α) or down (↓ or β) spin. As
mentioned earlier, the physically relevant quantities are
the diagonal parts of the two-point correlation function
in both real and momentum space [44, 45], i.e.,

PN=2
HL (x1,x2) =PHL(x1,x1,x2,x2) (25)

GN=2
HL (qx1 ,q

x
2) =

1

4π2

∫ ∞
−∞

e−iq
x
1 ·(x1−x′1)

∫ ∞
−∞

e−iq
x
2 ·(x2−x′2) PHL(x1,x

′
1,x2,x

′
2)dx1dx

′
1dx2dx

′
2, (26)

where here the boldfaced qx → (k, σ) with k being the
momentum along the x direction; the analytic modeling
is performed as a strictly 1D case, unlike the quasi-1D
case of the CI calculations earlier.

In this step it is pertinent to note that integrals over
spin-orbitals with different spins vanish. In order to cal-
culate the spin-resolved correlation map, we pick the
terms involving the appropriate spin orbitals. For in-
stance to calculate the correlation map with down spin
for one particle and up spin for the second particle, we
pick the terms involving ↑2↓2 and ↓2↑2 in Eqs. (25) and
(26). For the spin-unresolved correlation map, we take
all spin terms into account. For two particles with the
Gaussian functions centered at d1 = −d and d2 = d,
we obtain in this way for the spin resolved correlation
map the following expression (we added the superscript
N = 2 to denote the two-particle case illustrated here;
see Appendices B and C for N = 3 and N = 4):

GN=2
HL (k1 ↓, k2 ↑) =

4s2e−2s
2(k21+k

2
2) cos2[d(k1 − k2)]

πN 2
2

(27)

which agrees with results found [27] in the chemical lit-
erature for the case of the natural H2 hydrogen molecule.
An illustration of the diffractive pattern along the cross
diagonal embodied in Eq. (27) is portrayed in Fig.
1. Here we wish to emphasize that the diffractive in-
terference pattern created by the cos2[d(k1 − k2)] ∝

(1 + cos[(d1 − d2)(k1 − k2)]) term should be an experi-
mentally detectable signature and it is also the domi-
nant pattern in our CI calculations (see Sec. III below).

−2.0  2.0
−2.0

 2.0
2 particles

FIG. 1. Momentum correlation map for two particles sepa-
rated by a distance of 2d = 4.8 µm according to the analytic
model in Sec. II C. This map was obtained by plotting Eq.
(27) with k1 on the horizontal axis and k2 on the vertical axis.
s = 0.71 µm.
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FIG. 2. Space (a,c,e,g,i,k) and momentum (b,d,f,h,j,l) two-point correlation maps for CI states of two 6Li fermions in a single
quasi-1D harmonic trap. The interatomic repulsion strength, g, in units of h̄ωl20 is indicated in the figure. (m,n), (o,p), (q,r)
and (s,t): spatial and momentum noise distributions corresponding, respectively, to the (c,d), (e,f), (g,h), and (i,j) correlation
maps. Results are shown for both the ground-sate singlet S = 0, Sz = 0 [(a-j) and (m-t)] and the first-excited triplet S = 1,
Sz = 0 (k,l) state. Features amplitudes are given by the color bars.

We also emphasize the presence in Eq. (27) of the cut-

off prefactor e−2s
2(k21+k

2
2), which dampens the constant-

amplitude oscillatory behavior of the sinusoidal diffrac-
tion term. The expression for the spin-unresolved corre-
lation map for two particles has the same functional form
as Eq. (27). This is a special property of the two oppo-
site spin particles and for systems with more particles
the spin-resolved and spin-unresolved expressions are in
general different.

Similar expressions can be derived for the case of three
and four fermions in a multi-well potential (see Ap-
pendices B and C), with the localized fermions mod-

eled by displaced Gaussian functions. A similar diffrac-
tion pattern (with an intra-well inter-particle distance
2d = d1 − d2) develops for two repelling atoms (fermions
or bosons) confined in a single well, in the TG regime
(see below). When analyzing the CI results for G(q1,q2)
below, we often make the comparison with those from
the displaced-Gaussians molecular modeling.
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−2.5
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2 particles 4 particles

0.06
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b

FIG. 3. Comparison of CI-calculated two-body momentum
correlation map for (a) two and (b) four particles in a quasi-
1D single well with g = 0.5486 h̄ωl20. For both system sizes, we
find similar characteristic sign-alternation of the momentum
correlations in adjacent quadrants of the (k1, k2) plane. The
appearance of the negative correlations (anti-correlations) in-
dicates deviations from the Bogoliubov theory.

