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One of the challenges for fermionic cold atom experiments in optical lattices is to cool the systems
to low enough temperature that they can form quantum degenerate ordered phases. In particular,
there has been significant work in trying to find the antiferromagnetic phase transition of the Hub-
bard model in three dimensions, without success. Here, we attack this problem from a different
angle by enhancing the ordering temperature via an increase in the degeneracy of the atomic species
trapped in the optical lattice. In addition to developing the general theory, we also discuss some
potential systems where one might be able to achieve these results experimentally.

I. INTRODUCTION

While the off-diagonal long-range order in cold
bosonic atomic gases has been observed many years
ago, quantum magnetism in fermionic gases is still a
challenge for experimentalists. Despite the possibility
to control the interaction between spin states of atoms
in an optical lattice [1], the temperatures required
to obtain magnetic ordering remain lower than those
achievable with current techniques. Therefore, it is
easier to demonstrate the presence of magnetic corre-
lations, before the true long-range magnetic order is
established. Using the spin-sensitive Bragg scattering
of light, antiferromagnetic correlations in a two-spin-
component Fermi gas, magnetic correlations have been
observed at a temperature 40% higher than the putative
temperature for the transition to the antiferromagnetic
state in three dimensions [2]. In this experiment, the two
lowest hyperfine ground states of fermionic 6Li atoms
in a simple cubic optical lattice were labeled as spin-up
and spin-down states. The repulsive interaction between
atoms in these states was controlled by a magnetic
Feshbach resonance. Since the magnetic superexchange
interaction is given by J = 4t2/U , the experiment
controlled the value of J and in a particular regime, it
measured antiferromagnetic correlations as extracted
from the spin structure factor. Very recently it was
demonstrated that spin (and charge) correlations can
be detected also with the help of site-resolved imaging.
In Refs. [3–5] quantum gas microscopy was used to
determine spatial correlations for fermionic atoms in
a two-dimensional optical lattice. While there is no
phase transition in 2D, the measurements have shown
an increase of the correlation length as the temperature
was lowered. Similar antiferromagnetic correlations ex-
tending up to three lattice sites have also been observed
in a 1D system [6].

In this work, we study the simplest many-body
model that has a nonzero phase transition in two

dimensions. This would be the Ising model [7] for a spin
system. But we examine instead its fermionic analog,
the Falicov-Kimball (FK) model [8], which also displays
a nonzero transition temperature in two dimensions
and behaves Ising-like when the interaction strength
becomes large. This system can be easily simulated
with mixtures of cold atoms on optical lattices, because
it involves mobile fermions interacting with localized
fermions [9]. One simply needs to have the hopping of
the two atomic species to be drastically different. The
simplest case of one trapped atomic state for each of
the fermionic species maps onto the spinless version
of the FK model. This model has been solved exactly
in infinite dimensions via dynamical mean-field theory
(DMFT) [10, 11] and numerically in two dimensions
with Monte Carlo (MC) [12].

The atomic lithium-ytterbium mixture is an example
of a system with an extreme mass imbalance and a con-
trollable interspecies interaction [13]. When confined in
an optical lattice, it can be well described by the FK
model. Refs. [14–20] present other such atomic mix-
ture systems. But mass imbalance is not the only way
to realize the FK model. Recently a versatile method
for creating widely tunable state-dependent lattices was
demonstrated by the Esslinger group [21]. If the renor-
malized hopping amplitude of one of the spin states is
tuned to be close to zero, such a system can also be de-
scribed by the FK model. Independent control of lattice
depths has also been demonstrated in a bosonic mixture
of rubidium and potassium up to the localization transi-
tion for rubidum in Ref. [22].

