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Synthetic spin-orbit coupling in ultracold atomic gases can be taken to extremes rarely found in
solids. We study a two dimensional Hubbard model of bosons in an optical lattice in the presence
of spin-orbit coupling strong enough to drive direct transitions from Mott insulators to superfluids.
Here we find phase-modulated superfluids with finite momentum that are generated entirely by
spin-orbit coupling. We investigate the rich phase patterns of the superfluids, which may be directly
probed using time-of-flight imaging of the spin-dependent momentum distribution.
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I. INTRODUCTION

The Rashba effect [1] in solids derives from the motion
of an electron in a strong electric field. As the electron
moves in the presence of a potential gradient, ∇V , it
experiences an effective magnetic field in its frame of ref-
erence. The Rashba energy [1]:

(~∇V × ~p) · ~σ, (1)

captures the energetics of electron spin reorientation due
to the effective magnetic field, where ~p is the particle mo-
mentum and ~σ are the Pauli matrices. The Rashba spin-
orbit coupling (SOC) energy is well known to be partic-
ularly strong at metallic surfaces [2, 3] (e.g., on Ag(111)
or Au(111)) because here we find extremely strong po-
tential gradients. As a result, studies of the impact of
Rashba SOC on two-dimensional (2D) conductors have a
long history [4]. But the impact of Rashba SOC on the
surface states of Mott insulators has come under more
careful scrutiny recently because of possible connections
to topological insulators [5, 6].
Mott insulators localize as a result of strong interaction

and would therefore appear to exclude the possibility of
SOC effects, but one can argue that this is not always
the case. Small momentum in Eq. (1) (the case for local-
ized states) does not necessarily imply low Rashba ener-
gies. In an extreme limit, Mott insulating surfaces can, in
principle, experience very large potential gradients that
can compensate the small momentum, i.e., 〈p〉 → 0 with

〈~∇V × ~p〉 ∼ EF , where EF is the Fermi energy. If, in
this limit, the energetics of Rashba SOC compete with
the Mott gap, one could observe a transition between a
Mott insulator and a conducting state driven entirely by
Rashba SOC in spite of the small average momentum
of particles in Mott insulators. Unfortunately, the limit
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where Rashba SOC competes with the Mott gap is rare
in solids because it would typically be precluded by other
effects, such as charge transfer between bands. But this
limit can be explored in another context: using synthetic
SOC in optical lattices.

Recent experimental progress [7–13] demonstrates en-
gineering of synthetic SOC for ultracold atomic gases
[14]. These experiments show that Raman beams can
be used to dress atoms with a spin-dependent momen-
tum. Rashba (and/or Dresselhaus) SOCs governing these
dressed states [15, 16] are tunable to extremes not possi-
ble in solids, see Fig. 1. Recent work shows, for example,
that synthetic SOC can generate flat bands [17–20], ex-
otic superfluidity [21], and intriguing vortex structures
[16, 22, 23].

Recent theory work has also explored the impact of
SOC on the spin structure of Mott insulators in optical
lattices [24–28]. Here super-exchange coupling between
sites was shown to combine with Rashba SOC to lead to
rich spin structures within the Mott state [24–28]. But
in these studies parameters were chosen to explore the
impact of Rashba SOC on the spin physics of Mott insu-
lators while leaving the charge structure intact.

In this work we explore Rashba SOC that is strong
enough to cause the breakdown of charge ordering in
Mott insulators. This extreme limit is of direct relevance
to optical lattice experiments with synthetic SOC. We
study, in particular, a 2D lattice model of two-component
interacting bosons in the presence of tunable Rashba cou-
pling. We find that strong Rashba SOC can cause the
breakdown of the Mott insulating state and drive a di-
rect transition between the Mott insulator and a super-
fluid state, even in the absence of single particle tunnel-
ing between sites of the lattice [27]. This limit is the
lattice version of the limit discussed above, 〈p〉 → 0 with