III. CONFIGURATION-INTERACTION
RESULTS

A. Two fermions in a single quasi-1D well

As mentioned earlier, we consider a short-range inter-
particle repulsion with a Gaussian form defined in Eq.
(2). In Fig. 2 we investigate the evolution with increasing
repulsion of the two-point momentum correlations [Figs.
2(b,d,f,h,j,l)] compared to the corresponding two-point
real-space ones [Figs. 2(a,c,e,g,i,k)] in the case of two
fermions in a single quasi-1D well. In real space we cal-
culate the CI function P(w1,w2) = P(w1,w1,w2,w2)
[see Eq. (4)]; in momentum space we calculate G(q1,q2)
[see Eq. (6)]. Because our system is quasi-1D (that is,
needle-like shaped along the x-direction due to the strong
confinement in the y-direction), it is natural to overlook
the variation along the y-direction of the trap and plot
the cuts of the previous quantities at y1 = y2 = 0 and
ky1 = ky2 = 0. This yields the plotted correlation maps for
the position (x1, x2) and momentum (k1, k2) variables
along the long x-direction of the trap. The main features
in these plots develop along the main diagonal (i.e., the
line x1 = x2 or k1 = k2, bottom-left to top-right) or the
cross-diagonal (i.e., the line x1 = −x2 or k1 = −k2).

For the noninteracting (g = 0) singlet state, the two-
body spatial-correlation density is azimuthally uniform
having a maximum at x1 = x2 = 0 [see Fig. 2(a)].
This comes from the fermions with up and down spins
occupying the same spatial 1s orbital of the harmonic-
oscillator confinement along the x direction. However,
as the strength of the interaction parameter g increases
[Figs. 2(c,e,g,i)], two peaks along the cross-diagonal de-
velop and gradually move away from each other. This is
reminiscent of the formation of a molecular dimer (like
the natural H2), often referred to as an ultracold Wigner
molecule [24]. For large g = 5.486 h̄ωl20, a deep valley
of almost zero values (black color) develops along the di-
agonal [Fig. 2(g)]. For very large g = 54.86 h̄ωl20, the
separation 2d between the two peaks saturates and the

dimer reaches the Tonks-Girardeau regime [Fig. 2(i)].
This molecule formation is reflected in the evolution of

the two-point momentum correlations which follows the
damped diffraction pattern [Eq. (27)] associated with a
Heitler-London wave function. The diffraction pattern
develops along the cross-diagonal and the number of vis-
ible diffraction oscillations depends on the distance 2d
and the spreading of the product of Gaussian functions
A(k1)A(k2), with A(k) ∝ exp(−2k2s2)] being the square
of the Fourier transform of the space orbital in Eq. (24)
with dj = 0. Characteristically the maximal values of the
momentum correlation maps form a ridge along the main
diagonal. For smaller values of g ≤ 0.5486 h̄ωl20 [Figs.
2(b,d)], the separation 2d is not large enough to generate
secondary maxima along the cross diagonal. However,
for larger values of g ≥ 2.194 h̄ωl20 [Figs. 2(f,h,j)], the
separation 2d increases, and a one-oscillation (below, as
well as above, the main diagonal) diffraction pattern de-
velops which saturates at the Tonks-Girardeau limiting
regime [the largest value of g considered, Fig. 2(j)]. For a
single well, saturation of 2d with increasing g limits the
number of oscillations in the diffraction pattern due to
the damping factors, and a larger number of diffraction
oscillations cannot be observed as g →∞.

For the triplet state, the short-range repulsion has no
influence, and the correlation maps are independent of
g. The g-independent real-space correlation map [Fig.
2(k)] agrees with that of the singlet UCWM state near
the Tonks-Girardeau limit [large g, Fig. 2(i)], suggesting
that the Pauli exclusion acts in a similar fashion as a
contact repulsion with infinite strength. This is in agree-
ment with the well-known mapping between the two-
fermion singlet and triplet wave functions referred to as
“fermionization”, observed also experimentally [46]. The
corresponding momentum correlation map for the triplet
[Fig. 2(l)], however, is drastically different compared to
that of the singlet state [Fig. 2(j)]. In particular, the
momentum correlation map exhibits a deep trough (col-
ored black) along the main diagonal instead of a ridge
(colored green). This trough denotes a vanishing of the
probability for finding two fermions with parallel spins
having the same momentum, a property imposed by the
Pauli principle in momentum space.

It is rewarding to note that the analytic modeling
yields results in full agreement with the CI result in Fig.
2(l). Indeed the two-body momentum correlations for the
Heitler-London triplet, built out of two displaced Gaus-
sian space orbitals (positioned at d1 = −d and d2 = d),
are given by

GN=2
HL,t (k1 ↑, k2 ↑) ∝

4s2e−2s
2(k21+k

2
2) sin2(d(k1 − k2))

π
.