The remainder of the paper is organized as follows. In
Sec. II, we provide the formalism for our calculatons,
followed by the results in Sec. III. Conclusions follow in
Sec. IV.
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II. FORMALISM

Our motivation for this work stems from the DMFT
solution to the problem. There, one can derive a con-
dition for the transition to an ordered phase with a
checkerboard pattern [10, 11], which takes the form 1 =∑
n γ(n), with the sum running over all integers [which

label fermionic Matsubara frequencies iωn = πi(2n+1)T ,
with T the temperature]. The function γ(n) is a com-
plicated function that is constructed from the mobile
fermion Green’s function, its self-energy, the on-site in-
teration between the localized and mobile fermions U and
the density of the localized fermions w1. The important
point to note, is that if we increase the degeneracy of the
mobile fermions (while enforcing that they do not inter-
act with themselves), then the Tc equation is modified
by γ(n) → Nγ(n), where N is the number of degener-
ate states for the mobile fermions [11]. Since one can
immediately show that

∑
n γ(n) → C/T for T → 0 and∑

n γ(n) → C ′/T 4 for T → ∞ [10], we expect that the
transition temperature for the degenerate system will ini-
tially grow linearly in N and then turn over to a slower
increase, proportional to N1/4 for larger N . It is the
rapid growth with degeneracy for small N , which makes
these effects so spectacular. (These ideas are further sup-
ported by the observation that increasing species degen-
eracy lowers the final temperature after the optical lattice
is ramped up in alkaline-earth systems [23])

The argument that Tc grows linearly with the degen-
eracy at low temperature can be made more general. We
start with the Hamiltonian for the FK model on a lattice
Λ that has |Λ| lattice sites. The Hamiltonian for a given
configuration of the heavy atoms {w} is

H({w}) = −t
∑
〈ij〉

N∑
σ=1

c†iσciσ + U
∑
i

N∑
σ=1

niσwi

=

N∑
σ=1

Hσ({w}), (1)

where σ denotes the N different “flavors” of the mobile
fermions and wi = 1 or 0, denotes whether site i has a
localized fermion on it, or not, respectively (the localized
fermions continue to be spinless). The hopping matrix
is chosen to be nonzero only for nearest neighbors, and
we set t = 1 as our energy unit (we also set kB = 1).
We define Ei ≡ εi − µ, with µ the chemical potential
and {εi} the set of (degenerate) eigenvalues of Hσ({w}),
which is independent of the specific value of σ because the
mobile fermions are noninteracting amongst themselves,
and they share the same interaction with the localized
fermions. Here, the index i runs over i = 1, . . . , |Λ| (we
will be working on a square lattice of edge L which then
has |Λ| = L× L).

The corresponding grand partition function is given by

Z =
∑
{w}

|Λ|∏
i=1

[
1 + e−βEi({w})

]N
, (2)

with β = 1/T the inverse temperature. Introducing the
free energy F , Eq. (2) can be rewritten as

Z =
∑
{w}

e−βF({w}), (3)

where

F({w}) = −N
β

∑
i

ln
[
1 + e−βEi({w})

]
= N

∑
i

Eiθ [−Ei({w})]

− N

β

∑
i

ln
[
1 + e−β|Ei({w})|

]
, (4)

and θ(. . .) is the Heaviside unit step function. In the low-
temperature limit the second term on the RHS vanishes.
Inserting the limiting form of F into Eq. (3) yields

Z =
∑
{w}

e−βN
∑

i Eiθ[−Ei({w})]. (5)

Note, that this result can be recognized to be the con-
dition for the filling of mobile fermions into the Fermi
sea determined by the bandstructure corresponding to
the particular configuration of the localized fermions,
as given by the configuration {w}. Since, in the low-
temperature limit F does not depend on temperature,
the partition function depends on temperature only
through the term βN . This means that the thermody-
namics of the system depends only on the ratio T/N ,
with initial corrections expected to be small as T rises
(because they will be proportional to T/TF with some
suitably large Fermi temperature TF ). As a result the
critical temperature Tc in the low-temperature limit will
necessarily increase linearly with increasing degeneracy
N . This is an exact result, independent of the details of
the lattice or the dimensionality—it only requires there
to be a phase transition.

