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We theoretically investigate superfluidity in a strongly interacting Fermi gas confined to two
dimensions at finite temperature. Using a Gaussian pair fluctuation theory in the superfluid phase,
we calculate the superfluid density and determine the critical temperature and chemical potential at
the Berezinskii-Kosterlitz-Thouless transition. We propose that the transition can be unambiguously
demonstrated in cold-atom experiments by stirring the superfluid Fermi gas using a red detuned
laser beam, to identify the characteristic jump in the local Landau critical velocity at the superfluid-
normal interface, as the laser beam moves across the cloud.
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I. INTRODUCTION

In two-dimensional (2D) many-body systems, topolog-
ically nontrivial vortex fluctuations, that are suppressed
due to vortex/anti-vortex binding at low temperature,
become amplified above a certain critical temperature,
leading to the so-called Berezinskii-Kosterlitz-Thouless
(BKT) transition [1–3]. The BKT transition has been of
great importance in different branches of physics and has
been observed in a range of settings [4–7]. In particular,
ultracold atomic gases are an ideal candidate to under-
stand the interaction-driven BKT physics [7], owing to
the unprecedented controllability over interatomic inter-
actions, dimensionality and species [8, 9]. Over the past
decade, the BKT transition in a 2D weakly interacting
Bose gas has been extensively studied by measuring the
phase coherence [7, 10], confirming the universal equa-
tion of state [11, 12], probing the superfluidity [13], or
observing the free vortex proliferation [7, 14, 15].

A 2D interacting Fermi gas at the crossover from a
Bose-Einstein condensate (BEC) to a Bardeen-Cooper-
Schrieffer (BCS) superfluid provides a unique platform to
address the universal BKT mechanism [16, 17], since the
underlying character of the system changes from tightly
bound composite bosons to loosely bound Cooper pairs
of fermions, with decreasing attractions [18]. Indeed, the
fermionic BKT transition is now being pursued by sev-
eral cold-atom laboratories [19–36], and there are indica-
tions of the transition from the measurements of pair
condensation and correlation function, where: (i) the
center-of-mass momentum distribution of Cooper pairs,
nQ, exhibits anomalous enhancement near Q = 0 below
a certain temperature [29], and (ii) the first-order cor-
relation function g1(r) in real space decays algebraically
[30]. However, confirmation of the transition is still to
be demonstrated, as these two features may be explained
using a strong-coupling theory in the normal phase [37].
This situation marks the importance of having accurate

theoretical predictions for the fermionic BKT transition.
The purpose of this research is to apply a strong-

coupling theory, beyond mean-field, to a 2D interacting
Fermi gas in the superfluid phase and present predictions
for the BKT critical chemical potential, critical temper-
ature and the critical velocity at the whole BEC-BCS
crossover. Through a fully microscopic calculation of
both superfluid density and critical velocity, beyond the
phenomenological Landau quasi-particle picture, we pre-
dict the occurrence of a significant discontinuity in the
critical velocity across the transition as a result of the uni-
versal jump in superfluid density [2], which would provide
an unambiguous proof of the fermionic BKT transition.
The theoretical description of pairing in a 2D inter-

acting Fermi gas at finite temperature is a long-standing
challenge due to strongly enhanced quantum and ther-
mal fluctuations. There have been intense theoretical
efforts over the last thirty years, to understand the cor-
responding mechanism in 2D layered high-temperature
superconductors [18, 38, 39]. To a large extent, cur-
rent knowledge of the fermionic BKT transition builds
on mean-field approaches [16, 17], which break down in
two-dimensions as interactions are increased due to fluc-
tuations being larger. There are a number of studies that
take into account strong pair fluctuations based on the
many-body T -matrix scheme [40–46], however, these cal-
culations typically focus on the normal state due to tech-
nical difficulties. The ab-initio quantum Monte Carlo
(QMC) simulations at finite temperature encounter sim-
ilar issues [47]. In this work, we consider a Gaussian pair
fluctuation (GPF) theory [48–50], which is known to pro-
vide a reliable 2D equation of state at zero temperature
[44]. We generalize the GPF theory for finite temper-
atures below the superfluid transition, solving a crucial
technical problem of removing divergences in numerics.
This enables us to calculate the superfluid density, the
key quantity in characterizing the BKT transition, be-
yond the mean-field and taking into account quantum
fluctuations. Our main results, as shown in Fig. 3 and



2

Fig. 4(b), are of significant importance for further BKT
experiments with cold fermions.