(28)

It is apparent that the term sin2(d(k1 − k2)) in Eq. (28)
reproduces the deep trough visible in the CI correlation
map [see Fig. 2(l)] along the main diagonal (k1 = k2).

From the two-point correlation maps, one may extract
the often used [1, 11, 13] corresponding noise distribu-
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FIG. 4. Spin-resolved space (a-d) and momentum (e-h) two-point correlation maps for the CI singlet ground state (with S = 0,
Sz = 0) of two 6Li fermions, in quasi-1D double-well traps, with g = 54.86 h̄ωl20. Four different interwell separations dw are
considered. Insets in (e-h) display the variation as a function of k1 along the cross-diagonal (the second diffraction peaks are
marked by stars in (g,h)).

tions [Fig. 2(m-t)]; the two-point noise distributions are
obtained by subtracting the product of the correspond-
ing one-point momentum correlations; see Eqs. (8) and
(9). These noise distributions show both positive and
negative values, with the negative ones corresponding to
the vanishing probability troughs in the correlation maps
proper. In the case of real-space plots [Figs. 2(m,o,q,s)],
the noise distributions again reveal the progressively in-
creasing separation of two positive peaks (colored green)
along the cross diagonal, which corresponds to the for-
mation of a UCWM. For the momentum plots [Figs.
2(n,p,r,t)], it is remarkable that for the weak repulsion
value g = 0.5486 h̄ωl20 [Fig. 2(n)], our noise distribu-
tions closely resembles the QBEC square-shaped pattern
(+,−,+,−) measured for a system comprised of a large
number of 1D bosons [11]. For even stronger g’s [Figs.
2(p,r,t)], close to the TG regime, our noise maps dis-
play a more complex shape that reflects the oscillations
in the corresponding diffraction pattern of the two-point
momentum correlations, that is two negative areas (red
color) enclosed by three positive areas (green color).

Before presenting our results for multi-well systems, we
illustrate in Fig. 3 the shortsightedness of the two-body
momentum correlations by comparing the two-body mo-
mentum noise maps for two [Fig. 3(a)] and four [Fig. 3(b)]
particles confined in a single well, for a repulsion strength
g = 0.5486h̄ωl20 [see momentum noise map in Fig. 2(n)];
for additional information about the shortsightedness of
the momentum correlation function, see text following
Eq. (B4) in Appendix B. Comparison of the noise maps
in Fig. 3, reveals that these show similar characteristic
sign-alternations portraying opposite-momentum corre-
lations and anticorrelations, as predicted [7] and, more
recently, observed experimentally [11]. As we noted in
the Introduction, the appearance of such characteristics
in the two-body momentum noise correlations is a sig-
nature of deviations from the time-honored Bogoliubov

theory [7, 11], whose treatment necessitates many-body
theories beyond the mean-field approximation. Underly-
ing the persistent appearance of these characteristics in
few particle quasi-1D systems of variable size (see Fig. 3)
is the aforementioned shortsightedness of the two-body
momentum correlations.

These findings support our suggestion that investiga-
tions of few-body systems could be used to shed light on
experimental observations pertaining to certain complex
many-body properties (such as the effect of interparticle
interactions of variable strength on the nature of quan-
tum liquids, including deviations from the Bogoliubov
theory in quasi-1D systems in the QBEC regime and for
stronger repulsive interactions, that is the TG regime)
even when such experiments are carried on larger sys-
tems (see, e.g., Ref. [11]).

B. Two fermions in a quasi-1D double well

To gain further insight into the trends generated
through varying the separation between the two high-
probability peaks in the real-space two-point correlation
maps, we display in Fig. 4 spatial and momentum correla-
tion maps for the CI singlet ground state of two 6Li atoms
confined in quasi-1D double-well traps at different inter-
well separations dw = 2d = 1, 5, 7, and 8 µm. An impor-
tant observation is that the pair of maps for the smallest
separation dw = 1 µm [see Figs. 4(a,e)] closely resembles
those of the two fermions in a single well near the Tonks-
Girardeau regime [see Figs. 2(i,j)]. This further supports
the interpretation of the Tonks-Girardeau regime as a
special limit of the more general Wigner-molecule ap-
proach, which extends also to 2D and 3D systems [21].
As the interwell separation increases, from 5 [Figs. 4(b,f)]
to 7 µm [Figs. 4(c,g)] and 8 µm [Figs. 4(d,h)], an addi-
tional diffraction oscillation gradually emerges, becoming
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FIG. 5. Spin-resolved space (a-d and i-l) and momentum (e-h and m-p) two-point correlation maps for the CI ground state
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give spin-unresolved maps.

clearly visible for the separation of 8 µm.

