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One-dimensional Bose gases are a useful testing-ground for quantum dynamics in many-body
theory. They allow experimental tests of many-body theory predictions in an exponentially complex
quantum system. Here we calculate the dynamics of a higher-order soliton in the mesoscopic case of
N = 103−104 particles, giving predictions for quantum soliton breather relaxation. These quantum
predictions use a truncated Wigner approximation, which is a 1/N expansion, in a regime where
other exactly known predictions are recovered to high accuracy. Such dynamical calculations are
testable in forthcoming BEC experiments.

Equilibrium calculations have been the staple diet of
quantum many body theorists for many years. Yet this
only scratches the surface. The dynamical properties
of many-body quantum systems have enormous inherent
complexity. Time evolution traces out a far larger set of
quantum states than a ground state can.

Just as classical dynamics encompasses more interest-
ing phenomena than static equilibria, the study of quan-
tum systems far from equilibrium is therefore of much
general interest. Quantum technologies at ultra-low tem-
peratures can be manipulated in nearly lossless environ-
ments, allowing theoretical predictions to be tested.

In this Letter, we investigate one such quantum sys-
tem: the one-dimensional attractive Bose gas. Ultra-
cold atomic physics experiments can now investigate
the quantum dynamics of these systems in mesoscopic
regimes. Neither few-body physics nor the classical limit
are dominant, leading to novel behaviour.

Experiments in photonics on these systems have in-
vestigated macroscopic, million-particle regimes, where
squeezing and entanglement occur [1–4]. While provid-
ing important first-principles tests, these experiments did
not yield large quantitative changes. Here, we investigate
mesoscopic, thousand-particle regimes accessible in cold-
atom experiments, where quantum changes are as large
as the initial field itself, and do not occur classically.

The 1D Bose gas, with its conservation laws [5] and ex-
act static solutions [6, 7] is an excellent testing ground for
many-body theory. Second-order correlations in thermal
equilibrium with repulsive interactions have been pre-
dicted [8–11] and verified experimentally [12, 13]. There
is evidence of metastable steady-states with no Gibbs
equilibrium [14, 15]. Attractive matter-wave solitons
have been experimentally observed [16–21].

We show that higher-order matter-wave solitons are
quantum-mechanically unstable. Fragmentation and
damping of breathing oscillations [22, 23] are predicted
to be very strong, even at particle numbers as large as
N = 1000. These calculations use the truncated Wigner
approximation, which is a 1/N expansion [24–26]. This
is a regime accessible to BEC experiments [21, 23, 27],
where closely related modulational instabilities have been
experimentally observed.

An earlier calculation [28] used a variational approach
with two spatial modes, predicting a sudden break-up
into a pair of equal size fragments. This calculation
was recently shown to be non-converged, violating known
quantum center-of-mass (COM) expansion physics [29].
Our results throw new light on this analysis. The pre-
dictions obtained here are completely different, with a
gradual fragmentation and many possible final states.

Fragmentation causes a relaxation in the oscillation of
classical ’breathers’ that we predict to happen gradually,
without the abrupt changes after a short evolution time
found by variational methods [28]. This is because the
number of dissociation channels available is larger than
the number of modes used in such calculations.

The oscillation decay found here is also different to
that predicted at very small particle number either from
DMRG methods [22], or using an exact analysis [23].
However, this difference is consistent with the scaling we
find with N : fragmentation and breather relaxation are
reduced as N increases.

Our calculations preserve all local conservation laws
and (nearly) exact COM dynamics [30], giving results
that are both quantitatively and qualitatively different
to either classical predictions or to variational studies.
This presents a novel opportunity for experimental tests
of quantum dynamical predictions in regimes where no
exact results are known.

