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We present estimates of the attosecond streaking delay in photoionization of atoms based on an
analytical formula. In the derivation of the formula we use that the streaking delay depends on the
propagation of the photoelectron over a finite range in space. We find that the analytical estimates
agree well with results of ab-initio calculations. Application of the formula provides insights into the
influence of the streaking field on the field-free time delay in the analysis of streaking measurements.
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I. INTRODUCTION

The quest to study ultrafast dynamics in matter on
their natural timescales has driven the technological de-
velopment of ultrashort laser pulses over the last decades.
Attosecond pulse technology (for reviews, see e.g. [1, 2])
has recently enabled the resolution of dynamical quan-
tum processes on the timescale of electronic motion in
atoms, molecules and solid state matter. A number of
spectroscopic techniques have been developed (for re-
views see e.g. [1, 3–7]), among which the attosecond
streaking technique [8] is a prominent one.
In this application of the streak camera principle a

linearly polarized isolated attosecond pulse is used along
with a moderately strong femtosecond streaking pulse,
usually with wavelengths in the near-infrared or infrared
regime. The asymptotic momentum of the photoelectron,
ionized by the attosecond pulse, depends on the vector
potential of the streaking pulse and the propagation of
the electron in the continuum. A streaking trace can
be obtained by detecting the momentum as a function
of the time delay between ionizing and streaking pulses.
By comparing the streaking trace to the oscillation of the
vector potential a temporal shift, called streaking time
delay, can be determined (see, e.g. [9–12]).
The streaking time delay ∆ts is usually studied via

the sum of the Wigner-Smith time delay ∆tWS [13, 14],
related to the short-range part of the residual ion poten-
tial, and a term ∆tCLC , related to the coupling between
the laser field and the long-range part of the Coulomb
potential (e.g., [9–12, 15–25]):

∆ts = ∆tWS +∆tCLC . (1)

Predictions based on this formula often rely on ad-
vanced numerical calculations. On the other hand the
option of an accurate estimate based on analytical ex-
pressions can be useful to study the dependence of the
time delay on different parameters of the pulses as well
as targets. In our approach to develop such an analyti-
cal formula, in section II we set out with an alternative

estimate of the streaking time delay, which consists of a
sum of streaking field weighted field-free delays [26]. In
the sections III and IV we then derive analytical expres-
sions for each contribution to the field-free delay, namely
the short-range, the Coulomb phase and the logarithmic
term. A key element of the derivation is the fact that the
streaking time delay depends on the propagation of the
photoelectron over a finite range in space only [10, 26].
The predictions of the analytical estimate of the streaking
time delay agree well with those of ab-initio calculations
for photoemission from the outermost shell of an atom
over a wide range of photoelectron energies. As an appli-
cation we study in section V the influence of the streak-
ing field on the three field-free delay contributions which
provides an alternative justification of the sum formula,
Eq. (1). The article ends with a brief summary. Hartree
atomic units (e = m = ~ = 1) are used throughout unless
stated otherwise.

II. PRELIMINARY CONSIDERATIONS

Using a classical analysis of the propagation of the pho-
toelectron after the liberation in the continuum it has
been found that the streaking time delay can be approx-
imated as [26]:

∆ts ≃

N
∑

j=1

Es(tj)

Es(tion)
∆t

(j)
ff . (2)

Here, ∆t
(j)
ff is the field-free time delay that the electron

accumulates during the propagation in the time interval
[tj , tj+1] after the liberation in the continuum at t1 = tion
and over the related finite-region [rj , rj+1] within the po-
tential V (r) along the polarization direction of the streak-
ing pulse. Es(tj) is the actual strength of the streaking
field during the propagation over the given time interval
and Es(tion) is the field strength at the time of libera-
tion of the photoelectron. Since the streaking pulse has
a finite duration, the sum extends over a finite number of
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intervals. Physically, the above formula states that the
streaking delay can be considered as a sum of (streaking)
field weighted field-free delays, accumulated from the mo-
ment of transition into the continuum to the end of the
streaking pulse over a finite propagation distance. We
note that the streaking time delay, Eq. (2), can alterna-
tively be represented as an integral [26].