C. Three fermions in a quasi-1D single and triple
wells

Fig. 5 displays the evolution of the spatial and momen-
tum two-point correlations for the S = 1/2, Sz = 1/2
ground-state of N = 3 6Li atoms in a single-well trap for
the non-interacting (g = 0) [Figs. 5(a-h)] and the strongly
repelling (g = 54.86 h̄ωl20) case [Figs. 5(i-p)]. Further-

more, both cases of spin-resolved [Figs. 5(a,b,c,e,f,g) and
Figs. 5(i,j,k,m,n,o)] and with no-spin restriction [Figs.
5(d,h) and Figs. 5(l,p)] are presented. In interpreting
these maps, we can use the spin-resolved conditional
probability distribution function defined in Refs. [19, 20]
and in Eqs. (6) and (7) of Ref. [24]. First, we invoke
the spin-resolved two-point anisotropic correlation func-
tion. The spin-resolved two-point anisotropic correlation



10

−10  10−10  10
−10

 10

 0

 0.06

 0

 0.06

 0

 0.9

 0

 1.0

−2

 2

−2  2 −2  2
a b c d

FIG. 6. Spin-resolved space (a,b) and momentum (c,d) two-point correlation maps for the CI ground state (with S = 1/2,
Sz = 1/2) of three 6Li fermions in quasi-1D triple-well traps (g = 54.86 h̄ωl20). Two different interwell separations dw are
considered.

function is defined as

Pσσf
(r, rf ) =

〈ΦNCI|
∑
i 6=j

δ(r− ri)δ(rf − rj)δσσiδσfσj |ΦNCI〉. (29)

Using a normalization constant N (σ, σf , rf ) =∫
Pσσf

(r, rf )dr, we further define a related spin-
resolved conditional probability distribution (CPD)
as

Pσσf
(r, rf ) = Pσσf

(r, rf )/N (σ, σf , rf ). (30)

The label “f ↓” in “f ↓ ` ↑”, corresponds to a selected
observation (“fixed”, or “f”) point, with the arrow denot-
ing the chosen spin direction at that observation point.
For that selected observation (“fixed”) point on the x1 (or
k1) axis, corresponding to particle “1”, we search (“look
for”, or “`”) at all points along the x2 (or k2) axis, cor-
responding to particle ”2”, with a spin direction ↑, and
record in the map the probabilities of finding particle
“2” with the specified spin direction at these points. Re-
peating this process for all values along the x1 axis (that
is, all observation points) completes the interpretation of
the label “f↓`↑ ” in the correlation maps. To reiterate –
the physical meaning of the notation “f ↓ ` ↑ ”, “f ↑ ` ↓ ”,
“f↑`↑ ” is based on the fact that a conditional probability
can be extracted from the correlation maps by fixing the
indices of one particle, i.e., spin and position. Indeed the
cuts in the correlation maps defined by x1 = constant
(k1 = constant) portray the conditional probability of
finding a second particle with predetermined spin at x2
(k2) assuming that the first particle with given spin is
fixed at x1 = constant (k1 = constant).

To facilitate understanding of the spin-resolved maps
in Fig. 5, we mention that for g = 0 the many-body con-
figuration is 1s21p, i.e., there are two spin-up fermions
occupying the 1s and 1p orbitals and one spin-down
fermion occupying again the 1s orbital. For the strong
g = 54.86 h̄ωl20, the appropriate spin function for a lin-
ear Wigner molecule of three localized fermions is [19]

(2| ↑↓↑〉 − | ↑↑↓〉 − | ↓↑↑〉)/
√

6. For the noninteracting
case, our CI calculations give double-peaked space and
momentum correlation maps (f ↓ ` ↑ and f ↑ ` ↓ ) that re-
flect the presence of the 1p orbital [Figs. 5(a,e,b,f)]. Fix-
ing a spin-up and looking for the other spin-up (f ↑ ` ↑ )

exhibits a valley of vanishing probabilities along the main
diagonal; this is a reflection of the Pauli fermion statis-
tics in both the space and momentum correlations [Figs.
5(c,g)]. The spin-unresolved correlations [Figs. 5(d,h)]
can be understood as the sum of the three spin-resolved
ones.

The UCWM case when g = 54.86 h̄ωl20 exhibits struc-
tures in real-space maps [Figs. 5(i-l)] associated with the
three localized fermions, i.e., a total of six peaks. For
the spin-resolved maps [Figs. 5(i-k)], a pair of peaks
is stronger, as follows from the UCWM spin function
listed above (see the coefficient 2). Unlike the noninter-
acting case, the valleys of vanishing probabilities along
the main diagonal are present for all three spin-resolved
maps [Figs. 5(i-k)]; this is due to the fact that the three
fermions do not overlap because they are well-localized by
the strong repulsion. The momentum maps [Figs. 5(m-
p)], however, are not as revealing as the space maps con-
cerning the particle localization. Indeed, qualitatively,
the main pattern in these maps is similar to that found
for two fermions [see Fig. 2]. Namely, there is a damped
diffraction pattern along the cross diagonal exhibiting
an oscillation (below, as well as above, the main diag-
onal) with one minimum and one secondary maximum;
see pairs of narrow black troughs in Figs. 5(m,n,p). This
pair of troughs is less prominent for the f ↑ ` ↑ case [Fig.
5(o)] where a strong valley of vanishing probability de-
velops along the main diagonal due to the Pauli exclusion
principle. Naturally, there are still significant quantita-
tive differences between the maps in Figs. 5(m-p) and the
maps in Fig. 2, which could be explored experimentally.

