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Abstract

By numerically solving the time-dependent Schrödinger equation (TDSE) for helium in its

full dimensionality, we determine the joint momentum spectrum along the polarization direction

P (k1z , k2z) for two-photon double ionization (TPDI). We identify features uniquely attributable

to dynamical correlation effects in the double continuum. We show that some of the correlation

signatures persist in integrated measures, in particular the emission asymmetry, that should become

accessible with upcoming XUV light sources. We also compare with predictions of analytic models

for TPDI which neglect such final-state correlations.
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I. INTRODUCTION

Modern experimental techniques, such as VMI (velocity map imaging [1]) and COLTRIMs

(cold target recoil ion momentum spectroscopy [2]) provide direct access to multi-differential

information on charged-particle fragmentation patterns following atomic collisions or

photoionization. Angular-resolved photoelectron spectra now serve as important tools for

accurate studies of laser-atom interactions. The simultaneous determination of the vectorial

momenta of ejected electrons and recoil ions allows to determine the momentum correlation

between electrons emitted in multi-electron emission events. For example, joint projected

momentum spectra along the laser polarization axis P (k1z, k2z), integrated over all transverse

components, have been measured for strong-field double ionization of atoms by near-infrared

lasers [3–8]. Recently, the measurement of these joint momentum spectra has been extended

to wavelengths in the mid-infrared [9]. These experimental advances have given rise to a large

number of theoretical studies and simulations [10–14]. However, for the very fundamental

process of two-photon double ionization (TPDI) of helium by an XUV pulse, such joint

momentum spectra are not yet available due to the limited photon flux and resulting low

count rates of heretofore available XUV light sources. Nevertheless, the free-electron laser

(FEL) source FLASH allowed for the measurement of the momentum-differential He2+ recoil

ion distribution [15] providing first indirect information on the joint momentum distribution.

Explicit theoretical predictions for P (k1z, k2z) are, to our knowledge, also missing.

TPDI of helium has attracted significant attention from both the theoretical [16–56]

and experimental side [15, 57–59]. TPDI of helium is one of the quantum three-body

problems that nowadays can be solved, though numerically, yet essentially exactly. With

the availability of novel light sources in the EUV and XUV regimes, namely high-harmonic

generation (HHG) based sources for sub-fs pulses [58, 60, 61] and FELs generating trains

of pulses of ∼10 fs duration [15, 57, 59], TPDI has become experimentally accessible. For

few-photon absorption, perturbation theory can be successfully applied to account for both

one-photon double ionization (PDI) and TPDI. Compared to PDI, TPDI is intrinsically

more complex. In addition to the initial ground state and the final double continuum state,

also the accurate representation of relevant intermediate states are required. Recently, it has

been recognized that single ionization continuum states are the most important intermediate

states both in the sequential (ω > 54.4 eV) and non-sequential regimes (39.5 eV < ω <54.4
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eV) of TPDI [16, 22–25, 48–51, 55]. Exploiting this observation, Ishikawa et al.[16], Horner

et al. [22–25], Førre et al. [48, 55], and Jiang et al. [49–51] have developed closely related

simple (semi-)analytic models that are capable of predicting the total cross section (or the

total double ionization probability) and the energy spectrum of the two electrons in TPDI.

The price to pay for such a simplified treatment is the neglect of dynamical correlation

effects in the two-electron continuum from the outset. Amazingly, these simple models have

predicted total double ionization probabilities and energy spectra that are quantitatively

comparable to results from the elaborate numerical time-dependent Schrödinger equation

(TDSE) methods.

The success of these models originate primarily from two features: within second order

time-dependent perturbation theory, the energies of the initial, intermediate, and final states

enter as parameters, which can be accurately accounted for by using input from either

accurate time-independent calculations (and, thus, containing socalled static correlations) or

from experiment. Moreover, the time ordering of the underlying (non)-sequential processes

and the spectral broadening due to the transient population of the intermediate states within

the ultrashort pulse duration is included in the nested double integral [see Eq. (14) below]

[16, 22–25], often referred to as “shape” function. Consequently, the intermediate-state

phase evolution and interferences between interfering ionization paths are approximately

taken into account. Electron correlations play also an important role in the final state of the

two-electron continuum and can strongly influence the momenta of the outgoing electrons.

