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The angular dependence of photoemission time delay for the inner nd3/2 and nd5/2 subshells of
free and confined Xe is studied in the dipole relativistic random phase approximation. A finite
spherical annular well potential is used to model the confinement due to fullerene C60 cage. Near-
cancellations in various of the dipole amplitudes, Cooper-like minima, are found. The effects of
confinement on the angular dependence, primarily confinement resonances, are demonstrated and
detailed.
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I. INTRODUCTION

With the advancements in the state-of-the-art of laser
pulse production and manipulation, time domain stud-
ies have become of significant interest, as well as very
challenging [1–11]. It is now possible to study the dy-
namics of electrons on the atomic time scale, i.e., the
attosecond (as) scale. Photoionization time delay stud-
ies of various systems have been carried out, such as of
free atoms, surfaces, molecules, encaged atoms, etc. [11–
16]. Most of the measurements are the pump-probe type
where the measured time delay can be separated into
the Wigner contribution [17–19], which is a property of
the one-photon ionization of the target, and the mea-
surement induced (Coulomb Laser Coupling, CLC, or
continuum-continuum, cc) parts [14]. In this study, we
concentrate upon the Wigner time delay, a concept that
was developed for collisions but has seen wide application
ro photoionization in recent years [16]. The phase of the
one-photon ionization transition matrix element and its
variation with respect to the energy, angle, correlation in
initial and final states, polarization, presence of other po-
tentials, etc. result in various structures in Wigner time
delay spectra. Thus, studies of atomic and molecular
photoionization have received significant attention from
both experimentalists and theorists. One of the possible
bridges between the behavior of free (gaseous) atoms and
condensed matter is the study of the atomic characteris-
tics in the environment of an additional potential; hence,
the study of the behavior of an atom under confinement,
which is a system intermediate between a free atom and
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condensed matter, is both interesting and important. In
addition, trapped atoms are of interest owing to their po-
tential applications, such as their use in building qubits
for quantum computation [20].

Many aspects of atoms confined in fullerenes have been
studied in the recent past [21–27]. The effect of fullerene
confinement on the photoionization time delay was stud-
ied very recently; it was found that confinement-induced
correlation influences the temporal evolution of the pho-
toelectron from different hybridized states of Ar confined
within C60, Ar@C60 [15]. Furthermore, it was found that
confinement effects are more prominent in the photoion-
ization time-delay spectrum compared to other observ-
ables such as the cross section [28]. Thus, since (i) the
understanding of the effects of confinement is of signifi-
cant basic and applied importance [21, 22], (ii) photoion-
ization time delay is rather sensitive to the effects of con-
finement and confinement resonances, and (iii) photoion-
ization time delay is, in general, anisotropic with respect
to the polarization of the photon owing to the interfer-
ence of continuum waves of differing angular momenta
[29, 30], a detailed study in this arena is needed. In ad-
dition, an important feature of probing a system with
photons (as opposed to, say, electrons or heavy ions) is
that photons cause a much weaker perturbation of the
system, thereby allowing the study of the properties of
the target, unencumbered by the interaction process.

In the present work, the effect of confinement on the
angular dependence of Wigner time delay upon photoion-
ization of the 4d subshell of atomic xenon confined in C60,
Xe@C60, is investigated using the relativistic-random-
phase approximation (RRPA). Xe@C60 was chosen for
this case study because it can be synthesized in sufficient
quantities to allow experimental scrutiny [31].

This paper is organized as follows. In Sec. II, a brief
theoretical formulation is given. In Sec. III the results for
the angle and energy dependence of Wigner time delay
for photoemission from inner 4d3/2 and 4d5/2 subshells
of free and confined atomic Xe are presented, compared
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and discussed. Conclusions are drawn and a summary is
presented in Sec. IV.

II. THEORETICAL METHOD

A. Photoionization amplitude

We adopt the multichannel RRPA formalism of [32, 33]
and follow the method as discussed in [30]. For complete-
ness, some detail of the calculation is given. The ampli-
tude for a transition from the ground state (ui) to an
excited state (ωi±), induced by a time varying external
field v+e

−iωt + v−e
iωt is given by

T =

N∑
i=1

∫
d3r(ω†i+~α · ~Aui + u†i ~α · ~Aωi−) (1)

Here, ~A is the vector potential, and the electromagnetic
interaction is written in Coulomb gauge, expressed in
terms of the Pauli spin matrices

~α =

(
0 ~σ
~σ 0

)
.