To explore further the diffraction pattern for three lo-
calized fermions, we display in Fig. 6 spin-resolved (f↓`↑ )
real-space and momentum maps for three fermions in
a triple-well trap for two different interwell separations
dw = 2d = 4 µm and dw = 2d = 8 µm in the UCWM case
(g = 54.86 h̄ωl20). As noted earlier for two fermions, in-
creasing the separation enhances the prominent features
described in Fig. 5 for the three fermions in a single well.
In particular, the patterns for the real-space correlations
are enhanced versions of the pattern in Fig. 5(i). The mo-
mentum correlation map for 2d = 4 µm [Fig. 6(c)] shows
a single diffraction oscillation along the cross diagonal.
However, the momentum correlation map for 2d = 8 µm
[Fig. 6(d)] shows a well-developed second diffraction os-
cillation, in agreement with the analytic formula of the
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simple model listed in the Appendix B.

IV. COMPARISON OF ANALYTICAL
PREDICTIONS WITH CI RESULTS

The success of the analytic modeling is evidenced by
comparing analytical predictions with the ab-initio CI
numerical results. In Fig. 7, Fig. 8, and Fig. 9, we com-
pare the CI-calculated correlation maps with the correla-
tion maps obtained from the analytical expressions (see
Sec. II C and Appendices A, B, and C) for two, three,
and four particles in double, triple, and quadruple well
confinements, respectively. The agreement between both
methods is excellent. We note here that the model used
here (localized Gaussian functions with small overlap,
and the Heisenberg Hamiltonian) becomes more compli-
cated for smaller interwell distances. Interestingly, for
the cases that we have investigated here the analytical
expressions that we have derived from our model pre-
dict adequately, at least qualitatively, the features found
through the microscopic CI calculations.

V. CONCLUSIONS

In this paper we have explored systematically the char-
acteristics of spin-resolved spatial and momentum-space
correlations and noise distributions for two, three, and
four ultracold fermionic atoms trapped in single and mul-
tiple wells; see also Appendices A, B, and C. These inves-
tigations aim at gaining insights into the quantum states
of different phases of ultracold matter and the nature
of trapped multiple-ultracold-atoms molecule-like assem-
blies, and providing fingerprinting guidance for experi-
ments, particularly ones with a few optically trapped,
deterministically prepared and spin resolved, ultracold
fermionic atoms.

Using full configuration-interaction exact-Hamiltonian
diagonalization, we have evaluated and investigated two-
point spatial and momentum-space correlations and noise
distributions for the entire range of interatomic contact
repulsions and interwell distances, exploring the transi-
tion from a noninteracting assembly to the quasi Bose-
Einstein condensate and then to the Tonks-Girardeau
regime. A main result emerging from our numerical sim-
ulations using the exact many-body CI wavefuncions is a
damped oscillatory diffraction behavior of the two-point
momentum correlations and noise distributions, agreeing
with our analytical model results for multiple ultracold
fermionic atoms trapped in single and multiple wells.

Furthermore, the two-body momentum correlation and

noise distributions are found to exhibit shortsighted-
ness, with the main contribution coming from nearest-
neighboring particles. This suggests that investigations
of two-body (and possibly higher-order) momentum cor-
relations in few-particle confined systems could be em-
ployed in the interpretation of studies carried on larger
particle systems. We illustrated this approach for quasi-
1D few-fermion systems with intermediate repulsive in-
teractions which yielded two-body momentum noise cor-
relations exhibiting opposite-momentum correlations and
anticorrelations at small momenta, which closely resem-
ble those predicted [7] and measured [11] for a system
comprised of a large number of 1D bosons in the QBEC
regime. These studies address deviations from the cele-
brated Bogoliubov theory of quantum liquids. Moreover,
a more complex characteristic pattern is predicted by our
calculations in the Tonks-Girardeau regime.
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Appendix A: Analytic modeling: Noise maps for two
particles

To illustrate the formation of the patterns seen in the
noise maps, we outline in this appendix the calculation
of the noise distribution for two particles separated by
a distance 2d. The calculation of the two-body correla-
tion function proceeds as described in Sec. II C, with the
one-body correlation function obtained by applying Eq.
(5), or by evaluating directly from the many-body wave-
function as described in Ref. [44]. We have derived the
analytic expressions using the algebraic computer pro-
gram MATHEMATICA. In general, for the noise maps
for N = 2 and for the two-body correlation functions for
N > 2, these expressions are too long and complicated to
be reproduced in print. For simplicity, in this Appendix
and in Appendices B and C, we present the analytic re-
sults for the case of strongly localized particles when the
overlaps Sij between adjacent space orbitals can be ne-
glected; in this case, N2 ≈ 1.