There are two assumptions that went into this anaylsis,
which turn out not to hold when we actually calculate the
maximal Tc as a function of N . First, the lowest Tc values
are not so low, so the linear regime fairly rapidly crosses
over to a slower increasing behavior and second, the inter-
action value Umax(N), where the maximal Tc,max(N) oc-
curs, actually changes with N (see the inset in Fig. 2), so
the arguments about the precise functional dependence
of the Tc,max(N) on N turns out not to hold in the actual
data; our arguments assumed we compared systems with
the same U . The first effect is to reduce how Tc increases
with N , while the second enhances how Tc increases with
N .

Corrections to the linear dependence of Tc on N come
mostly from states close to the Fermi level [Ei ≈ 0, see
the second term in the RHS of Eq. (4)]. Therefore, we
can expect that the linear section of the Tc(N) curve
can be longer for bipartite lattices for which the density
of states is reduced close to the Fermi energy, e.g., for
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FIG. 1. (Color on-line) Comparison of the 2D DMFT (solid
red line) and MC (blue dots, connected with a solid line as
a guide to the eye) critical temperatures to the checkerboard
density wave at half filling for both species on a square lattice
with N = 1. The lines marked as ”Ising mean-field” (green)
and ”Ising exact” (black) show the critical temperatures for
the corresponding Ising model, which become exact for the
respective theories when U →∞.

a hexagonal lattice. Also in 3D, where there is no Van
Hove singularity (the singularity for the square lattice
is reduced by the interaction with the heavy atoms) the
linear part can persist to even higher temperatures.

III. RESULTS

In Fig. 1, we plot the transition temperature to the
checkerboard density wave on a square lattice with N =
1. The top curve is for the DMFT approximation, while
the bottom curve is for the exact MC results. Note that
the interaction strength for the peak of the curve lies
in the range of U ≈ 4 − 5 with the maximal U value
slightly higher for DMFT versus MC. The DMFT results
are semiquantitative, and clearly overestimate the Tc, but
the overall error is not that large.

As N increases, we find that the maximum Tc increases
as does the value of the interaction strength where the
Tc(U) curve is maximized. The full curve out to N = 100
is plotted in Fig. 2. The DMFT results are calculated for
each N by first finding the interaction strength at the
maximum of the Tc curve. For the MC results, we work
with fixed U , varyingN and then constructing the “maxi-
mal hull” of the data. It turns out that these MC results
are nearly perfectly fit to the DMFT results when the
latter are renormalized by a factor of 0.75. The DMFT
curve initially grows linearly with N , but then settles into
an increase that grows proportional to

√
N − 1.7, which

is in between our linear and 0.25 power results, as we
expected, due to the fact that Umax increases with N .

We find the enhancement of the maximal Tc for higher
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FIG. 2. (Color on-line.) The maximal critical temperature Tc

plotted as a function of mobile fermion degeneracy N (as cal-
culated with MC). The dashed line shows the corresponding
DMFT Tc calculated at U = Umax(DMFT). The solid lines
show MC Tc’s for different values of U . The black dotted line
shows Tc(DMFT) × 0.75, which agrees well with nearly all
the MC results. In the inset, Umax(DMFT) is plotted as a
function of degeneracy N , indicating it changes significantly
with N .

N versus N = 1, given by Tc,max(N)/Tc,max(1) satisfies:
1.98 (MC, N = 2), 1.899 (DMFT, N=2); 2.84 (MC, N =
3), 2.651 (DMFT, N = 3); and 3.60 (MC, N = 4), 3.287
(DMFT, N = 4). Since the maximal Tc(DMFT) for the
FK model is about one half the maximal Tc(DMFT) for
the corresponding Hubbard model, we need to be able to
have a degeneracy of N ≥ 3 before this effect will have a
high enough Tc that it can reach current experimentally
accessible values for the 3D case.