In a one-electron approximation, the multipole transi-
tion amplitude reduces to

T
(λ)
JM =

∫
d3rω†i+~α · ~a

λ
JMui. (2)

Here the indices J and M are the photon angular mo-
mentum and its projection and λ = 1 or 0 for electric or
magnetic multipoles, respectively. Specifically, for a one-
electron transition from an initial state characterized by
the quantum numbers ljm to a linear combination of fi-
nal continuum states l̄j̄m̄ with the photoelectron spin

described by a two-component spinor χν , T
(λ)
JM takes the

form

T
(λ)
JM =i

√
2π2

Ep

√
(2J + 1)(J + 1)

J

ωJ

(2J + 1)!!

×
∑
κ̄m̄

(χ†νΩκ̄m̄(p̂))(−1)j̄−m̄
(

j̄ J j
−m̄ M m

)
× i1−l̄eiδκ̄

〈
ā‖Q(λ)

J ‖a
〉

(−1)j̄+j+J

(3)

Here E and p̂ are the photoelectron energy and momen-
tum direction, respectively, ω is the photon frequency, δκ̄
is the phase of the continuum wave (with respect to free
waves) with κ̄ = ∓(j̄+ 1

2 ) for j̄ = (l̄± 1
2 ), respectively. In

addition, κ is used below as shorthand for l and j with κ̄
used similarly for l̄ and j̄. The spherical spinor is defined
as

Ωκm(n̂) =
∑

ν=±1/2

Cjml,m−ν,1/2νYlm−ν(n̂)χν . (4)

The corresponding Clebsch-Gordan coefficients, C, are
tabulated in [34]. The reduced matrix element of the

spherical tensor between the initial state a = (nκ) and a
final energy scale normalized state ā = (E, κ̄) is written
as

〈
ā‖Q(λ)

J ‖a
〉

=(−1)j+1/2[j̄][[j]

(
j j̄ J
− 1

2
1
2 0

)
× π(l̄, l, J − λ+ 1)R

(λ)
J (ā, a)

(5)

Here π(l̄, l, J − λ+ 1) = 1 or 0 for l̄ + l + J − λ+ 1 even

or odd, respectively, [j] = (2j + 1)
1
2 , and R

(λ)
J (ā, a) is

the radial integral. While Eq. (5) is derived for a single-
electron transition, it also applies to closed-shell atomic
systems. In order to include the RRPA correlations, the

only change in Eq. (3) is to replace
〈
ā‖Q(λ)

J ‖a
〉

with〈
ā‖Q(λ)

J ‖a
〉
RRPA

.

Finally, as we will be dealing with electric dipole pho-
toionizing transitions, we set λ = 1, J = 1 and choose
M = 0 which corresponds to linear polarization in the
z-direction. In this case,

T 1±
10 ≡ [T

(1)
10 ]ν=±1/2

=
∑
κ̄m̄

Cjm̄l,m̄−ν,1/2νYlm̄−ν(p̂)

× (−1)2j̄+j+1−m̄
(

j̄ 1 j
−m̄ 0 m

)
i1−l̄eiδκ̄

〈
ā‖Q(1)

1 ‖a
〉

(6)

Here we dropped the common scaling factor for brevity.
In the following, we use a shorthand for the reduced ma-
trix element modified by the phase factors:

Dlj→l̄j̄ = i1−l̄eiδκ̄
〈
ā‖Q(λ)

J ‖a
〉

(7)

B. Formulation of the angular dependent time
delay

In recent work [30], the relativistic formalism was ap-
plied for outer np (np1/2 and np3/2) subshells of Ar, Kr
and Xe in the Cooper minima region in their spectra.
Wigner time delay was computed for these cases along
with an estimate of CLC in the hydrogenic approxima-
tion. Here we employ this technique to study the Wigner
time delay for a higher angular momentum state (nd3/2

and nd5/2) for the free as well as confined atom. An elec-
tric dipole transition from a nd initial state leads to the
following six ionization channels:

nd3/2 → εp1/2, εp3/2, εf5/2

nd5/2 → εp3/2, εf5/2, εf7/2

Using Eq. (6), we derive the following expressions for
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the nd3/2 ionization amplitudes:[
T