Having obtained the one- and two-body correlation
functions, the noise maps can be obtained by applying
Eqs. (8) and (9). Setting d1 = −d and d2 = d, the
needed product expressions for the one-body correlation
function in real and momentum space are
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ρ(x1, x1)ρ(x2, x2) = C(s)
e−

(d+x1)2

2s2

(
e

2dx1
s2 + 1

)
2
√

2πs

e−
(d+x2)2

2s2

(
e

2dx2
s2 + 1

)
2
√

2πs
(A1)

and

τ(k1, k1)τ(k2, k2) = C(s) 2

π
s2e−2(k

2
1+k

2
2)s

2

(A2)

and the expressions for the two-body correlation functions are:

PN=2(x1, x2) = C(s)
e−

2d2+2d(x1+x2)+x2
1+x2

2
2s2

(
e

dx1
s2 + e

dx2
s2

)2
4πs2

(A3)

GN=2(k1, k2) = C(s)
4s2e−2s

2(k21+k
2
2) cos2

(
d(k1 − k2)

)
π

(A4)
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which after subtraction of the one-body terms yield the desired expressions for the noise maps [see Eqs. (8) and (9)]

PN=2
N (x1, x2) = PN=2(x1, x2)− ρ(x1, x1)ρ(x2, x2) (A5)

GN=2
N (k1, k2) = GN=2(x1, x2)− τ(x1, x1)τ(x2, x2) (A6)

C(s) is an overall normalization constant (different at
each one of the above formulas) whose precise value can
be easily determined for a given numerical s value. The
subtraction process is illustrated in Fig. 10 where we plot
the real space and momentum correlation functions and
the corresponding noise map obtained after subtraction.
The resulting noise maps can be compared to Fig. 2(q,r),
corresponding to the Wigner molecule case. The remain-
ing differences in shape between the analytical and the
CI noise maps originate from the spatial structure of the
Wigner molecule, which is more complicated than the two
separated Gaussian functions used in the analytical mod-
eling. Nonetheless the dominant features are well repro-
duced. Note that all features in both the one-body and
two-body correlation-function maps are positive, whereas
the noise map contains patterns with opposite signs.

Appendix B: Analytic modeling: Spin-resolved
formulas (f↓`↑ ) for three and four particles

Following the derivation illustrated in Sec. II C, we
may generalize it to the cases of N = 3 and N = 4 parti-
cles; see the corresponding effective Heisenberg Hamilto-
nians given in Appendix D. The resulting spin-resolved
expressions for the two-body correlations of three and
four particles can be rather long, but they can be
greatly simplified assuming that the Gaussian functions
are equally spaced and far enough separated so that they
have negligible overlap.

Here we present results for the “fixed down look up”
(f↓`↑ ) spin configuration.
For three Gaussians centered at d1 = −2d, d2 = 0 and
d3 = 2d we obtain:

PN=3
↓↑ (x1, x2) =C(s)e

− 8d2+6d(x1+x2)+x2
1+x2

2
2s2

36πs2

(
−2e

3d(x1+x2)

s2 + 4e
2d(d+x1+x2)

s2 + 4e
d(2d+3x1+x2)

s2 +

e
d(5x1+x2)

s2 + e
d(2d+x1+3x2)

s2 + e
d(2d+5x1+3x2)

s2 + e
d(x1+5x2)

s2 + 4e
d(2d+3x1+5x2)

s2 + 4e
2d(d+2(x1+x2))

s2

) (B1)

and

GN=3
↓↑ (k1, k2) = −C(s)2s2e−2s

2(k21+k
2
2)

9π

(
− 4 cos[2d(k1 − k2)] + cos[4d(k1 − k2)]− 6

)
. (B2)

For four Gaussians centered at d1 = −3d, d2 = −d, d3 = d, and d4 = 3d we obtain

PN=4
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and
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FIG. 10. Illustration of the noise-map calculation [see Eqs. (A5) and (A6)], for two particles in a single well, separated by a
distance 2d = 3.4 µm. The noise maps are obtained by subtracting the product of one-body correlation functions for the two
particles from the two-body correlation function. The first row shows the real space correlation functions and the resulting
noise map after subtraction. The second row shows the same calculation in momentum space. The contour levels and the color
scheme are the same throughout each row. In the analytic formulas, s = 0.71 µm.