In order to obtain an analytical expression it is useful
to write the piecewise field-free time delay as a difference:

∆t
(j)
ff = ∆tff (kj+1, rj+1)−∆tff (kj , rj) (3)

where ∆tff (k, r) is the field-free time delay accumulated
during the propagation of the photoelectron, from the
origin of the transition into the continuum by the ionizing
XUV pulse to r, with constant momentum k = k(r) =
√

2(Easym − V (r)) and Easym is the asymptotic energy
of the photoelectron. Since it has been previously shown
[18, 26] that predictions based on classical calculations
for the streaking time delay are in good agreement with
those of quantum mechanical calculations, we assume a
quantum-classical correspondence for the field-free time
delay and further decompose the (classical) time delay
into three well-known terms:

∆tff (k, r) = ∆tshort(k, r) + ∆tphase(k, r) + ∆tlog(k, r)
(4)

where each of the terms represents the derivative of a con-
tribution to the (quantum mechanical) phase shift with
respect to the photoelectron’s energy. ∆tshort(k, r) is the
short-range contribution, while

∆tphase(k, r) =
1

k

∂

∂k
arg [Γ(1 + l + iη)] (5)

and

∆tlog(k, r) =
1

k

∂

∂k

[

Z

k
ln(2kr)

]

(6)

with l is the angular momentum of the photoelectron,
η = −Z/k and Z is the charge of the residual ion.

We note that ∆tff (k, r) corresponds to the field-free
time delay accumulated in the atomic potential, which
is cut-off at r. In such cut-off potentials the time de-
lay due to the Coulomb potential can be evaluated us-
ing the asymptotic forms (see e.g. [27]). The assumed
quantum-classical correspondence in Eq. (4) is therefore
expected to hold for cut-off distances, at which the short-
range part of the potential has vanished. Conversely, for
distances close to the core of the residual ion, at which
multi-electron dynamics play a dominant role, the above
assumption is not longer valid. Thus, for small energies,
at which the photoelectron explores the short-range part
of the potential for a significant time, this may lead to
discrepancies between the analytical estimates, to be de-
rived in the next two sections, and the results of advanced
ab-initio quantum calculations.
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FIG. 1. (Color online) Comparison of predictions of analytical
formula for the field-free time delay ∆tff , Eq. (8), with results
extrapolated from ab-initio calculations for hydrogen atom
(Z = 1) [10] as a function of propagation time.

III. HYDROGEN-LIKE SYSTEMS:

COULOMB-PHASE AND LOGARITHMIC

TERMS

We first consider the case of hydrogen-like atoms and
ions where the potential V = −Z/r does not contain a
short-range contribution. The spectral derivative in Eq.
(6) is readily determined as:

∆tlog(k, r) =
Z

k3
[1− ln (2kr)] . (7)

Since the streaking time delay, Eq. (2), depends on finite
distances only, this term will not diverge. The Coulomb-
phase term, Eq. (5), can be expressed in terms of the
real part of the digamma function [12] or, equivalently,
expanded in a sum [28], such that the field-free time de-
lay, Eq. (4), for a hydrogenlike system is given by:

∆tff (k, r) =
Z

k3

[

F (k, l) +
l
∑

m=1

1

m
− γ + 1− ln (2kr)

]

(8)
where

F (k, l) =

∞
∑

n=0

Z2

(n+ l + 1)([k(n+ l + 1)]2 + Z2)
. (9)

The accurateness of the predictions of the analytical
expression (solid line) can be seen from the compari-
son with previously published data extrapolated from
ab-initio calculations (circles, [10]) as a function of the
propagation time t after liberation of the electron in the
continuum in Fig. 1 . In these calculations we have used
r = kasymt, where kasym =