The paper is set out as follows, in Sec. II we describe
the theoretical model used in calculating the thermody-
namic potential and compare the pressure and density
equations of state against other theoretical and experi-
mental results where they are available. In Sec. III we
calculate the superfluid density and determine the BKT
transition to superfluidity. Here we examine the criti-
cal chemical for the BKT transition and present a phase
diagram of the critical temperature as a function of bind-
ing energy. In Sec. IV we consider a method to unam-
biguously identify the fermion BKT transition through
stirring the cloud with a red detuned laser. Finally, in
Sec. V we consider the conclusion and outlook for future
research.

II. THE GPF THEORY AT FINITE

TEMPERATURE

A 2D interacting Fermi gas is well-described by the
Hamiltonian [18],

H =
∑

σ

ψ̄σ(r)H0ψσ(r)− Uψ̄↑(r)ψ̄↓(r)ψ↓(r)ψ↑(r), (1)

where ψσ(r) is the annihilation operator for the spin state
σ =↑, ↓, H0 = −~

2∇2/(2M) − µ the kinetic Hamilto-
nian with atomic mass M , µ the chemical potential, and
U denotes the bare interaction strength of a contact in-
teraction between unlike fermions and is related to the
binding energy εB via, 1/U =

∑

k(~
2k2/M + εB)

−1.

Technical details of the GPF theory have been ex-
tensively discussed elsewhere [44, 48, 50], here, we
only present a brief overview of the key equations.
Within the GPF framework, we account for strong pair
fluctuations at the Gaussian level, beyond the stan-
dard mean-field treatment, and consider separately their
contributions to the thermodynamic potential, Ω =
ΩMF + ΩGF. These two parts can be represented by
the BCS Green’s function G0(k, iωm) and the vertex

function Γ(q,iνl) (i.e., the Green’s function of Cooper
pairs): ΩMF = −kBT

∑

k,iωm
ln[−G−1

0 ], and ΩGF =

(kBT/2)
∑

q,iνl
ln[−Γ−1]. That is, the expressions of the

thermodynamic potentials for ideal fermions and bosons,
where ωm = (2m + 1)πkBT and νl = 2πlkBT are the
fermionic and bosonic Matsubara frequencies with inte-
gers m and l, respectively. In other words, the system
may be viewed as a non-interacting mixture of fermions
and pairs. Though the picture is simple, it captures
the essential physics for weak and strong interactions.
Indeed, at zero temperature, the GPF theory provides
a quantitative description of the BEC-BCS crossover in
both 3D [48–50] and 2D [44, 51]. This can be extended
straight forwardly to the general situation where the con-
densed pairs flow with a wavevectorQ, as represented by
a pairing gap ∆eiQ·r [52].
In this case, the mean-field thermodynamic potential

is given by [52],

ΩMF (Q) =
∆2

U
+
∑

k

[

ξ̃k − Ek −
2

β
ln
(

1 + eβE
+

k

)

]

,

(2)

where ξ̃k ≡ ~
2k2/(2M) − [µ − ~

2Q2/(8M)], Ek ≡
√

ξ̃2k +∆2, β = 1/(kBT ) and E
±
k ≡ Ek ± ~

2k ·Q/(2M),

and to ensure the gapless Goldstone mode, the pairing
gap ∆ should be calculated using the mean-field gap
equation,

∑

k

[

1− 2f
(

E+
k

)

2Ek

−
1

~2k2/M + εB

]

= 0, (3)

with the Fermi distribution function f(x) ≡ 1/(eβx +1).
The expression for the thermodynamic potential of pair
fluctuations is more subtle [48, 50]:

ΩGF (Q) = kBT
∑

Q≡(q,iνl)