Most prominently, the repulsive electron-electron interaction suppresses the elections ejected

with momentum vectors pointing in the same direction. Final-state electron correlations

can be accounted for by the exact double continuum wave function. They are, however,

absent in the (semi)analytical models for TPDI referred to above. We denote in the

following such correlations in the double continuum as dynamical final-state correlations.

While the atomic structure information and, consequently, static correlations are, thus, at

least partially accounted for, the obvious shortcoming of those models is the neglect of

dynamical correlations in the two-electron continuum. Deviations from the predictions of

these models, in particular for the two-electron angular distribution, can therefore serve

as sensitive measures for the influence of such dynamical final-state electron correlation.

While the perturbative models predict uncorrelated dipolar angular distributions for each

electron (∝cos2 θ1 cos
2 θ2) where θ1,2 are the polar angles of the emitted electrons, pronounced
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deviations from such a distribution has been observed in a large number of numerical

calculations [19, 20, 29, 52]. First indirect experimental evidence has emerged from the

recoil-ion spectrum [15] but direct measurements of the joint momentum distribution are

still missing.

Multi-differential measurements of TPDI of helium have remained a challenge because

of both the low TPDI cross section and the low photon flux and low repetition rates

of XUV photon sources available up to now. As more powerful HHG and FEL based

sources are expected to become available, it is of interest to explore possible protocols

to measure dynamical electron-electron correlations in the two-electron continuum. The

central question to be addressed is: which level of multi-differential resolution is required

to uniquely identify correlation effects? Conversely, can integrated and, hence, more robust

measures be identified that still carry unambiguous signatures of correlation effects?

In the present paper we compare results from our numerical TDSE approach [29, 52, 62]

to exactly solve the problem with a semi-analytic model, which can accurately predict total

cross sections as well as photoelectron energy distributions (PED). The latter model serves as

point of reference in order to identify dynamical correlation effects in the double continuum.

We focus on the projected joint momentum distribution P (k1z, k2z) where ki (i = 1, 2) are the

vectoral momenta of the ejected electrons and the transverse coordinates are integrated over.

We also investigate measures that result from further integration over this two-dimensional

distribution and which are expected to be more robust in the view of the expected low count

rates and in the presence of strong background signals.

The plan of the present paper is as follows: in Sec. II we briefly review the two

complementary theoretical methods employed, the numerical solution of the TDSE and the

virtual sequential model (VSM) based on time-dependent second-order perturbation theory

(TDPT2). Numerical results for the projected joint momentum distributions derived from

both TDSE and VSM allowing for identification of correlation effects will be presented in

Sec. III. Integrated measures, mainly the emission asymmetry and the azimuthal angle

correlation function will be discussed in Sec. IV followed by concluding remarks in Sec. V.

Atomic units are used unless stated otherwise.
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II. THEORETICAL METHODS

In this section, we briefly review two complementary methods employed in our study of

the joint momentum distribution of TPDI of helium. We compare and contrast the results

of the numerical solution of the TDSE with those from the semi-analytical VSM which is

based on second-order perturbation theory and neglects dynamical final-state correlations.

In our TDSE approach [29, 30, 52, 62] the wavefunction Ψ(r1, r2, t) is expressed in terms

of a time-dependent close coupling (TDCC) expansion.

Ψ(r1, r2, t) =
∑

L,M,l1,l2

RL,M
l1,l2

(r1, r2, t)

r1r2
Y L,M
l1,l2

(r̂1, r̂2), (1)

where

Y L,M
l1,l2

(r̂1, r̂2) =
∑

m1,m2

〈l1m1l2m2|l1l2LM〉 Yl1m1
(r̂1)Yl2m2

(r̂2) (2)

are the coupled two-particle spherical harmonics and 〈l1m1l2m2|l1l2LM〉 are the Clebsch-
Gordan coefficients. For linearly polarized laser light, the magnetic quantum number M = 0

is conserved for double ionization from the ground state of helium. The radial part of the

wave function is discretized by the finite-element discrete variable representation (FEDVR)

method [63–65]. We use the Lanczos algorithm [66–69] for the time propagation. We extract

information on the final state of the two-electron wavepacket formed by the XUV pulse by

propagating the wavefunction for a period of time after the conclusion of the laser pulse

sufficiently long as to reach convergence [29]. We then project the wavefunction onto the

product of two hydrogen-like scattering states of He+

f (k1,k2) = 〈Ψk1
(r1)Ψk2

(r2)|Ψ(r1, r2, tf)〉. (3)