√

2Easym, in accordance
with the analysis in [10].
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FIG. 2. (Color online) Comparison of analytical estimates
(solid lines) with results of ab-initio calculations (circles, [10])
of the streaking delay in hydrogen atom and helium ion. Pa-
rameters of the streaking field: peak intensity Is = 1 × 1012

W/cm2, wavelength λs = 800 nm and pulse duration of three
cycles. In the analytical calculations, ionization of the pho-
toelectron at the peak of the pulse and the most probable
location of the electron in the initial state has been assumed.

Calculation of the streaking delay, Eq. (2), along with
Eq. (3) for hydrogen-like systems then requires to evalu-
ate Eq. (8) at N finite distances rj . These distances can
be estimated via the recursive relation:

rj+1 = rj + k(rj)δt (10)

with r1 = rion and k(r1) =
√

2Easym − V (r1) are the
initial position and momentum of the photoelectron after
the transition in the continuum. We note that the dis-
tances can be also determined using other standard ap-
proaches from the differential equation determining the
classical trajectory r(t). In Fig. 2 we compare our ana-
lytical results for the streaking time delay for hydrogen
atom and helium ion with those of ab-initio calculations
[10]. A good agreement within less than one attosecond
is found over the whole range of asymptotic energies of
the photoelectron studied.

IV. MULTIELECTRON ATOMS: SHORT

RANGE TERM

Next we consider atoms other than hydrogen and note
that ionization of a multielectron atom, in particular
in strong-field processes, is often modeled using single-
active-electron potentials, in which all electrons except
the active photoelectron are assumed to be frozen during
the interaction with the external fields. The correspond-
ing single-active-electron potentials are given by:

VSAE(r) = −
1

r
+ Vshort(r) (11)

where the short-range part, Vshort, is typically modeled
via a linear combination of Yukawa terms, VY ukawa(r) =
a exp (−µr)/r, and exponential terms, Vexp(r) =
a exp (−µr) with a and µ constant.
For the field-free time delay ∆tff obtained by the pho-

toelectron in such a single-active-electron potential, the
sum of ∆tphase and ∆tlog is given by Eq. (8) for Z = 1.
Analogous to the other parts, the short-range contribu-
tion is given by the spectral derivative of the correspond-
ing phase shift δshort:

∆tshort(k, r) =
1

k

∂

∂k
δshort(k, r) (12)

To obtain analytical estimates we make use of the
distorted wave Born approximation (DWBA), which ac-
counts for scattering effects in a reference potential Vshort
and provides good estimates as long as the difference to
the real potential is small and the electron energy is not
too low. Within DWBA δshort is calculated as [29]:

δshort(k, r) ≃ −
1

k2

∫

∞

0

d̺F 2
l,η(k, r)Vshort(r), (13)

with the bare Coulomb wave function

Fl,η(k, r) = Cle
i̺̺l+1

1F1 (l + 1 + iη; 2l+ 2;−2i̺) (14)

where ̺ = kr and

Cl = 2le−
πη

2

|Γ(l + 1 + iη)|

Γ(2l + 2)
(15)

For Yukawa and exponential potential terms the inte-
grals in Eq. (13) and the related derivatives in Eq. (12)
have the following closed form solutions, as shown in the
Appendix:

∆tY ukawa =
δY ukawa

k2
[f(k) + g(k)− 1] (16)

where the analytical forms of δY ukawa, f and g are given
in Eqs. (A2), (A8) and (A9) and

∆texp =
δexp
k

×

[

2i(l + 1− iη)

µ− 2ik
−
iη

k
log

(

1−
2i

µ
k

)

+
2

k

(

l +
πη

2
−
η

k

∞
∑

n=0

1

(l + 1 + n)2 + η2

)

+
c1(k)− c2(k)− c3(k) + c4(k)

c0(k)