S (Q) eiνl0
+

, (4)

S (Q) =
1

2
ln

[

1−
M2

12 (Q)

M11 (Q)M11 (−Q)

]

+ lnM11 (Q) ,

where the matrix elements of −Γ−1(Q) are given by [52],

M11 (Q) =
1

U
+
∑

k

[

u2+u
2
−

1− f
(+)
+ − f

(−)
−

iν̃l − E+ − E−
− u2+v

2
−

f
(+)
+ − f

(+)
−

iν̃l − E+ + E−
+ v2+u

2
−

f
(−)
+ − f

(−)
−

iν̃l + E+ − E−
− v2+v

2
−

1− f
(−)
+ − f

(+)
−

iν̃l + E+ + E−

]

,

M12 (Q) =
∑

k

(u+v+u−v−)

[

−
1− f

(+)
+ − f

(−)
−

iν̃l − E+ − E−
−

f
(+)
+ − f

(+)
−

iν̃l − E+ + E−
+

f
(−)
+ − f

(−)
−

iν̃l + E+ − E−
+

1− f
(−)
+ − f

(+)
−

iν̃l + E+ + E−

]

. (5)

Here, we use the short-hand notations iν̃l ≡ iνl − ~
2q ·

Q/(2M), E± ≡ Ek±q/2, f
(±)
± ≡ f(E±

k±q/2), u
2
± = (1 +

ξ̃k±q/2/Ek±q/2)/2 and v
2
± = 1−u2± . The density n of the

system can be calculated using n = −∂(ΩMF+ΩGF)/∂µ,

which determines the Fermi wavevector kF = (2πn)1/2,
energy εF = πn~2/M and temperature TF = εF /kB.

Despite the simplicity and elegance of the GPF the-
ory, it is not easy to solve numerically in general. The
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Figure 1. (color online). (a) Pressure equation of state at
βεB = 0.5 where P = −Ω/V . The prediction from the GPF
theory (black solid line) is compared with the results from the
Luttinger-Ward theory (red dashed line) [42, 45] and lattice
QMC simulation (blue squares) [47], and the experimental
data from Swinburne [33] (solid circles with error bar at a
slightly smaller βεB = 0.47). The inset shows the density
equation of state at the same interaction strength. (b) Pres-
sure equation of state at βεB = 0.1, where the Fermi gas
remains normal up to βµ = 8. Here, P0(µ) and n0(µ) are the
pressure and density of an ideal Fermi gas, respectively.

technical difficulty comes from the sum over the bosonic
Matsubara frequency iνl in Eq. (4), which is divergent.
For an interacting 2D Fermi gas at zero temperature the
problem may be solved by utilizing an additional function
which has no singularities or zeros in the left hand-plane
[44, 50]. At finite temperature, however, the GPF has
only been approximately treated by taking into account
the effects of low-energy phonon modes [40, 46]. Here,
we overcome the divergence by writing [53],

1

β

∑

|l|>l0

Sη (q, iνl) = −
1

π

ˆ +∞

−∞

dω
ImSη (q, ω + iγ)

eβω + 1
, (6)

where Sη(q, iνl) ≡ S(q, iνl)e
iνlη and γ = (2l0+1)π/β for

arbitrary positive integer l0. Thus, the contribution to
ΩGF at a given q can be calculated by using Eq. (6) and
taking the remaining discrete sum with |l| < l0, in the
limit of η → 0+. We have confirmed that this numerical
procedure is robust and independent of the choice of l0.
To illustrate the importance of our full treatment of