′(1+)
10

]
nd3/2,1/2

=− 1

3
√

2
Dnd3/2→εp1/2

Y10(p̂)

+
1

3

√
2

5
Dnd3/2→εp3/2

Y10(p̂)

+

√
3

70
Dnd3/2→εf5/2

Y30(p̂)

(8)

[
T

′(1−)
10

]
nd3/2,1/2

=
1

3
Dnd3/2→εp1/2

Y11(p̂)

+
1

6
√

5
Dnd3/2→εp3/2

Y11(p̂)

−
√

2

35
Dnd3/2→εf5/2

Y31(p̂)

(9)

[
T

′(1+)
10

]
nd3/2,3/2

=
1

2

√
3

5
Dnd3/2→εp3/2

Y11(p̂)

+

√
2

105
Dnd3/2→εf5/2

Y31(p̂)

(10)

[
T

′(1−)
10

]
nd3/2,3/2

= −
√

1

21
Dnd3/2→εf5/2

Y32(p̂) (11)

The angular resolved amplitudes for the nd5/2 initial
state take the following forms:[

T
′(1+)
10

]
nd5/2,1/2

=
1√
15
Dnd5/2→εp3/2

Y10(p̂)

− 1

7
√

10
Dnd5/2→εf5/2

Y30(p̂)

−
√

2

7
Dnd5/2→εf7/2

Y30(p̂)

(12)

[
T

′(1−)
10

]
nd5/2,1/2

=
1√
30
Dnd5/2→εp3/2

Y11(p̂)

+
1

7

√
2

15
Dnd5/2→εf5/2

Y31(p̂)

− 1

7

√
3

2
Dnd5/2→εf7/2

Y31(p̂)

(13)

[
T

′(1+)
10

]
nd5/2,3/2

=
1√
15
Dnd5/2→εp3/2

Y11(p̂)

− 1

7

√
3

5
Dnd5/2→εf5/2

Y31(p̂)

− 5

14
√

3
Dnd5/2→εf7/2

Y31(p̂)

(14)

[
T

′(1−)
10

]
nd5/2,3/2

=
1

7

√
3

2
Dnd5/2→εf5/2

Y32(p̂)

− 1

14

√
10

3
Dnd5/2→εf7/2

Y32(p̂)

(15)

[
T

′(1+)
10

]
nd5/2,5/2

=− 1

7

√
5

6
Dnd5/2→εf5/2

Y32(p̂)

−
√

6

14
Dnd5/2→εf7/2

Y32(p̂)

(16)

[
T

′(1−)
10

]
nd5/2,5/2

=

√
5

7
Dnd5/2→εf5/2

Y33(p̂)

− 1

14
Dnd5/2→εf7/2

Y33(p̂)

(17)

The corresponding amplitudes with negative m projec-
tion have exactly the same structure, owing to the sym-
metry about the photon polarization (z-direction) axis,
so they are not given explicitly. Each ndj amplitude has
its own photoelectron group time delay (Wigner time de-
lay) [17, 18]) defined as (in atomic units)

τ =
dη

dE
, η = tan−1

[
ImT 1±

10

ReT 1±
10

]
(18)

For the situation where neither the orientation of the
residual ion nor the spin of the photoelectron is detected,
the angle dependent time delay is evaluated as

τndj (θ) =

∑
m,ν τndj,m,ν (θ)

∣∣∣∣[T ′(1ν)
10

]
ndj,m

∣∣∣∣2∑
m,ν

∣∣∣∣[T ′(1ν)
10

]
ndj,m

∣∣∣∣2
, (19)

which is the weighted average of the initial m-states and
final spin states of the photoelectron. Note, incidently,
that the situation is somewhat more complicated for cir-
cularly polarized incident photons where the amplitudes
for positive and negative m differ.