]

(17)

where the analytical forms of δexp and ci (i = 0, . . . , 4)
are given in Eq. (B3), and Eq. (B9) to Eq. (B13), respec-
tively.
In order to test the analytical streaking formula we

made use of the following form of the single-active-
electron potentials for electrons in the outermost shell
of atoms:

VSAE(r) = −
Z

r
−
a1e

−µ1r + a2e
−µ2r

r
− a3e

−µ3r, (18)
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FIG. 3. (Color online) Comparison of analytical predictions
(solid lines) with results of ab-initio calculations (symbols)
for the streaking time delay in the case of photoionization of
(a) helium (ab-initio data from [10]) and (b) neon atom as a
function of the XUV photon energy. Ab-initio results from
calculations using the present SAE potential (circles, [20])
and multi-electron B-spline R-matrix calculations (diamonds,
[22]) are shown. Streaking laser parameters as in Fig. 2.

where the parameters for various noble gas neutrals and
ions are given in Ref. [30]. The streaking time delay
can then be obtained in the same way as for hydrogen-
like systems, using the analytical formulas for ∆tshort,
∆tphase and ∆tlog. As can be seen in Fig. 3, the analyti-
cal predictions are in good overall agreement with results
of ab-initio calculations for photoionization of helium and
neon atom. We note that in the case of ionization of Ne
we have considered that the 2p→ d transition is strongly
dominant over the 2p→ s one [16].

V. RELATION TO WIGNER-SMITH DELAY

In this section we use the analytical formula to study
the effect of the streaking field in Eq. (2) on the three
contributions to the field-free time delay. To this end, we
have determined

∆i =

N
∑

j=1

[

Es (tj)

Es (tion)
− 1

]

∆t
(j)
i (19)

for each of the three contributions (i = short, phase, log).
The corresponding results are shown in Figs. 4, 5 and 6,
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FIG. 4. (Color online) Absolute difference ∆short as a func-
tion of the XUV photon energy for the contribution due to
the short-range potential for (a) neon atom and (b) helium
atom. Streaking laser parameters as in Fig. 2.
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FIG. 5. (Color online) Absolute difference ∆phase for pho-
toionization of (a) neon, (b) helium and (c) hydrogen. Streak-
ing laser parameters as in Fig. 2.

respectively. The comparison clearly shows that for the
short-range and the Coulomb phase terms the effect of
the streaking field is significant for XUV photon energies
near the threshold of photoionization only. At photoelec-
tron energies of 10 eV or more the respective differences
∆i are below 1 as. On the other hand the effect of the
streaking field on the logarithmic term is much larger,
even for photoelectron energies of several tens of eV.

Thus, except for photoelectron energies close to the
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FIG. 6. (Color online) Absolute difference ∆log for photoion-
ization of (a) neon, and (b) helium. Streaking laser parame-
ters as in Fig. 2.
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FIG. 7. (Color online) Comparison of present analytical es-
timates (solid lines) for ∆tCLC with those of an alternative
analytical approximation (dashed lines, [12]). Streaking laser
parameters as in Fig. 2.

threshold, we can approximate Eq. (2) further as follows:

∆ts =
∑

j

Es (tj)

Es (ti)

[

∆t
(j)
short +∆t

(j)
phase +∆t

(j)
log

]

(20)

≃
∑

j

[

∆t
(j)
short +∆t

(j)
phase +

Es (tj)

Es (ti)
∆t

(j)
log

]

(21)

= ∆tshort +∆tphase +
∑

j

Es (tj)

Es (ti)
∆t

(j)
log (22)

= ∆tWS +∆tCLC (23)

where ∆tWS = ∆tshort + ∆tphase represents the well-
known Wigner-Smith time delay for short range poten-

tials, while ∆tCLC =
∑

j
Es(tj)
Es(ti)

∆t
(j)
log can be interpreted

as the Coulomb-laser-coupling term often used in the
analysis of streaking time delays. Indeed, as shown in
Fig. 7, the present estimates for ∆tCLC are in good
agreement with another analytical estimate ∆tCLC =
Z[2− ln(EasymTIR)]/(2Easym)3/2 [12], where TIR is the
streaking field period.