The one-electron scattering state normalized in the momentum space is given by

Ψk(r) =
1

k

1√
2π

∑

l,m

ile−i(σl+δl)Y ∗
lm(k̂)Rkl(r)Ylm(r̂), (4)

where σl = arg Γ
(

l + 1− iZ
k

)

is the Coulomb phase shift, Z is the nuclear charge, and δl

is the l-th partial wave phase shift (with respect to the Coulomb waves) due to any non-

Coulomb short-range admixture to the potential. In the present case, Z = 2 and δl = 0.

The radial wave function Rkl(r) is analytically given by

Rkl(r) =
2

r

2leπZ/2k |Γ (l + 1− iZ/k)|
(2l + 1)!

e−ikr(kr)(l+1)
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× 1F1 (l + 1 + iZ/k, 2l + 2, 2ikr) . (5)

and is normalized as
∫ ∞

0

r2Rk′l(r)Rkl(r)dr = 2πδ (k − k′) . (6)

In Eq. (5) the Kummer confluent hypergeometric function is denoted by 1F1. Inserting Eq.

(1) and Eq. (4) into Eq. (3), we obtain

f(k1,k2) =
1

2πk1k2

∑

L,l1,l2

Y L
l1,l2(k̂1, k̂2)M

L
l1,l2(k1, k2), (7)

with

ML
l1,l2(k1, k2) = (−i)l1+l2ei[σl1

(k1)+σl2
(k2)]

∫∫

dr1dr2

× r1r2Rk1l1(r1)Rk2l2(r2)Ψ
L
l1,l2

(r1, r2, tf). (8)

The fully differential vectorial joint momentum distribution of the two ejected electrons is

now given by

P (k1,k2) = |f(k1,k2)|2. (9)

The projected (or reduced) joint momentum distribution along the laser polarization z

axis follows as

P (k1z, k2z) =

∫

P (k1,k2)dk1xdk1ydk2xdk2y. (10)

Exploiting the azimuthal symmetry of Eq. (9), Eq. (10) can be reduced to a triple integral

P (k1z, k2z) = 2π

∫ ∞

|k2z |

∫ ∞

|k1z |

∫ 2π

0

k1k2 ×

P (k1, arccos
k1z
k1

, 0, k2, arccos
k2z
k2

,∆φ)d∆φdk1dk2 (11)

with ∆φ = φ2−φ1 the difference between the azimuthal angles of the two emitted electrons.

Eq. (9) and Eq. (11) can be alternatively calculated from time-dependent second-order

perturbation theory (TDPT2). Details can be found in references [16, 22–25, 48–50, 55]. In

brief, the TPDI process is approximated by two one-photon single ionization processes, the

ionization of the neutral Helium He→He+ followed by photon ionization of the intermediate

singly charged ionic state He+ to He2+. Accordingly, dynamical electron correlations between

the two outgoing electrons are neglected from the outset. In each separate transition the

dipole matrix element couples the initial s state and the final p state, each of which gives

the photo-electron distributions as ∝ cos2 θ.
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FIG. 1. The projected joint momentum distribution [see Eq. (10)] along the laser polarization

axis at photon energies of 42 eV [(a) and (b)], 53 eV [(c) and (d)], and 56 eV [(e) and (f)]. The

prediction from an uncorrelated VSM based on second order time-dependent perturbation theory

(TDPT2): (a), (c), and (e). Prediction from the TDSE: (b), (d), and (f). In both cases, a 4 fs

sin2-shape laser pulse is used.