〈~∇V × ~p〉 ∼ EF , where vanishing kinetics leaves Rashba
SOC to generate its own conducting state. For the case
of lattice bosons studied here, we find that Rashba SOC
generates finite momentum superfluids. We show that
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FIG. 1: Comparison of SOC strengths in solids and cold
atoms. h, α, and EF denote the Zeeman energy, SOC co-
efficient, and Fermi energy, respectively. For GaAs, the ef-
fective mass is m∗ = 0.067m0[29], where m0 is the electron
mass, the Rashba SOC strength is α = (0.04− 0.06) × 10−11

eV·m[30], and the g-factor is g∗ = −0.45[31]. For InAs the
parameters are: m∗ = 0.026m0[29], α = (0.28 − 1.4) × 10−11

eV·m[32], and g∗ = −15.1[33]. For InSb the parameters
are: m∗ = 0.0135[29], αKF = (1.0 − 1.2) × 10−11 eV·m[34],
and g∗ = −51[33]. And for the metallic surfaces: m∗ ∼
0.255m0[2, 3], where the g-factor is assumed to be g∗ = 2.
The parameters for these four different examples are plot-
ted at an external magnetic field of 5 Tesla. A high carrier
density, n = 1011 cm−2, is used for the semiconductors. For
SrTiO3/LaAlO3 oxide interfaces, the data are taken from Ref.
35. Additional feasible parameter regimes are plotted as hor-
izontal and vertical bars.

these superfluids are characterized by staggered phase
patterns. We also find distinct superfluid states with
striped phase patterns that are separated by transitions
on finite lattices with periodic boundaries. We predict
that finite momentum superfluids should be observable
in time-of-flight measurements of the momentum distri-
bution.

The paper is organized as follows: In Sec. II we con-
struct a Bose-Hubbard model of two-component atoms in
the presence of Rashba SOC. We also discuss two compli-
mentary mean field approaches that allow us to compute
the phase diagram, transition properties, and the mo-
mentum distribution. In Sec. III we present results on fi-
nite lattice sizes. We use Gutzwiller mean field theory to
show that Rashba SOC causes the Bosonic Mott insula-
tor to give way to finite momentum superfluids. We also
explore inter-superfluid transitions. We find that transi-
tions separate distinct phase patterns of finite momentum
superfluids. We demonstrate in Sec. IV that these dif-
ferent finite momentum phases can indeed be observed
in experiments with a trapping potential. In Sec. V
we present analytic arguments that transitions depend

critically on boundary effects, akin to effects found in
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconduc-
tors [36–48]. We show that analytic mean field calcula-
tions in the infinite system size limit do not show these
transitions. We summarize in Sec. VI.

II. MODEL AND METHODS

We consider a 2D square optical lattice containing
bosonic atoms with two hyperfine levels. States with
two hyperfine levels act as a pseudo-spin 1/2 state. We
also assume the presence of Raman beams that couple
the atomic momentum to the spin to generate synthetic
SOC [7–11, 13]. The interaction between alkali atoms is
governed by a short-range (s-wave) repulsion. For a deep
optical lattice, the problem can be accurately described
in the single-band, tight-binding limit [49] where the s-
wave interaction becomes an on-site Hubbard interaction
and the SOC is discretized.
To study this system we construct a Hubbard model

of two-component bosons in the presence of Rashba SOC
on a square lattice. We allow the on-site Hubbard inter-
action to have a spin-dependent interaction:

H = −t
∑

〈ij〉

Ψ†
iΨj +

U

2

∑

iσ

niσ(niσ − 1)

+ U↑↓

∑

i

ni↑ni↓ − µ
∑

iσ

niσ

+ iλ
∑

〈ij〉

Ψ†
i~ez · (~σ × ~dij)Ψj +H.c., (2)

where, Ψi = (bi↑, bi↓)
T is a two-component bosonic an-

nihilation operator at the site i, niσ = b†iσbiσ, t is the
spin-independent nearest neighbor tunneling, U (U↑↓) is
the on-site interaction between bosons of the same (dif-
ferent) spin σ, and µ is the chemical potential. In the

last term λ is the Rashba SOC strength, ~dij is the unit
vector between the neighboring sites i and j, and ~ez is
the unit vector along the z direction. In the following we
use U = 1 to set the energy scale.
The tunneling and Rashba terms induce two differ-