VI. SUMMARY

We have presented estimates of the streaking time de-
lay for photoionization of atoms based on an analytical
formula. In the derivation of the formula we have made
use of the fact that the time delay depends on the prop-
agation of the photoelectron over a finite range in space.
This enabled us to evaluate the different contributions
to the field-free time delay using single-active electron
potentials and the distorted wave Born approximation.
Analytical predictions are found to be in good agreement
with results of ab-initio calculations. Application of the
analytical estimates gave insights into the effect of the
streaking field on the short-range, Coulomb phase and
logarithmic terms in the field-free time delay and pro-
vided an alternative justification of the widely used anal-
ysis of the streaking time delay as a sum of Wigner-Smith
time delay and Coulomb-laser coupling term.
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Appendix A: Short-range time delays for Yukawa

potentials

In this section we derive an analytical formula for the
field-free time delay in a short range Yukawa potential of
the form

VY ukawa =
aY exp[−µr]

r
. (A1)

Using the Distorted Wave Born Approximation the
phase shift induced on a l-partial wave in the potential
is given by [31]:

δY ukawa ≃
aY

4kΓ(2l+ 2)
|Γ (l + 1 + iη) |2 exp[−πη] (A2)

× exp

[

2η arctan

(

2k

µ

)](

1 +
µ2

4k2

)−(l+1)

×2F1

(

l + 1 + iη, l+ 1− iη; 2l+ 2;
4k2

µ2 + 4k2

)
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where

2F1 (a, b; c; z) =

∞
∑

n=0

(a)n (b)n z
n

(c)n n!

=
Γ(c)

Γ(b)Γ(c− b)
(A3)

×

∫ 1

0

dt tb−1(1− t)c−b−1(1− zt)−a

is the convergent Gaussian hypergeometric function,
given both as series and Euler integral representation,

with

(a)i =
Γ(a+ i)

Γ(a)
. (A4)

is the Pochhammer symbol.
Calculation of the corresponding time delay

∆tY ukawa =
∂δY ukawa

∂E
=

1

k

∂δY ukawa

∂k
(A5)

requires to take the derivative of the convergent Gaus-
sian hypergeometric function, in which three of the four
arguments depend on k. To this end, we make use of
both representations of the function as follows:

∂

∂k
2F1 (a (k) , b (k) ; c; z (k)) =

(

∂z

∂k

)

2F1 (a, b; c; z)

z(1− z)

[

(c− b)
2F1 (a, b− 1; c; z)

2F1 (a, b; c; z)
+ (b− c+ az)

]

+

(

∂a

∂k

)

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1 (1− t)
c−b−1

(1− tz)
−a

[

log

(

1− t

t (1− tz)

)

+ ψ(0)(b)− ψ(0)(c− b)

]

dt (A6)

where we used that ∂a
∂k = − ∂b

∂k and ψ(0) is the polygamma
function.
Using this result the time delay is given as:

∆tY ukawa =
δY ukawa

k2
[f(k) + g(k)− 1] (A7)

with

f(k) = 2η

[

π

2
+

2kµ

4k2 + µ2
− arctan

(

2k

µ

)

−
1

k

∞
∑

n=0

1

(l + 1 + n)2 + η2

]

+
(2l + 2)µ2

4k2 + µ2
(A8)

and

g(k) = 2 (l + 1 + iη)





2F1

(

l + 1 + iη, l − iη; 2l+ 2; 4k2

µ2+4k2

)