In the present implementation of the virtual sequential model as one variant of TDPT2,

the fully differential probability is given by [22–25, 49, 50]

P (k1,k2) =

(

3

4π

)2
P (k1, k2)

k1
2k2

2 cos2 θ1 cos
2 θ2 (12)

with

P (k1, k2) =

k1k2
1

2

( c

4π2

)2

∣

∣

∣

∣

∣

∣

√

σHe (E1)

ωai

√

σHe+ (E2)

ωfa
K (Ea)

+

√

σHe (E2)

ωbi

√

σHe+ (E1)

ωfb
K (Eb)

∣

∣

∣

∣

∣

∣

2

, (13)
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where E1 and E2 are the energies of the two electrons, c is the speed of light, σHe(E) and

σHe+(E) are the one-photon single ionization cross section of He and He+, respectively,

ωai = Ea−Ei, ωfa = Ef −Ea, ωbi = Eb−Ei, ωfb = Ef −Eb, Ei ≈ −2.9037 a.u., Ea = E1−2

a.u., Eb = E2−2 a.u., Ef = E1 + E2. The socalled “shape” function K(Ea) [16, 22–25] is

given by

K (Ea) =

∫ ∞

−∞

dτ1F (τ1) e
iωfaτ1

∫ τ1

−∞

dτ2F (τ2)e
iωaiτ2 , (14)

where F (t) is the electric field of the laser pulse. K(Eb) follows from Eq. (14) replacing the

index a by b. K(Ea) contains the spectral information on the initial (Ei) and intermediate

state (Ea), the spectral broadening through the Fourier spectrum of the pulse F (t) as well

as time ordering of the two single ionization events (|i〉 → |a〉 → |f〉).
Inserting Eq. (12) into Eq. (11) yields the prediction for the projected joint momentum

distribution

P (k1z, k2z) =
9

4
k2
z1k

2
z2

∫ ∞

|k2z |

∫ ∞

|k1z |

P (k1, k2)

k1
3k2

3 dk1dk2. (15)

III. NUMERICAL RESULTS FOR THE JOINT MOMENTUM DISTRIBUTION

We now compare numerical results for the projected joint momentum distribution along

the polarization axis from the TDSE and TDPT2. This observable has in the past provided

valuable experimental information on correlated two-electron emission by near infrared

strong field lasers [7, 9]. It is expected to be experimentally accessible for the two-photon

XUV photoionization in the near future. We consider photon energies ranging from 42 eV,

deep in the non-sequential regime, to energies just above the threshold in the sequential

regime at 54.4 eV.

The evolution of P (k1z, k2z) as a function of photon energy is displayed in Fig. 1. At 56

eV, just above the threshold for sequential ionization, the two models are in near-perfect

agreement. The spectral width of the 4 fs sin2 envelope pulse is sufficiently narrow (∼1.5 eV)

as to avoid significant spectral overlap with the non-sequential regime. Obviously, in the

sequential regime and for sufficiently long pulses dynamical correlation effects in the double

continuum are largely negligible. The joint momentum distribution shows a pronounced

two-fold mirror symmetry (k1z→−k1z, k2z→−k2z) and the nodal planes (k1z = 0, k2z = 0)

of the two “independent” dipolar emission patterns are well preserved. They cut into each

of the four peaks of the cross-like pattern giving rise to double peaks. Each double peak
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signifies the preferred extremely asymmetric energy distribution where one electron carries

away almost the entire excess energy. Just below the threshold at 53 eV first subtle effects of

correlation effects become visible. While in the TDPT2 model the two-fold mirror symmetry

is strictly preserved, in the full TDSE calculation the lobes of the double peak lying in the

second and fourth quadrant begin to be enhanced while the ones in the first and third

quadrant are suppressed. This structure is closely related to the double peak structure in

the recoil momentum spectrum discussed by Kurka et al. for photon energies near 52 eV [15].

While in two theoretical simulations presented in [15] such a double peak structure appeared,

the corresponding experimental recoil distribution featured only a single broadened peak.

The mapping of the double peak in P (k1z, k2z) onto the recoil momentum distribution is

straightforward: the stronger lobe in the second and fourth quadrant corresponds to back-

to-back emission of one fast and one slow electron yielding a somewhat lower total recoil

momentum while the weaker lobe in the first and third quadrant corresponds to side-by-

side emission of the electron pair with a similar asymmetric energy sharing giving rise to a

slightly larger recoil momentum of the He2+ nucleus. In a model without dynamical final-

state correlation (such as the present version of TDPT2) both lobes have identical weight.