the GPF, we show in Fig. 1 the results for the pressure
and density equations of state, where P = −Ω/V , at in-
teraction strengths βεB = 0.5 (a) and βεB = 0.1 (b) with
Q = 0, compared with the predictions from the mean-
field theory, above Tc calculations with the self-consistent
Luttinger-Ward theory [42, 45] and lattice QMC simu-
lation [47], and with recent experimental measurements
[33]. It is reasonable from the comparison of results in
Fig. 1 that the GPF theory provides a useful description
over the whole temperature regime, differing from the
lattice QMC and experimental results by ≈ 10% for the
interactions strengths shown. For further comparison of
the normal state calculations of the GPF with experimen-
tal results we refer the reader to Ref. [45], where in the
normal state the GPF calculations consistently under-
estimate the density. The discontinuity in the pressure
and density equation of state is an unphysical artefact
of treating the pairing fluctuations at the Gaussian level
when calculating the pairing gap ∆ and chemical poten-
tial µ, however the calculation of the superfluid density
is still consistent [54]. For a superfluid 2D Fermi gas,
the GPF theory provides the best description to date, as
current mean-field theories strongly under-estimate the
interaction effects [17] and there are no superfluid QMC
calculations at finite temperature. Alternative T -matrix
theories have so far focused on the normal state only
and predict a 2D superfluid transition at zero tempera-
ture [38, 43]. This is due to the Gaussian fluctuations
destroying long-range order at finite temperature in two
dimensions.

III. SUPERFLUID DENSITY AND PHASE

DIAGRAMS

We now consider the case that the condensed pairs flow
with superfluid velocity vs = ~Q/(2M). Treating vs as
small, the superfluid density ns of the system can be
calculated from the lowest-order change in the thermo-
dynamic potential, i.e., ∆Ω = Ω(vs)−Ω(0) ≃Mnsv

2
s/2,

due to the added kinetic energy of the superfluid flow
[52], thus, we obtain,

ns =
1

M

[

∂2Ω (vs)

∂v2s

]

vs=0

=
4M

~2

[

∂2Ω (Q)

∂Q2

]

Q=0

, (7)

and the superfluid density can be calculated from the
GPF thermodynamic potential of Eq. (4). The BKT
critical temperature Tc can then be estimated by self-
consistently solving the KT criterion [3, 17],

kBTc =
π

2

~
2

4M
ns (Tc) , (8)
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Figure 2. (color online). The superfluid density, in units of the
density of an ideal Fermi gas n0, as a function of the chemical
potential at the interaction strength βεB = 0.5. The GPF
and mean-field predictions are shown by the black solid and
grey dot-dashed lines, respectively. The circles indicate the
critical superfluid density (or chemical potential) for the BKT
transition. The inset shows the superfluid fraction ns/n.

Figure 2 reports the GPF superfluid density ns at
the interaction strength βεB = 0.5, as a function the
dimensionless chemical potential βµ. The main figure
shows ns in units of the density of an ideal Fermi gas
n0 = 2λ−2

T ln(1 + eβµ), where λT ≡
√

2π~2/(MkBT ) is
the thermal wavelength, while the inset shows the su-
perfluid fraction ns/n. For comparison, we also plot the
mean-field results (dot-dashed). By dividing both sides
of the KT criterion, Eq. (8), by n0, we find that the
dimensionless critical chemical potential, (βµ)c, may be
obtained by plotting ns/n0 and looking for the intercept
with 8/ ln(1+eβµ). Towards the low-temperature regime,
βµ → ∞, the superfluid density calculated using the
mean-field theory is typically under-estimated, although
the superfluid fractions from both mean-field and GPF
theories saturate to unity. Consequently, the mean-field
theory predicts a larger critical chemical potential.

By repeating the calculations at different interaction
strengths we obtain a phase diagram for the critical
chemical potential, as shown in Fig. 3. This phase dia-
gram is particularly useful for current cold-atom exper-
iments, where the Fermi gas is confined in a harmonic
trapping potential, V (r), and is inhomogeneous. A sec-
tion of the cloud is locally superfluid if its local chemical
potential µloc = µ − V (r) is larger than µc. Therefore,
experimentally, once the chemical potential at the trap
center, µ, and the temperature, T , are measured by fit-
ting the density equation of state at the edge of the cloud
with the known virial expansion [33], one can then deter-
mine the superfluid radius of the Fermi cloud from our
phase diagram, Fig. 3. To make a close connection with
experiments, in the figure we show the largest chemical

normal

 

 

(
c+

B/2
)

B

superfluid

Figure 3. (color online). The critical chemical potential (with
εB/2 added) as a function of the interaction strength. The
black solid line and the grey dot-dashed line show the GPF
and mean-field results, respectively. The symbols (in different
colors) show the largest chemical potential achieved in the
recent density equation of state measurements [33, 34], at
different interaction strengths.

potential achieved in recent equation of state measure-
ments [33, 34]. It is encouraging to see that the experi-
ment was approaching the BKT transition.