ent types of superfluidity. To see this we plot the spin-
independent tunneling and spin-dependent tunneling in
Fig. 2. The left panel shows that the spin-independent
tunneling favors phase uniformity since t is real. But
in the right panel we see that SOC has two effects: It
induces tunneling between neighboring sites with two
different spin states and it imposes phase variation.
The phase variation depends strongly on the direction
of the neighboring sites. SOC therefore favors highly
anisotropic superfluid states. Without SOC the system
has at least an U(1)⊗U(1) symmetry, which means that
the total number of each species are conserved; however,
SOC introduces spin flips between two neighboring sites,
thus the system only respects U(1) symmetry and, as
a result, the phase difference between the neighboring
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FIG. 2: Schematic of spin independent tunneling (a) and spin-
dependent tunneling induced by SOC (b). In the later case,
the tunneling takes place between two neighboring sites ac-
companied by both spin flipping and phase variations. The
phase variation during tunneling is responsible for the cre-
ation of the finite momentum superfluids.

sites can not be gauged out. The competition between
spin-independent tunneling and spin-dependent tunnel-
ing tunes the transition between these different superflu-
ids.
In the weakly interacting limit the model exhibits three

different superfluid phases: In the regime when spin-
independent tunneling dominates (t ≫ λ), the uniform
superfluid is preferred and the total momentum of the
superfluid is zero; In the opposite regime, a staggered
superfluid phase is preferred; and in the intermediate
regime, t ∼ λ, the strong competition between the two
tunnelings gives rise to superfluids with phase patterns
that depend strongly on boundary effects.
Strong interactions add competing Mott insulating

phases and complicates estimates of the phase diagram.
To study the competition between all ground states we
use two complimentary mean field approaches. We apply
the Gutzwiller mean field method to finite system sizes
(relevant to experiments) and compare with an otherwise
equivalent mean field method applied to infinite system
sizes.
We now discuss the Gutzwiller mean field method

[49, 50]. The method assumes a product ground state

of the form: |G〉 = ∏

i,σ

(

∑

n f
(i,σ)
n |n〉i,σ

)

. This form for

the wavefunction has been extensively applied to bosons
in optical lattices [49], even in the presence of complex
hopping amplitudes [51]. It generally gives quantitatively
reliable results in 2D and 3D, (for comparisons, see, e.g.,
Ref. [52]), and is a particularly excellent approximation
when computing local correlation functions (See, e.g.,
Ref. [53]). The variational parameters f are obtained
by minimizing the total energy:

E =
〈G|H |G〉
〈G|G〉 . (3)

We minimize the total ground state energy with the con-
jugate gradient algorithm [54, 55]. The ground state en-
ergy is reached when the energy variation is less than
10−5U , which is sufficient to distinguish the energy dif-
ference between different phases.

( ) ( )
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FIG. 3: Phase diagrams of of Eq. 2 obtained from Gutzwiller
variational simulations for an 8 × 8 lattice with periodic
boundary condition at (a) U↑↓ = 0, λ = 0, (b) U↑↓ = 0, λ =
0.04U , (c) U↑↓ = 0.5U, λ = 0, and (d) U↑↓ = 0.5U, λ = 0.04U .
The phase diagrams are determined by the amplitude of the
spin-up superfluid order parameter. The spin-down superfluid
order parameter produces similar results.

We supplement the finite system size Gutzwiller
method with an equivalent mean field limit applied to
infinite system sizes. We assume 〈biσ〉 = ψeiθiσ , where
ψ is a real number. This assumption is equivalent to the
assumed form for |G〉 but works best on infinite system
sizes. The total energy then becomes:

Eψ = (U + U↑↓)ψ
4 − (U + 2µ+ tA+ λB)ψ2, (4)

where the coefficients are:

A ≡ N−1
∑

〈ij〉

[

ei(θj↑−θi↑) + ei(θj↓−θi↓) +H.c.
]

, (5)

and:

B ≡ N−1
∑

〈ij〉

[

Z∗
ije

i(θj↓−θi↑) − Zije
i(θj↑−θi↓) +H.c.