2F1

(

l + 1 + iη, l+ 1− iη; 2l+ 2; 4k2

µ2+4k2

) −
µ2

4k2 + µ2





−iη

∫ 1

0

tl−iη (1− t)
l+iη

(1− tz)
−(l+1+iη)

[

log

(

(1− t)
(

4k2 + µ2
)

(4k2 (1− t) + µ2) t

)

−

∞
∑

n=0

2iη

(l + 1 + n)
2
+ η2

]

dt (A9)

where we have replaced the polygamma function by its
respective series representation. We also note that the
full derivative of the hypergeometric function can alter-
natively be written as a series (as opposed to the inte-
gral), however the integral converges at a much higher
rate than the series.
Appendix B: Short-range time delay for exponential

decay potentials

In this section we derive an analytical formula for the
field-free time delay in a short range potential of the form

Vexp = aexp exp[−µr]. (B1)

The corresponding phase shift δexp has a closed form
expression which can be represented in terms of the Ap-
pell F2 function as [32]
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δexp =
aexp(2l+ 2)|Γ(l + 1 + iη)|2 exp[−πη]k2l

Γ(2l + 2)µ2l+3
F2

(

2l + 3; l+ 1 + iη, l + 1− iη; 2l+ 2, 2l+ 2;
−2ik

µ
;
2ik

µ

)

(B2)

=
aexp(2l+ 2)|Γ(l + 1 + iη)|2 exp[−πη]k2l

Γ(2l + 2)µ2l+3

(

1−
2ik

µ

)

−(l+1−iη)

(B3)

×

{

F1

(

l + 1 + iη; l + 2 + iη, l+ 1− iη; 2l + 2;
−2ik

µ
;

2ik

2ik − µ

)

−
l + 1− iη

2l+ 2

(

2ik

2ik − µ

)

F1

(

l + 1 + iη; l + 2 + iη, l+ 2− iη; 2l+ 2;
−2ik

µ
;

2ik

2ik − µ

)}

.

where in the second equation we expanded the F2 function in the more common Appell F1 series as [32]

F2

(

c+ s; a, a′; c, c− p;
k

h
;
k′

h

)

=

(

1−
k′

h

)

−a′ s+p
∑

m=0

(a′)m (−s− p)m
(c− p)mm!

(

1−
h

k′

)

−m

(B4)

×F1

(

a; c+ s− a′,m+ a′; c;
k

h
;

k

h− k′

)

where

F1 (α;β1, β2; γ;x, y) =

∞
∑

m,n

(α)m+n(β1)m(β2)n
(γ)m+nm!n!

xmyn (B5)

=
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

tα−1(1− t)γ−α−1(1− xt)−β1(1− yt)−β2dt.

given both as series and Euler integral representations. Calculation of the corresponding time delay

∆texp =
∂δexp
∂E

=
1

k

∂δexp
∂k

(B6)

requires to take the derivative of the Appell series, in
which all of the arguments except γ depend on k. To
this end, we make use of both representation of F1 to
get:

∂

∂k
F1 (α(k);β1(k), β2(k); γ, x(k); y(k)) =
(

∂x

∂k

)

αβ1
γ
F1 (α+ 1;β1 + 1, β2; γ + 1;x, y) +

(

∂y

∂k

)

αβ2
γ
F1 (α+ 1;β1, β2 + 1; γ + 1;x, y) (B7)

+
∂α

∂k

Γ(γ)

Γ(α)Γ(γ − α)

×

∫ 1

0

tα−1 (1− t)
γ−α−1

(1− tx)
−β1 (1− ty)

−β2

[

log

(

t(1− ty)

(1− t)(1 − tx)

)

+ ψ(0)(γ − α)− ψ(0)(α)

]

dt

where we used that ∂α
∂k = ∂β1

∂k = −∂β2

∂k Using this result the time delay is given by:

∆texp =
δexp
k

{

2i(l+ 1− iη)

µ− 2ik
−
iη

k
log

(

1−
2i

µ
k

)