GN=4
↓↑ (k1, k2) =C(s)s

2e−2s
2(k21+k

2
2)

9π

(
cos(6d(k1 − k2))− 2

(√
3− 1

)
cos(4d(k1 − k2))+(

2
√

3 + 3
)

cos(2d(k1 − k2)) + 12
)
.

(B4)

Further support for the shortsightedness of the two-body momentum correlation is found through considerations of
the analytic expression in Eq. (B4). From that expression, we find that the nearest-neighbor (2d-term) contribution is
a dominant 72.4% of the total, compared to 16.4% and 11.2% contributions from the next-nearest-neighbor (4d-term)
and next-next-nearest-neighbor (6d-term), respectively. The resulting interference patterns are illustrated in Fig. 11
(neglecting the exponential damping) and in Fig. 12.

Appendix C: Analytic modeling: Spin unresolved formulas for three and four particles

For the following spin-unresolved expressions we restricted ourselves to the same simplifications as in the spin-
resolved case in the previous section. Namely the Gaussians are equally spaced and far enough apart so that their
overlap can be neglected.
For three Gaussians centered at d1 = −2d, d2 = 0, and d3 = 2d, we obtain:
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s2 + e
d(2d+3x1+x2)

s2 +
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d(2d+x1+3x2)

s2 + e
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) (C1)

and
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FIG. 11. Plot of the interference pattern for the fix down look up (f ↓ ` ↑ ) spin configuration for three (left) and four (right)
particles. The interparticle distance (evenly spaced particles) is 2d = 4.8 µm. The plots were obtained by plotting Eq. (B2) and

Eq. (B4) divided by the exponential term e−2s2(k2
1+k2

2) and setting k2 = −k1; that is these are cuts along the main cross diagonal
(top left to bottom right in Fig. 12). Neither plot shows higher-order oscillations since the coefficients of the additional cosine
terms are getting increasingly smaller. They therefore modify the main oscillation pattern created by the cos(2d(k1− k2)), but
do not show additional higher frequency oscillations. In the analytic formulas, s = 0.71 µm.
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FIG. 12. Spin-resolved (f ↓ ` ↑ ) two-body momentum correlation maps for three (left) and four (right) particles at a distance
2d = 4.8 µm. The plots were obtained by plotting Eq. (B2) (left) and Eq. (B4) (right) with k1 on the x-axis and k2 on the
y-axis. In this figure further oscillatory pattern beyond the ones shown are damped by the exponential factors. In the analytic
formulas, s = 0.71 µm.

GN=3(k1, k2) = C(s)2s2e−2s
2(k21+k

2
2)

3π
(cos(2d(k1 − k2))− cos(4d(k1 − k2)) + 3). (C2)

For four Gaussians centered at d1 = −3d, d2 = −d, d3 = d, and d4 = 3d, we obtain:
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FIG. 13. Plot of the interference pattern in the spin unresolved case for three (left) and four (right) particles. The interparticle
distance (evenly spaced particles) is 2d = 4.8 µm. The plots were obtained by plotting Eq. (C2) and Eq. (C4) divided by the

exponential term e−2s2(k2
1+k2

2). It is remarkable that the plots for three and four particles are very similar and their difference
is only the overall scaling (

√
3/2) and a constant shift ((6− 3

√
3)/(6π)). In the analytic formulas, s = 0.71 µm.
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and
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2
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3 cos(2d(k1 − k2))−

√
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The resulting interference patterns are plotted in Fig. 13 (neglecting the exponential damping) and Fig. 14.

Appendix D: Effective Heisenberg Hamiltonians and corresponding ground state solutions for three and four
particles

Here we give for the readers’ convenience the effective Heisenberg Hamiltonians for three and four particles and
their corresponding ground state eigenvectors. We note again that, for a small number of repelling trapped particles
(electrons in semiconductor quantum dots and ultracold fermions or bosons), the mapping of the microscopic many-
body Hamiltonian onto spin-chain-type, effective Heisenberg Hamiltonians has been demonstrated recently and it
constitutes an ongoing active area of research; for electrons in semiconductor quantum dots see Refs. [19, 20], for
ultracold fermions or bosons in quasi-1D traps see Refs. [24, 25, 28–36].