The structural similarity of P (k1z, k2z) just above and below the threshold, despite the

marked quantitative differences, supports the notion of the “virtual” sequential ionization

process put foward by [22–24]. The present analysis suggests that future measurement of

P (k1z, k2z) could help to resolve the discrepancy between theory and experiment for the

recoil ion spectrum.

Lowering the photon energy further deep into the non-sequential regime (42 eV) the

two-fold symmetry is strongly broken. Emission takes place almost exclusively back-to-

back (second and fourth quadrant) while side-by-side emission (first and third quadrant) is

strongly suppressed. The TDPT2 model obviously fails to reproduce this effect. Moreover,

the nodal planes of two separate dipolar emission processes predicted by this model are now

largely smeared out in the TDSE solution. By comparing the joint momentum distribution

at 42 and 52 eV it is obvious that the single broad peak for symmetric energy sharing

(kz = −k1 ≈ 0.35) at 42 eV results from merging of the two lobes of asymmetric energy

sharing lying in the same quadrant (e.g., k2z = 1.35, k1z = −0.15 and k2z = 0.15, k1z = −1.35

in the second quadrant) as the photon energy is lowered. It has been shown previously that

the present TDPT2 model can reliably reproduce total double ionization cross sections as
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well as singly differential energy spectra [49, 50] indicating that the single ionization states

form the dominant (on- or off-shell) intermediate states. The present results demonstrate

that the final-state joint momentum distribution is a very sensitive measure for dynamical

final-state correlations which are absent in the TDPT2. Dynamical correlations in the

double continuum appear, for relatively long pulses (4 fs), prominently only in the strictly

non-sequential regime. For shorter pulses this clear separation breaks down. This is due

to two competing effects: for very short pulses (a few hundred attoseconds) the temporal

proximity between the two ionization events renders the notion of sequential ionization

obsolete [29, 30, 70]. For somewhat longer pulses (∼1 fs) the increased spectral width of the

pulse leads to the simultaneous presence of frequency components both above and below

the sequential threshold. This is illustrated in Fig. 2 where for the same mean photon

energy (〈ω〉=56 eV) the joint momentum distribution for the 1 fs pulse (band width 6 eV)

reflects already features of the non-sequential regime, in particular the breaking of the two-

fold mirror symmetry. On the other hand, further increasing the pulse duration from 4 fs to

8 fs (band width 0.75 eV) leaves P (k1z, k2z) essentially unchanged. This should facilitate its

experimental observation with an FEL source as the typical durations of the pulses within

an FEL pulse train are of the order of ∼10 fs and fluctuating. Deep in the non-sequential

regime (mean energy ≈ 42 eV) P (k1z, k2z) is, apart from Fourier broadening, insensitive to

the variation of pulse duration between 1 and 8 fs.

IV. INTEGRAL MEASURES

In view of the still considerable challenge to experimentally resolve the two-dimensional

distribution P (k1z, k2z) it is of interest to inquire into simpler and more robust measures

for correlation effects that result from integration over the joint momentum distribution.

We consider two such measures, the asymmetry A and the azimuthal correlation function

P (∆φ). The asymmetry is defined in terms of integrals over selected quadrants of the joint

momentum distribution function,

A =
P (−,+)− P (+,+)

P (−,+) + P (+,+)
(16)

where P(+,+) is the integral over the first quadrant

P (+,+) =

∫ ∞

0

dk1,z

∫ ∞

0

dk2,zP (k1,z, k2,z) (17)
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FIG. 2. Pulse duration dependence of the joint momentum distribution along the laser polarization

axis in the nonsequential regime [top panels, (a), (b), and (c)] and in the sequential regime [bottom

panels, (d), (e), and (f) ]. Three pulse durations are compared, 1 fs [(a) and (d)], 4 fs [(b) and (e)],

and 8 fs [(c) and (f)].
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FIG. 3. Asymmetry A (Eq. 16 see the text for details) of the joint momentum distribution as

a function of the photon energy. The pulse duration in the calculations is 4 fs. The VSM model

based on TDPT2 yields A = 0.
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FIG. 4. Normalized variation of the azimuthal correlation function P (∆φ), [P (∆φ)− 〈P 〉]/〈P 〉 as

a function of the azimuthal angle ∆φ (defined in Fig. 4b). The photon energies are varied between