In the above, we have demonstrated that by increas-
ing degeneracy one can increase the critical temperature.
The question remains as to whether this increased Tc also
corresponds to an increased entropy per particle at the
transition point. In MC, it is quite difficult to calculate
the entropy in a reliable way because it requires integrat-
ing from infinite temperature down to the temperatue of
interest. Since we have already shown good agreement
between the MC and DMFT results (up to a numerical
factor), we calculate the entropy S only within DMFT.
This should be a good estimate of whether the entropy
is increasing or decreasing with the number of mobile
fermions N . The entropy for the FK model is given by
[11]

Stot(T ) = −N
∫
dε {f(ε) ln f(ε)

+ [1− f(ε)] ln [1− f(ε)]} ρ(ε)

− w1 lnw1 − (1− w1) ln(1− w1)

= Smob(T ) + Sloc(T ), (6)
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FIG. 3. (Color on-line) The entropy of the mobile fermions
Smob(Tc)/N per mobile fermion at the critical temperature
Tc calculated in DMFT as a function of the mobile fermion
degeneracy N .

where f(ε) = 1/[1 + exp(ε/T )] is the Fermi–Dirac dis-
tribution function and ρ(ε) is the local density of states
of the mobile fermions. The third line in Eq. (6) is
the entropy of the localized particles Sloc(T ) and since
it depends only on their concentration w1, and that con-
centration is fixed in the disordered state, it provides a
constant shift to the overall entropy, which is indepen-
dent of N (and given by Sloc(T ) = ln 2). Hence, it is
the integral, which is the entropy per mobile fermion at
Tc which will determine whether the transition temper-
ature is easier to reach for higher degeneracy. As shown
in Fig. 3, this is clearly the case. We have Smob(Tc)/N
initially increasing linearly with N and then tailing off as
N increases.

We focus the remainder of this article on discussing
possible experimental realizations for such higher degen-
eracy mixtures. The FK model has zero interaction be-
tween the mobile fermions. One can argue, on rather
general grounds, that the modification of Tc due to a
nonzero intraspecies interaction u will have corrections
to Tc of order u2. Hence, if u is small, the effect we dis-
cuss here should continue to hold, with only slight reduc-
tions. This allows us to formulate our search criterion for
physical systems that will show this degenerate species
effect.

In searching for appropriate mixtures, we want to find
systems that (i) can have a degeneracy of three or more
for the light fermionic species, (ii) have a similar inter-
species interaction U between the mobile and localized
fermions, which will be tuned either via an interspecies
Feshbach resonance, or via the depth of the trapping po-
tential for the light species; and (iii) have a small in-
traspecies interaction u between the mobile fermions. We
also note, that as long as the localized particle is nonde-
generate, then it can actually be either Bose or Fermi,
since its statistics does not enter the analysis because it

does not move. (However, if the heavy particle is a boson,
we do need its intraspecies interaction to be large and
positive, so it generically forms a Mott insulator with at
most one particle per site and it does not Bose condense
on the lattice.)

We start with examining some prototypical systems
which have already been demonstrated to be trapped on
optical lattices. The first choice to examine is mixtures
of 40K (mobile fermion) and 87Rb (localized boson) [24].
If we could trap the mF = −5/2,−7/2, and −9/2 states
of K, we would have an N = 3 mixture. This system is
nice, in the sense that it has a tunable interspecies in-
teraction via a Feshbach resonance, and the intraspecies
interactions for K have a scattering length on the order
of 100 a0 (in some cases one of the pairs can be tuned
to zero scattering length). The challenge is that the Rb-
Rb interaction is too small (on the order of 100 a0), and
is not tunable, which would make it difficult to satisfy
the required conditions for this effect. If we instead try
133Cs (localized boson) [25], we find that the Cs-Cs in-
teraction is large, with a scattering length near 2000 a0

at B ≈ 260 G, but the interspecies interaction is small
(≈ −40 a0) and not simultaneously tunable for all three
K species.