In one dimensional optical or atomic waveguides, a
similar Hamiltonian applies to either massive atomic
Bose-Einstein condensate (BEC) experiments or to pho-
tonic experiments, where dispersion gives rise to an effec-
tive mass. If the bosons are confined to a single transverse
mode, one obtains an 1D Bose gas theory, valid for low
energies:

Ĥ1D =

∫
Ψ̂†1DH1Ψ̂1Ddr3

+
g1D
2

∫ (
Ψ̂†1D

)2
Ψ̂2

1Ddr3 . (1)

Here, r is the spatial coordinate, with a one-dimensional
confinement so the dynamics occur in the r3 direction.
The mass is m, and for an atomic Bose gas in a parabolic
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trap one has:

H1 = −~2∂23/2m+mω2
3r

2
3/2

g1D = 2~ω⊥a , (2)

where a is the three-dimensional S-wave scattering
length, and the effective transverse trapping frequency
of: ω⊥ =

√
ω1ω2. If the system is photonic or polari-

tonic, as in a fibre optical experiment [2, 25, 31], the rel-
evant parameters come from the dispersion and optical
nonlinearity properties of the fiber.

This can be transformed to dimensionless form by
choosing a length scale r0 and time scale t0 such that
r20 = ~t0/2m. Distance is scaled too, so that z = r3/r0,
and time is scaled to give a dimensionless time τ = t/t0.
The resulting Hamiltonian, in the form introduced by
Lieb and Liniger [6], with a dimensionless wave-function
ψ̂ =

√
r0Ψ̂1D, is:

Ĥ =

∫
dz

[
ψ̂†,z(z)ψ̂,z(z) + C

(
ψ̂†(z)

)2
ψ̂2(z)

]
. (3)

We use a subscript to indicate a derivative, so that:

ψ̂,z(z) ≡ ∂zψ̂(z) ≡ ∂

∂z
ψ̂(z) . (4)

The following relationships exist between the physical
and dimensionless units in the case of a trapped Bose-
Einstein condensate [10, 32]: Ĥ = Ĥ1/E0, E0 = ~/t0 =
~2/2mr20 and C = mg1Dr0/~2 = 2mω⊥r0a/~. A conve-
nient procedure for solitons is to simply define r0 as the
characteristic initial dimension, so that C is of the order
of the inverse particle number N .

The corresponding dynamical equation is known as the
one-dimensional quantum nonlinear Schrodinger equa-
tion. It also describes quantum photonic propaga-
tion in one-dimensional optical fibers [33], under sim-
ilar conditions of tight transverse confinement. Thus,
an almost identical picture holds for 1D photonic sys-
tems [31, 33], except for additional Raman-Brillouin cou-
pling to phonons, owing to the use of dielectric waveg-
uides [34, 35]. This earlier work used phase-space tech-
niques that originate in the work of Wigner [36] and
Glauber [37]. Such predictions have been experimentally
verified [1, 31, 38]. In both the photonic and atomic ex-
periments, there are additional dissipative couplings due
to linear and nonlinear losses and phase noise, leading to
additional corrections. For simplicity, dissipation is ig-
nored here, which limits the applicable interaction time.

The initial quantum states of experimental photonic
pulses or BECs typically has a shot-to-shot randomness
in the state preparation that results in experimental num-
ber fluctuations. It is common to have at least a Pois-
sonian number variance [39] when the atom numbers are
larger than 103. Accordingly, we assume Poissonian num-
ber fluctuations in the calculations given here, in order to

represent typical initial quantum density matrices. The
Wigner distributionW [ψ] over Wigner fields ψ exists for
any quantum state [36, 40]. It is not always positive def-
inite. The usual operator time-evolution equation

dψ̂

dt
= −i

[
Ĥ, ψ̂

]
, (5)

where the Hamiltonian Ĥ is defined by Eq. (3), can be
transformed [41] into a differential equation for W [ψ],
typically with third or higher order derivatives. After
truncation of third order derivatives [24], which are the
highest order terms in a 1/N expansion for N parti-
cles, one obtains a second order Fokker-Plank equation
for W [ψ]. This is an approximate functional differential
equation for a probability distribution over Wigner fields.