On the theoretical side, it is of interest to determine
the phase diagram for the parameter space of Tc/TF and
εB/εF , where, we calculate the superfluid fraction as a
function of T/TF . A typical prediction at εB/εF = 0.1
is illustrated in Fig. 4(a) by solid circles, contrasted
with the mean-field result (dot-dashed line). The su-
perfluid density of a 2D interacting Fermi gas has been
recently calculated by Bighin and Salasnich [46] using
Landau’s phenomenological formulation for the normal
density and the quasiparticle spectrum based on the zero-
temperature GPF equation of state [55]. Their result is
plotted in Fig. 4(a) for comparison. We find that the pre-
diction of Landau’s formulation agrees well with our full
GPF calculation at low temperatures, where ns/n ∼ 1,
but significantly over-estimates the superfluid fraction
when the temperature becomes larger. According to the
KT criterion, the critical temperature Tc/TF can be ex-
tracted by locating the intercept point between the curves
ns/n and 8T/TF and the resulting phase diagram is re-
ported in Fig. 4(b). Our result shows a significant im-
provement on the BCS side over the previous theoret-
ical predictions [17, 46], while on the BEC side (i.e.,
εB > 0.5εF ), our result follows closely to the approximate
prediction from Landau’s formula, since in the latter, the
superfluid fraction at low temperatures T ∼ 0.1TF is rea-
sonably approximated. In the deep BEC regime our GPF
result approaches the anticipated BKT critical tempera-
ture of a weakly interacting Bose gas [46, 56], since, the
molecular scattering length is correctly reproduced in the
GPF theory [44, 57]. In this respect, the phase diagram
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Figure 4. (color online). (a) The superfluid fraction as a
function of temperature at interaction strength εB = 0.1εF .
Our GPF prediction (red circles) is compared with the mean-
field result (grey dot-dashed line) and the approximated result
based on the zero-temperature GPF (blue solid line) [46]. The
intersection with the curve 8T/TF determines the BKT tran-
sition temperature. (b) The critical temperature as a function
of εB/εF .

Fig. 4(b) gives a coherent picture across the whole BEC-
BCS crossover.

IV. PROBING THE FERMIONIC BKT

TRANSITION

We now consider a method to unambiguously identify
the fermionic BKT transition. Due to strong interac-
tions, measurements of both phase coherence and free
vortex proliferation, which are efficient for a weakly inter-
acting 2D Bose gas, do not work well. Instead, we follow
the idea of the superfluidity measurement [13, 60, 61] and
propose to observe the superfluid behavior of an interact-
ing 2D Fermi gas by stirring the cloud with a red/blue
detuned laser beam. When the Fermi cloud is in the su-
perfluid state, we anticipate that the measured critical
velocity will have a sudden jump as the position of the
stirred beam moves across a critical radius rc, which cor-
responds to the critical chemical potential µc = µ−V (rc).
This sudden increase is caused by the universal jump in
the superfluid density, since just below (above) the BKT
critical temperature (chemical potential), the finite su-
perfluid density is able to support nonzero superfluid flow
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Figure 5. (color online). The critical velocity vc, in units of

the thermal velocity vT ≡ [kBT/(2M)]1/2 = ~kT /(2M), as a
function of βµ at the interaction strength βεB = 0.5. The
black circles (with dashed line) and the grey dot-dashed line
show the GPF and mean-field predictions, respectively. The
inset shows the thermodynamic potential at nonzero super-
fluid velocity v = ~Q/(2M), which exhibits a local maximum
at vc.