The three particle Heisenberg Hamiltonian in matrix form with spin primitives | ↑↑↓〉, | ↑↓↑〉, | ↓↑↑〉 is given as

H =

0 J 0
J −J J
0 J 0

 , (D1)

the corresponding ground state eigenfunction is
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FIG. 14. Spin unresolved correlation maps for three (left) and four (right) particles at a distance 2d = 4.8 µm (evenly spaced
particles). The plots were obtained by plotting Eq. (C2) (left) and Eq. (C4) (right) with k1 on the x-axis and k2 on the y-axis.
In the analytic formulas, s = 0.71 µm.

v1 =
1√
6
| ↑↑↓〉 −

√
2

3
| ↑↓↑〉+

1√
6
| ↓↑↑〉. (D2)

For four particles the Hamiltonian in matrix form with spin primitives | ↑↑↓↓〉, | ↑↓↑↓〉, | ↓↑↑↓〉, | ↑↓↓↑〉, | ↓↑↓↑〉, | ↓↓↑↑〉
is given as

H =
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2

 , (D3)

where we have set J34 = J12 due to symmetry (we have equally spaced wells). For well-separated wells, one can
further approximate J12 ≈ J23. Then the corresponding ground-state eigenvector is
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2 + 2(1 +
√

3)2 + 2(2 +
√

3)2

(
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√
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√

3)| ↑↓↓↑〉 − (2 +
√
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)
.

(D4)
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Th. Busch, J. Boronat, and A. Polls, Quantum correla-
tions and spatial localization in one-dimensional ultra-
cold bosonic mixtures, New J. Phys. 16 103004 (2014).

[24] B.B. Brandt, C. Yannouleas, and U. Landman, Double-
well ultracold-fermions computational microscopy:
Wave-function anatomy of attractive-pairing and
Wigner-molecule entanglement and natural orbitals,
Nano Lett. 15, 7105 (2015).

[25] C. Yannouleas, B.B. Brandt, and U. Landman, Ultra-
cold few fermionic atoms in needle-shaped double wells:
Spin chains and resonating spin clusters from microscopic
hamiltonians emulated via antiferromagnetic Heisemberg
and t-J models, New J. Phys. 18, 073018 (2016).

[26] P. Mujal, E. Sarlé, A. Polls, and B. Juliá-Dı́az, Quan-
tum correlations and degeneracy of identical bosons in a
two-dimensional harmonic trap, Phys. Rev. A 96, 043614
(2017).

[27] C.A. Coulson, Momentum distribution in molecular sys-
tems, Part I. The single-bond, Proc. Cambridge Phil.
Soc. 37, 55 (1941).

[28] A.G. Volosniev, D.V. Fedorov, A.S. Jensen, M. Valiente,
and N.T. Zinner, Strongly interacting confined quantum
systems in one dimension, Nat. Commun. 5, 5300 (2014).

[29] F. Deuretzbacher, D. Becker, J. Bjerlin, S. M. Reimann,
and L. Santos, Quantum magnetism without lattices in
strongly interacting one-dimensional spinor gases, Phys.
Rev. A 90, 013611 (2014).

[30] A.G. Volosniev, D. Petrosyan, M. Valiente, D.V. Fedorov,
A.S. Jensen, and N.T. Zinner, Engineering the dynam-
ics of effective spin-chain models for strongly interacting
atomic gases, Phys. Rev. A 91, 023620 (2015).

[31] J. Levinsen, P. Massignan, G.M. Bruun, M.M. Parish,
Strong-coupling ansatz for the one-dimensional Fermi gas
in a harmonic potential, Sci. Adv. 1, e1500197 (2015).

[32] P. Massignan, J. Levinsen, and M.M. Parish, Magnetism
in Strongly Interacting One-Dimensional Quantum Mix-
tures, Phys. Rev. Lett. 115, 247202 (2015).

[33] S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S.M.
Reimann, L. Santos, T. Lompe, and S. Jochim, Antiferro-
magnetic Heisenberg Spin Chain of a Few Cold Atoms in
a One-Dimensional Trap, Phys. Rev. Lett. 115, 215301
(2015).

[34] In particular, see the Supplemental Material in Ref. [33].
[35] L. Yang, L. Guan, and H. Pu, Strongly interacting quan-

tum gases in one-dimensional traps, Phys. Rev. A 91,
043634 (2015).

[36] L. Yang and X. Cui, Effective spin-chain model for
strongly interacting one-dimensional atomic gases with
an arbitrary spin, Phys. Rev. A 93, 013617 (2016).

[37] A. Szabo and N.S. Ostlund, Modern Quantum Chem-
istry: Introduction to Advanced Electronic Structure The-
ory (McGraw-Hill, New York, 1989) Ch. 4.

[38] R. Pauncz, Alternant Molecular Orbital Method (Saun-
ders, Philadelphia, 1967).

[39] R. Pauncz, The Construction of Spin Eigenfunctions: An
Exercise Book (Kluwer/Plenum, New York, 2000).

[40] A. Auerbach, Interacting Electrons and Quantum Mag-
netism (Springer-Verlag, New York, 1994).

[41] H. Heitler and F. London, Wechselwirkung neutraler
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