+
2

k

(

l +
πη

2
−
η

k

∞
∑

n=0

1

(l + 1 + n)2 + η2

)

(B8)

+
c1(k)− c2(k)− c3(k) + c4(k)

c0(k)

}
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with

c0(k) = F1

(

l+ 1 + iη; l + 2 + iη, l + 1− iη; 2l+ 2;
−2ik

µ
;

2ik

2ik − µ

)

(B9)

−
l+ 1− iη

2l+ 2

(

2ik

2ik − µ

)

F1

(

l + 1 + iη; l+ 2 + iη, l + 2− iη; 2l+ 2;
−2ik

µ
;

2ik

2ik − µ

)

c1(k) =
2i

(2l + 2)(2ik − µ)

(

µ(l + 1− iη)

2ik − µ
− iη

)

F1

(

l + 1 + iη; l + 2 + iη, l+ 2− iη; 2l+ 2;
−2ik

µ
;

2ik

2ik − µ

)

(B10)

c2(k) =
2i(l+ 1 + iη)

2l+ 2

{

l + 2 + iη

µ
F1

(

l + 2 + iη; l + 3 + iη, l+ 1− iη; 2l + 3;
−2ik

µ
;

2ik

2ik − µ

)

(B11)

+
µ(l + 1 + iη)

(2ik − µ)2
F1

(

l + 2 + iη; l + 2 + iη, l+ 2− iη; 2l+ 3;
−2ik

µ
;

2ik

2ik − µ

)}

c3(k) =
4k|l+ 1 + iη|2

(2l + 2)2(2ik − µ)

{

l + 2 + iη

µ
F1

(

l + 2 + iη; l+ 3 + iη, l + 2− iη; 2l+ 3;
−2ik

µ
;

2ik

2ik − µ

)

(B12)

+
µ(l + 2− iη)

(2ik − µ)2
F1

(

l + 2 + iη; l + 2 + iη, l+ 3− iη; 2l+ 3;
−2ik

µ
;

2ik

2ik − µ

)}

c4(k) = δF1

(

l+ 1 + iη; l + 2 + iη, l + 1− iη; 2l+ 2;
−2ik

µ
;

2ik

2ik − µ

)

(B13)

−
l+ 1− iη

2l+ 2

(

2ik

2ik − µ

)

δF1

(

l + 1 + iη; l+ 2 + iη, l + 2− iη; 2l+ 2;
−2ik

µ
;

2ik

2ik − µ

)

where

δF1 (α;β1, β2; γ;x; y) =
∂α

∂k

Γ(γ)

Γ(α)Γ(γ − α)
(B14)

×

∫ 1

0

tα−1 (1− t)γ−α−1 (1− tx)−β1 (1− ty)−β2

[

log

(

t(1− ty)

(1 − t)(1− tx)

)

+ ψ(0)(γ − α)− ψ(0)(α)

]

dt
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Taiëb, Chem. Phys. 414, 53 (2013).



9

[22] J. Feist, O. Zatsarinny, S. Nagele, R. Pazourek, J.
Burgdörfer, X. Guan, K. Bartschat, and B.I. Schneider,
Phys. Rev. A 89, 033417 (2014).

[23] R. Pazourek, S. Nagele, and J. Burgdörfer, J. Phys. B:
At. Mol. Opt. Phys. 48, 061002 (2015).

[24] H. Wei, T. Morishita, and C.D. Lin, Phys. Rev. A 93,
053412 (2016).

[25] M. Ossiander, F. Siegrist, V. Shirvanyan, R. Pazourek,
A. Sommer, T. Latka, A. Guggenmos, S. Nagele, J. Feist,
J. Burgdörfer, R. Kienberger, and M. Schultze, Nature
Phys. 13, 280 (2017).

[26] J. Su, H. Ni, A. Becker, and A. Jaroń-Becker, Phys. Rev.
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