[58, 59].
Theoretically, we calculate the critical velocity from

the velocity dependence of the thermodynamic potential
Ω(v) at a given temperature, T . With increasing super-
fluid flow, the loss of stability of the system is indicated
by the appearance of a local maximum in the thermody-
namic potential (see Appendix A for a detailed discus-
sion), as illustrated in the inset of Fig. 5. The determined
critical velocity at the interaction strength βεB = 0.5
is presented in the main figure. The apparent discon-
tinuity at (βµ)c ∼ 8 serves as a smoking-gun signature
for the BKT transition. To give some realistic numbers,
consider a single 2D cloud of N = 40, 000 neutral 6Li
atoms in a hybrid optical/magnetic trap with frequency
ωx ≃ ωy ∼ 2π × 25 Hz at temperature T ∼ 20 nK and
at binding energy εB = 10 nK (satisfying βεB ∼ 0.5),
which is within the regime attainable at Swinburne [33].
The chemical potential at the trap center is estimated
to be µ ∼ 240 nK. Thus, the superfluid radius is about
rc ∼ 100 µm, and from Fig. 5, the anticipated jump in
the critical velocity would be about ∆vc ≃ 0.6vT ∼ 4.5
mm/s, which is readily detectable [60].

V. CONCLUSION AND OUTLOOK

In this paper, we have determined the thermodynamic
potential and superfluid density of a two-dimensional
Fermi gas at finite temperature for the BEC-BCS
crossover, taking into account the strong-coupling pair
fluctuation effects at the Gaussian level, beyond previ-
ous mean-field calculations. We overcame the numerical
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difficulties through a novel method of summing the Mat-
subara frequencies, allowing for efficient computation of
the superfluid density.

With the calculation of the superfluid density and us-
ing the KT criterion we detailed the superfluid transition
temperature of a strongly interacting 2D Fermi gas. We
find phase diagrams for the critical chemical potential
and temperature as a function of interaction strength,
and predict the occurrence of a significant discontinuity
in the critical velocity across the transition as a result
of the universal jump in superfluid density. This work
provides to date the best estimates for the prediction of
the fermionic Berezinskii-Kosterlitz-Thouless transition
for the whole BEC-BCS crossover, and our results sup-
port on-going cold-atom experiments to unambiguously
observe the fermionic BKT transition through the mi-
croscopic calculation of both the superfluid density and
critical velocity. Our approach may also be useful for
understanding the superfluid phases of the 2D Hubbard
model [62].
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Figure 6. (color online). The mean-field thermodynamic po-
tential at nonzero superfluid velocity v = ~Q/(2M), which
saturates to the ideal gas thermodynamic potential Ω0 at
the pair-breaking velocity vpb. Here we take βεB = 0.5 and
βµ = 8.35.

Appendix A: Velocity dependence of the mean-field

thermodynamic potential

In this appendix, we examine the mean-field thermo-
dynamic potential as a function of the superfluid veloc-
ity v = ~Q/(2M) in the weakly interacting regime with
βεB = 0.5 and βµ = 8.35. As shown in Fig. 6, the
thermodynamic potential increases with increasing ve-
locity and saturates to its maximum value (which is the
ideal gas thermodynamic potential), precisely at the pair-
breaking velocity [58],

vpb =





√

µ2 +∆2
mf (Q = 0)− µ

M





1/2

≃ 0.9vT . (A1)

At this pair-breaking velocity, the pairing gap becomes
zero and the system is no longer superfluid [58]. As
the system is in the weakly interacting regime (i.e.,
εB/εF ∼ εB/µ ∼ 0.05 or ∆mf (Q = 0)/µ ∼ 0.3), the
sound velocity of the phonon mode vs ∼ 4vT is larger
than vpb and hence the critical velocity of the system is
given by vpb, according to Landau’s picture. Therefore,
we observe that within mean-field, the thermodynamic
potential attains its maximum at the critical velocity.
By taking into account the strong pair fluctuations be-

yond mean-field, we anticipate that the thermodynamic
potential will exhibit a local maximum as the superfluid
velocity increases. This creates an energy barrier. Once
the barrier is overcome, the system may lose its super-
fluidity. The velocity at the local maximum can then be
reasonably interpreted as the critical velocity.
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[21] B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zw-
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