42 and 58 eV in steps of 2 eV. Pulse duration: 4 fs. Black solid lines: energies below the threshold

for sequential ionization, green dashed lines: energies above the threshold.

representing (half of) the total side-by-side emission and

P (−,+) =

∫ 0

−∞

dk1,z

∫ ∞

0

dk2,zP (k1,z, k2,z) (18)

is the corresponding integral over the second quadrant giving the back-to-back emission.

A similar but differential asymmetry parameter restricted to coplanar emission with fixed

angle and energy sharing was introduced for quantifying the degree of (non)-sequentiality

[56]. The present asymmetry parameter (Eq. 16) still requires coincident detection of two

particles, however, only the sign of their longitudinal momentum component irrespective of

their energy and angular distribution. We therefore expect this parameter to be rather robust

against noise from background signal present in the experiment with low (coincident) count

rates. From Fig. 1 it is obvious that A directly measures the degree of breaking of the two-

fold mirror symmetry and, thus, the dynamical final-state correlations in the two-electron

emission process. Accordingly, A vanishes for all photon energies within the TDPT2 model

(Fig. 3). By contrast, the full solution of the TDSE yields an asymmetry value of nearly

50% deep in the non-sequential regime while rapidly decaying near the threshold to the

sequential regime. The width of the transition region is governed by the spectral bandwidth

of the XUV pulse. Well above the threshold and for sufficiently long pulse duration, A tends

to zero indicating that final-state correlations become unimportant.

As a second alternative integrated measure for dynamical correlations in the two-electron

final state we explore the azimuthal correlation function defined as (see Fig. 4)
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P (∆φ) =2π
∫ ∫ ∫ ∫

k2
1k

2
2 sin θ1 sin θ2dk1dk2dθ1dθ2 ×

P (k1, θ1, 0, k2, θ2,∆φ) (19)

which measures the coincidence rate as a function of the difference ∆φ = φ2 − φ1 between

the azimuthal angles of the two emitted electrons. In Eq. 19 both the energies (i.e. k1 and

k2) and the polar angles of the two electrons are integrated over and need not to be resolved.

Fig. 4a presents the variation of P (∆φ) normalized to its mean value, [P (∆φ)− 〈P 〉]/〈P 〉.
This quantity vanishes identically for emission in the absence of angular correlation given

by the TDPT2. For the full TDSE solution, by contrast, P (∆φ) reaches a peak value of

+80% at ∆φ = 180◦ when the emitted electrons are farthest apart and is suppressed to

∼−50% when the electrons are emitted side-by-side. As a function of the photon energy

the amplitude of the cosine-like variation of correlation function monotonicity decreases

and slowly approaches zero. Remarkably, for all energies P (∆φ) coincides with 〈P 〉 near

∆φ = 100◦. In view of the large contrast displayed by P (∆φ) this observable may become

relatively easily accessible in future experiments with FEL and HHG sources.

V. SUMMARY

We have explored the joint momentum distribution projected along the polarization axis

for two-electron emission in two-photon double ionization (TPDI) of helium. By employing

both the full solution of the time-dependent Schrödinger equation and a model based on

second-order perturbation theory we have identified features pinpointing dynamical electron

correlations in the outgoing two-electron wavepacket. The projected joint momentum

distribution has been experimentally probed in strong-field ionization by IR pulses. We

expect this distribution to be in reach for two-photon ionization with upcoming FEL and

HHG sources. Moreover, we have introduced integrated measures, the asymmetry and the

azimuthal correlation function, which might turn out to be more easily accessible and more

robust in experimental settings with low count rates. Both observables provide sensitive

measures for dynamical correlations in the double continuum as they yield non-zero values

only when final-state correlations are accounted for. The present work suggests that such
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probes of correlations should be in reach at upcoming light sources, e.g., XFEL in Hamburg

and ELI-ALPS in Szeged.
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