When the evolution is unitary, this results in a partial
differential equation for phase-space variables using well-
known procedures [25, 26, 42]. The resulting equation
for the Wigner field ψ, is:

dψ

dt
= i∇2ψ − 2iCψ

(
|ψ2| − 1/∆z

)
, (6)

where ∆z is the lattice spacing or inverse momentum cut-
off. Quantum noise is present in the initial conditions.
We start from a state with Poissonian number distribu-
tion, which is equivalent to a coherent state:

ρ̂ (t = 0) = |α (z)〉〈α (z) |, (7)

where |α (z) |2 = n (z). In the Wigner representation this
is exactly represented by an ensemble of fields ψ (z) with
initial quantum noise ηk, with

ψ (z) =
√
n (z) +

1√
2

∑
k

1√
L
ηke

ikz. (8)

Here ηk are complex random numbers correlated as
〈ηkη∗k′〉 = δkk′ , 〈ηkηk′〉 = 0. The functional integration
over the Wigner distribution is performed by generating
multiple random initial states and using them to seed
independent integrations of the PDE. This results in a
large number, Ns, of independent field modes — each
evolving in time with equal probability.

The Wigner phase-space method generates a direct
representation of symmetrically ordered quantum ob-
servables. To obtain the usual normally-ordered quan-
tum observables, one must transform the results of a
Wigner calculation from a symmetrically ordered to a
normally ordered form. This also removes the divergence
of symmetrically-ordered observables at large momentum
cutoff. The expectation values of symmetrically ordered
operator expressions can be obtained by integrating this
equation over multiple independent trajectories to pro-
duce a set of values ψ(j) and averaging over a correspond-
ing function of these values.

There is an approximate equality between symmetri-
cally ordered quantum averages and Wigner averages,
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where the N -dependent truncation error depends on the
evaluated operator [43, 44]:〈{

Ô
(
ψ̂, ψ̂†

)}〉
≈
〈{
Ô
}〉

W
= 〈O〉W . (9)

We consider a quantum dynamical experiment where
an initial state is prepared and then evolved in time. The
initial state is a Poissonian mixture of uncorrelated par-
ticles with mean value N = 103 − 104 in a localized spa-
tial mode. The equivalent coherent state has the classical
soliton shape that occurs with some small initial coupling
of Ci = −2/N , with r0 as the characteristic initial size,
so that in dimensionless units, α(z) =

√
N/2 sech(z).

This corresponds to an ultra-cold atomic Bose gas ex-
periment, with a BEC initially trapped in a localized
state with no interactions. At time t = 0, the interaction
Hamiltonian is turned on to a larger value of Cf = −8/N ,
allowing particles to interact and forming a breather, a
higher-order oscillating soliton. The resulting density
profile, 〈n̂ (z)〉 =

〈
ψ̂†(z)ψ̂(z)

〉
, is shown in Fig. 1 for

N = 1000 and in Fig. 2 for N = 10000. The result of the
initial condition is that a high-order soliton or breather
is formed [45], with a characteristic period of τb = π/4.
Our numerical results show characteristic breathing os-
cillations such that the mean breather amplitude decays
with time.

This simulation is similar to related experimental pro-
posals of first creating a fundamental soliton at weak
coupling, then suddenly increasing the coupling strength.
The coupling change would be caused by either a pulse
entering a fiber in a photonic experiment, or else a change
in a tunable Feshbach resonance in an atomic system. A
number of different theoretical methods [22, 23, 28] have
been used to analyze this type of proposed experiment,
making it of topical interest. The present protocol em-
ploys a localized non-interacting BEC as the initial state,
following earlier proposals [28, 29]. The timescales and
numbers used are within the general parameter range
achievable with current 7Li [21] and 85Rb [27] ultra-cold
atomic physics experiments.

The simulation is sensitive to the selected spatial and
momentum grids. The spatial grid must be symmetri-
cal around 0 and have a point at z = 0, or else the
decay happens on a faster scale, since there is insuffi-
cient lattice resolution for spatial convergence. The mo-
mentum grid should ideally be symmetrical around 0,
which can be achieved by using a pair of position- and
momentum-dependent coefficients applied before and af-
ter the Fourier transform. If this condition is not sat-
isfied, the unbalanced high-momentum components of
the noise lead to numerical errors. A finite lattice was
used with periodic boundary conditions at z = ±L/2.
Results were obtained using a public domain stochas-
tic partial differential equation code [46] with a fourth-
order Runge-Kutta interaction picture algorithm [47],
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Figure 1. Density near the centre of the simulation area (a)
and at z = 0 (b) over time. Simulation with N = 103, C =
−8 × 10−3, M = 512, L = 20, 105 trajectories, 105 time
steps. The area between the simulation curves (solid blue
lines) denotes the estimated sampling error. The result of
the mean-field simulation (dashed orange lines) are shown for
comparison. The time-step errors are smaller than the line
thickness and are not shown on the graph.
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Figure 2. Density near the centre of the simulation area (a)
and at z = 0 (b) over time. Simulation with N = 104, C =
−8× 10−4, other properties as in Fig. 1.
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then cross-checked with a larger number of samples using
an open source graphical processor unit (GPU) code.