]

,

(6)
with Zij ≡ dxij + idyij and N is the number of sites. An
important point here is that the total energy depends not
only on the magnitude of the order parameter ψ, but also
on the phase difference between neighboring sites. We see
that the minimal energy Eψ corresponds to a maximal
value of A and B when U , U↑↓, λ, and t assume positive
values (the case studied in this paper). Here A depends
only on the phase difference between the same spin states,
while B depends strongly on the phase difference between
spin up and spin down states in the neighboring sites.
The competition between A and B governs competition
between superfluids with distinct phase patterns. When
λ = 0, A takes its maximum value when all of the sites
have the same phase, which corresponds to the uniform
superfluid phase.
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III. QUANTUM PHASES IN FINITE LATTICES

WITH PERIODIC BOUNDARIES

We now discuss results that demonstrate the competi-
tion between various Mott and superfluid phases in the
presence of SOC.We first present our results on small sys-
tem sizes with periodic boundaries. These system sizes
are consistent with small states formed in the center of
traps in experiments.
Fig. 3 shows the phase diagram for four different lim-

its of the model, Eq. (2). Fig. 3a plots the Bose-
Hubbard phase diagram [56] that results from setting the
SOC term and the inter-spin interaction term to zero in
Eq. (2), i.e., λ = U↑↓ = 0. The absence of inter-spin inter-
actions allows two identical copies of the Mott insulator.
The lower and upper Mott lobes in Fig. 3a correspond to
〈ni↑〉 = 〈ni↓〉 = 1 and 〈ni↑〉 = 〈ni↓〉 = 2, respectively.
Fig. 3c shows the result of adding inter-spin repulsion,

U↑↓ > 0, but with no SOC, λ = 0. Here we see that that
the original low energy Mott lobe is pushed up. The ap-
pearance of the small Mott lobes (above and below the
larger Mott lobe) correspond to the formation of Mott
insulators with Ising-type spin ordering. To see this, we
rewrite the interaction terms in H using sum and differ-
ence operators, ni± ≡ ni↑ ± ni↓. The large Mott lobe in
Fig. 3c then corresponds to 〈ni+〉 = 2, 〈ni−〉 = 0. The
upper and lower small Mott lobes exhibit degeneracies
(for t = 0) and correspond to 〈ni+〉 = 3, 〈ni−〉 = ±1 and
〈ni+〉 = 1, 〈ni−〉 = ±1, respectively. Here we exclude
super exchange effects, O(t2/U), discussed in other work
[24–26, 28].

We now discuss the phase diagram that results from
adding SOC. Figs. 3b and 3d plot the phase diagrams
that result from adding SOC to the states depicted in
Figs. 3a and 3c, respectively. In both figures we see
that the Mott insulators at higher µ vanish. Increas-
ing µ causes a direct transition from a Mott insulator to
a SOC-generated superfluid. At t = 0, SOC alone drives
the formation of a superfluid. We find that the Mott
insulators that normally persist at t = 0 for all µ are
actually supplanted by SOC-generated superfluids. The
t = 0 superfluids found on this part of the phase diagram
derive kinetics purely from the spin-dependent tunnel-
ing in SOC. We therefore find that even in the limit of
vanishing kinetics, the Rashba effect drives the Mott in-
sulator into a conducting state (in this case, a superfluid
state). We have also checked the phase diagrams of 4× 4
and 6×6 lattices, and find no qualitvative difference with
an 8× 8 lattice shown in Fig. 3. Below we show that the
precise nature of the resulting superfluid depends on the
relative strengths of λ and t, as well as boundary effects.

Fig. 4 shows the transitions of different superfluid
phase patterns. The left column shows the order param-
eters for the 8× 8 lattice with periodic boundary condi-
tions. Here SOC dominates and the nonzero order pa-
rameters are unchanged for t ≤ 0.019U . For t > 0.019U ,
the order parameter gradually increases with t, which

FIG. 4: Plot of the amplitude of spin-up superfluid order
parameter |〈b↑〉|, the filling factor 〈n↑〉 and the energy density
e as a function of the spin-independent tunneling at U↑↓ =
0.5U , λ = 0.04U and µ = 1.33U for periodic (left panel) and
open (right panel) boundary conditions.
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FIG. 5: (Color online) Spin-dependent momentum distri-
bution, Eq. (7), for different superfluids at U↑↓ = 0.5U ,
λ = 0.04U , µ = 1.33U , (a) t = 0.005U , and (b) t = 0.05U .

indicates a transition between different superfluids at
t ∼ 0.019U . For the open boundary condition case shown
in the right column, there is no such transition since the
phase can vary smoothly over the lattice.
The superfluids with different phase patterns have

different momenta. To see this we compute the spin-
dependent momentum distribution at wavevector k:

〈ρ↑,↓(~k)〉 = N−2
∑

i,j

〈b†i↑bj↓〉ei
~k·(~Ri−~Rj), (7)

where the lattice spacing is chosen as the unit of distance

and ~Rj is the location of the lattice site j.
We take random initial guess states and minimize the

total energy to compute the ground state |G〉, with which
the spin-dependent momentum distribution is computed

as 〈G|ρ↑,↓(~k)|G〉/〈G|G〉. We get four degenerate ground
states with different momentum distributions, where the
D4 symmetry of the lattice system is spontaneously bro-
ken. Similar results have been discovered in the contin-
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uum model of spin-1/2 Bose- Einstein condensate with
Rashaba SOC [57–59], where the ground state is a single
plane-wave state with finite momentum, and the direc-
tion of plane wave is spontaneously determined when the
inter-spin interaction is smaller than the intra-spin inter-
action.
The two different states in Fig. 5 have qualitatively dis-

tinct momentum distributions. We have also verified that
in these two phases, the magnitude of the order parame-
ter is uniform over the whole lattice, indicating that only
the phase pattern changes during the transition. Note
that the peak in the momentum distribution for the first
two phases depends strongly on the ratio between λ and
t. In the non-interacting limit, the ground state energy
of the system with SOC is E = −2t(cos kx + cos ky) −
2λ

√

sin2 kx + sin2 ky . The energy minima are located at

k =
(

± arctan(λ/
√
2t),± arctan(λ/

√
2t)

)

. On a finite
8 × 8 lattice, k can only take discrete values. In Par-
ticular, for λ/t = 0.8, the energy minima are located at
(0, π/4), (0,−π/4), (π/4, 0) and (−π/4, 0). In the pres-
ence of interactions, D4 symmetry is spontaneously bro-
ken and the system chooses one of the minima in Fig.
5(b). Similarly, for λ/t = 8, the the energy minima are
k = (±π/2,±π/2), which is consistant with Fig. 5(a). It
is therefore possible to directly infer their ratio from the
position of the peaks. We also note that the results pre-
sented in Fig. 5 relate directly to the time-of-flight imag-
ing that can measure momentum distribution of distinct
hyperfine states.

IV. QUANTUM PHASES IN A TRAPPING

POTENTIAL

We now consider the effects of realistic confinement
on the superfluid transitions. The finite momentum su-
perfluids considered here are akin to the FFLO phase
discussed in the context of trapped atomic Fermi gases.
The FFLO state depends strongly on lattice geometry.
Finite size effects are normally not considered to be rel-
evant in solids because system sizes are typically much
larger than correlation lengths. But cold atomic gases
can be put into regimes where the system size is on the
order of superfluid correlation lengths.
Small magneto-optical trapping potentials can be cre-

ated in cold atom systems. We add a spatially varying
chemical potential term to Eq. (2) to model confinement:
∑

i V (~Ri)(ni,↑ + ni,↓). The trapping potentials are well
approximated by a parabolic potential. We consider:

V (~Ri) = 0.008U

[

(

Rxi −
Lx − 1

2

)2

+

(

Ryi −
Ly − 1

2

)2
]

(8)
where Rxi (R

y
i ) is the x(y) coordinate of site i and Lx (Ly)

is the lattice size along the x (y) direction. The trap coef-
ficient is chosen to ensure that the trapped atom density
vanishes before the edge of the lattice is reached. Within

( ) ( ) ( )

-

-

( ) ( ) ( ) |< >|

( ) ( ) ( ) < >

FIG. 6: Correlation functions of finite momentum superfluids
on a 32 × 32 lattice with a confining potential [Eq. 8] for
µ = 0.8U , U↑↓ = 0 and λ = 0.04U . The left column shows
results for t = 0.01U , the middle column for t = 0.024U and
the right column for t = 0.08U . The top three panels plot
the phase φ↑ of the spin up superfluid order parameter. The
middle three panels plot the magnitude and the bottom three
panels plot the density. The phase patterns in the top two
panels reveal a sudden change in superfluid order.

the mean-feild theory, we can compute the local superluid

order parameter in the trap〈bi,σ〉 =
∑

n

√
nf

(i,σ)∗
n−1 f

(i,σ)
n .

The local density is obtainted as 〈ni,σ〉 =
∑

n n|f
(i,σ)
n |2.