Moving on to other possibilities, if we use mixtures
of 171Yb or 173Yb (mobile fermion) [26, 27] and 133Cs
(localized boson) [28, 29], we only have a degeneracy of
N = 2 for 171Yb, even though its intraspecies scattering
is small, while for 173Yb the intraspecies scattering length
is ≈ 200 a0, which is still viable, given the potentially
large Cs-Cs scattering length, but it would require a tun-
able Cs-Yb scattering length that is large, and although
this has not yet been measured, we do not anticipate that
there is any reason why it should be particularly large. If
we tried Rb as the localized boson [30], it suffers from the
same issues as with K-Rb—namely, the Rb-Rb scattering
is too small.

Using 6Li as the mobile fermion appears attractive [31,
32]. However, the interspecies scattering length is only
small for low fields, and when a mixture is formed from
the N = 3 trappable states, at least one intraspecies
interaction will be large (although the other two can be
close to zero). So, this case is suboptimal.

Next, we consider mixtures of 87Sr (light fermion)
which has up to N = 10 and a Sr-Sr scattering length on
the order of 100 a0 [33, 34]. If we use Cs as the (localized
boson), then if the Cs-Cs scattering length can be set
to the order of a few 1000 a0, and the Sr-Cs scattering
length is on the order of 500 a0, then this system might
work to illustrate this degenerate species effect, and it
has the potential to be spectacularly large.

The remaining choices that might be workable seem
to be longshots, but cannot yet be ruled out because we
do not have enough information about their interspecies
interactions. We discuss some of these possibilities next.

43Ca is a fermion with a nuclear spin of 7/2 [35, 36],
25Mg is a fermion with a nuclear spin of 5/2 [37], Ba has
two spin 3/2 fermionic species [38], and 201Hg is also spin
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3/2 [39]. It is unknown what the intraspecies interactions
are amongst these different spin states, how many can
be trapped, and what their interspecies interactions are
with potential heavy particles. So they all are possible,
but at this stage quite difficult systems to work with.
Finally, there are all of the magnetic-dipole systems, like
Er [40, 41], Dy [42, 43], and Cr [44–46]. These systems
often have chaotic intraspecies interactions due to a huge
number of resonances, but they might show some small
interactions at low fields, and hence may also be viable
candidates for the light fermions.

IV. CONCLUSIONS

In summary, we have illustrated the idea that by
enhancing species degeneracy, one can enhance Tc for
fermionic neutral atoms trapped on optical lattices such
that their Tc to an ordered state can be raised high
enough that they would be accessible to explore with cur-
rent experimental technology in cooling. This idea comes
at this problem from a different angle than the many dif-
ferent cooling strategies that have been proposed, and
could provide the ability to truly study spatially ordered
quantum phases. The challenge is to find the right mix-
ture of atoms where this effect can be fully exploited. We
have examined a number of possible experimental sys-
tems, with Yb-Cs (N = 2) and Sr-Cs (N = 10) mixtures
as the most promising, but it is clear the experiments will
be challenging to carry out. Other experimental systems
are more speculative, because the interspecies interac-

tions are not yet known, but there are likely to be some
additional experimental systems that can be tried for this
enhancement effect on the ordering Tc.

We want to end by commenting that similar work has
examined SU(N) symmetric Hubbard models. The re-
pulsive case actually sees a decrease in the antiferro-
magnetic Tc with increasing N [47], while the attractive
case sees an enhancement similar to what we see for the
density-wave instability [48], but we do not know of any
large N > 3 systems with attractive interactions. Fur-
thermore, there are challenges with finding atomic sys-
tems with a small enough U value (for large N), since a
maximal hopping is required to have an accurate single-
band description. So it will be more difficult to attain
the Hubbard-like system than the Falicov-Kimball-like
system that we propose.
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