The initial density matrix used here is a random phase
mixture of coherent states. This is exactly equivalent
to a Poissonian mixture of initial pure number states in
a single spatial mode, chosen as u = sech (z) /

√
2, sim-

ilar to previous investigations [28, 29]. Since the mea-
surements phase-independent, only a single phase in the
mixture is calculated. Averaging over phases would pro-
duce identical results in every input phase.In the present
examples, the initial boson number is Nin = N ±

√
N ,

where N = 103− 104. The number standard deviation is
±
√
N , or ±1%−3.2%, which is typical for these types of

experiment.
Convergence tests were carried out with the four ex-

act conservation laws, N̂ , P̂ , Ĥ, Ĥ3 [48], and with exact
COM expansion predictions [49, 50]. All agreed with
the predicted conserved behavior, apart from small er-
rors of size N−3/2 [30]. The comparison with these
tests will be reported in detail elsewhere. Truncated
Wigner methods can have a growing truncation error
with time [51, 52]; however, earlier variational results
were not able to satisfy these tests [29]. The main issue
is whether the breather behaves classically, or whether
the oscillations are damped owing to quantum fragmen-
tation of the higher-order soliton. This problem is ex-
tremely challenging in quantum many-body theory, as
it involves exponentially many eigenstates. As can be
seen by the results given here, in the TW approximation
the oscillations are predicted to decay gradually, with-
out sudden fragmentation as predicted using variational
methods [28].

Since the center-of mass position is known to spread,
one may expect that the on-axis density plotted in Fig. 1
and Fig. 2 might decay purely due to the quantum uncer-
tainty in the final position. Therefore, in Fig. 3, we intro-
duce the dimensionless Glauber second order correlation
function, G(2) (z1, z2) =

〈
ψ̂† (z1) ψ̂† (z2) ψ̂ (z2) ψ̂ (z1)

〉
,

and investigate the integrated correlation:

µ =

∫
G(2) (z, z) dz/N2. (10)

This integrated correlation function measures the
“peakedness” of a spatial distribution, in a way that is in-
dependent of the location of the peak. This also decays,
although not as strongly as the on-axis density. We con-
clude that the breather appears to gradually radiate or
fragment due to quantum effects with increasing similar-
ity to mean field behaviour as N →∞. This is confirmed
by an eigenvalue analysis of the first order correlation
function, G(1) (z1, z2) =

〈
ψ̂† (z1) ψ̂ (z2)

〉
. The definition

of a Bose condensate is that it has a macroscopic occu-
pation [53]of a single eigenmode of G(1). The transition
to a partially fragmented BEC is illustrated in Fig. 4,
which shows that six modes dynamically evolve to > 1%
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Figure 3. Correlation µ over time. Simulation with N = 103,
C = −8×10−3 (a) andN = 104, C = −8×10−4 (b),M = 512,
L = 20, 105 trajectories, 105 time steps. The area between
the simulation curves (solid blue lines) denotes the estimated
sampling error. The time-step errors are smaller than the line
thickness and are not shown on the graph.
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Figure 4. Eigenvalues of the correlation function G(1) over
time. Simulation with N = 103, C = −8 × 10−3 M = 512,
L = 20, 103 trajectories, 105 time steps. The graph shows
increasing fragmentation with time.

occupation by τ = 5. This cannot be treated accurately
by variational calculations with fewer modes [29].

In summary, our results predict continuous quantum
fragmentation of higher-order soliton breathers at parti-
cle numbers of N = 1000, with results closer to mean
field predictions at N = 10000. This is readily testable
in BEC experiments.
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