We now show that the phase change, discussed in pe-
riodic systems above, also manifests in trapped systems.
Fig. 6 shows a typical example obtained from solving
Eq. (2) in the presence of parabolic trapping using the
Gutzwiller ansatz with 104 random initial guess states.
Since Mott insulator is a incoherent sate with random
pahses, phases of uparrow superfluid order parameter
with |〈b↑〉| ≤ 0.05 are plotted with dark grey color in
the top panel of Fig. 6. As the hopping parameter in-
creases, the phase reorients in the trap from non-uniform
pattern to uniform due to the SOC effect. The effects pre-
dicted here are observable in measurements sensitive to
the phase of the superfluid order parameter (e.g., the mo-
mentum distribution function). This calculation shows
that realistic trapping potentials lead to finite sized sys-
tems that harbor the transitions found in periodic sys-
tems discussed above.

V. QUANTUM PHASES IN INFINITE

LATTICES

So far our study has been limited to finite-sized lat-
tices. Here boundary effects put a strong constraint
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FIG. 7: Plot of the kinetic energy terms, Eq. (9), as a function
of the spin-independent tunneling at λ = 0.04U , for a 4 × 4,
5× 5, 6× 6 lattice and an infinite-size lattice.

on the superfluid phase patterns that can be realized.
But we can use Eq. (4) to study infinite lattices. We
find a general solution for the lowest-energy state, θi↑ =
α(Ryi − Rxi ) and θi↓ = π

4 + α(Ryi − Rxi ), where α =

arctan(λ
√
2/2t). The corresponding energy for just the

kinetic terms is:

Ek = −(tA+ λB)ψ2 (9)

The competing superfluids arise from the competition be-
tween A and B coefficients.
Before studying the infinite system case we first test

that Eq. (9) gives the same results as the Gutzwiller mean
field theory. We find that this is the case by comparing
results obtained from maximizing tA+ λB in Eq. (9) on
a finite lattice with the Gutzwiller mean field theory. We
find precisely the same phase patterns given in Fig. 5.
This confirms that the Gutzwiller mean field theory is
equivalent to Eq. (9) on finite lattices.
We now study infinite lattice sizes. In the infinite sys-

tem size limit we find: Ek → −4
√
2λ sin(α) − 8t cos(α).

This implies that the energy will change smoothly as the
period of the finite momentum superfluids changes dra-
matically. Fig. 7 shows that the energy computed on
the infinite system size is in fact smooth. We therefore
conclude that infinite lattice sizes will eliminate transi-

tions observed in finite sized systems. A similar result
was found in studies of FFLO superfluids where peri-
odic boundaries also constrain the FFLO momentum to
select certain values [60, 61]. But we note that realis-
tic experiments are actually trapped finite sized systems
with N ∼ 102 − 105. We therefore conclude that transi-
tions between distinct superfluids found here should be
observable in the small system limit defined by the trap
center.

VI. SUMMARY

We have studied the interplay of strong interaction
and Rashba SOC in a model motivated by optical lat-
tice experiments: a 2D Hubbard model of two-component
bosons. We used mean field theory to map out the
phase diagram and study transitions. We find that strong
Rashba SOC can completely destroy the Mott insulator
state, even in the absence of spin-independent tunnel-
ing in the lattice. The Rashba SOC leads to superflu-
ids with complex phase patterns and finite momentum.
We identified transitions between superfluids with two
different staggered phase patterns, that can be identi-
fied in the spin-dependent momentum distribution. The
spin-dependent momentum could be accessed in time-of-
flight measurements on optical lattices. We expect these
transitions to occur in finite sized systems but the phase
patterns and precise momenta depend strongly on the
boundaries. We checked that these transitions in phase
patterns become smooth in infinite system sizes.

Our work relates to the nature of Mott insulator states
in solids. Our study of a 2D lattice finds that it is in prin-
ciple possible for strong Rashba SOC to convert a Mott
insulator into a conducting state even in the limit of van-
ishing kinetics (t → 0 with λ ∼ 1 in the lattice model or

〈p〉 → 0 with 〈~∇V × ~p〉 ∼ EF in the continuum). This
limit could have bearing on the nature of 3D Mott in-
sulator surface states that experience very weak kinetics
but strong electric fields.
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