III. RESULTS AND DISCUSSION

Since photoionization of atoms involves correlated
many-electron dynamics, the ab initio relativistic
random-phase approximation (RRPA), which includes
both relativistic interactions (since it is based on the
Dirac equation) and many-electron correlation effects
[32, 33], is applied for the calculation of the dipole ma-
trix elements and transition amplitudes. In order to in-
clude final state correlations (interchannel coupling), the
calculations have been performed with the following 13
coupled channels:
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5p3/2 → εd5/2, εd3/2, εs1/2

5p1/2 → εd3/2, εs1/2

5s1/2 → εp3/2, εp1/2

4d5/2 → εf7/2, εf5/2, εp3/2

4d3/2 → εf5/2, εp3/2, εp1/2.

The calculations have been carried out from the about
15 eV above the 4d thresholds up to a photon energy
of 150 eV; the near-thrsehold region, where the Wigner
time delay is dominated by the Coulomb phase, is not
considered. The omission of the photoionization chan-
nels from more tightly bound subshells, starting with 4p
and on down, is unimportant since they contribute only
a negligible amount to the 4d matrix elements in the
chosen range of energies. Note that earlier calculations
based upon the RRPA formalism have been found to be
in very good agreement with experiment in many previ-
ous studies [see, for example, [28],[35],[36] and references
therein].

The effects of the fullerene C60 molecular cage was
taken as a spherically attractive potential (V (r)) defined
as

V (r) =

{
−V0, for r0 ≤ r ≤ r0 + ∆;

0, otherwise.

[21] with inner radius (r0)= 5.8 a.u., thickness (∆)= 1.9
a.u., depth (V0)= 0.302 a.u.. This model has been shown
to be a reasonable approximation in a number of previous
studies [21, 31, 37–40].

Since the RRPA methodology employs Dirac-Hartree-
Fock (DHF) thresholds in the calculation, these threshold
energies for the valence (n = 5) and inner (n = 4) sub-
shells are shown in Table 1 for both free and confined
Xe. Of note here is that the binding energies for the con-
fined case are slightly larger for Xe@C60, and that the
differences get somewhat larger as the subshell depth in-
creases. This occurs because a spherical shell potential
shifts the potential for electrons fully inside the shell by
a constant amount. But, if part of the charge density
of a subshell is not contained fully inside the shell po-
tential, the change is less; this has been pointed out and
explained earlier in the context of alkali-earth atoms [41].
In any case, this is exactly what Table 1 reveals.

The Wigner time delays are calculated from the basic
matrix elements for each amplitude as given in Eqs. (8)
- (17). They are measurable, and we start with the time
delay associated with each of these amplitudes because
the physics is most easily revealed in these individual,
unaverged, channels.

Shown in Fig. 1 are the Wigner time delay results for
the photoionization 4d3/2 in both free Xe and Xe@C60.

TABLE I: Dirac-Hartree-Fock (DHF) thresholds for free and
confined Xe in eV.

Subshell Xe Xe@C60

5p 3
2

11.97 12.31

5p 1
2

13.40 13.78

5s 1
2

27.49 27.88

4d 5
2

71.67 72.21

4d 3
2

73.78 74.32

4p 3
2

162.80 163.34

4p 1
2

175.58 176.12

4s 1
2

229.38 229.93

A ubiquitous feature of the results is the existence of con-
finement oscillations [42] which are present in all cases for
the confined Xe atom; these are due to the interference of
electron waves which are emitted directly and the waves
which are reflected back from the confining potential. It
is seen that, with increasing photon energy, all time de-
lays at all angles tend towards zero. This is a general
phenomenon, seen previously [43]. It occurs because the
phases of the various dipole matrix elements all tend to
zero, with increasing energy [44]. In addition, for each
amplitude that includes contributions from transitions to
final states with different final angular momenta (hence
spherical harmonics of different l), it is seen that the time
delay is angular-dependent. This occurs for three of the
four amplitudes depicted in Fig. 1.

Scrutinizing now the time delays for each of the four
4d3/2 amplitudes individually, starting with the 4d+

3/2,1/2,

the results are depicted on the top panel of Fig. 1. As
can be seen from Eq. (8), the amplitude contains a lin-
ear combination of the spherical harmonics Y30 and Y10,
so that the time delay has an angular dependence, as
seen in Fig. 1. However, in the chosen energy range,
D4d3/2→εf5/2

is much larger than the 4d→ εp matrix ele-
ments so that the angular variation is fairly small at most
energies; this is also seen in Fig. 1, except in the region
of 90 eV. The non-monotonic bump in the 30 degree time
delay, as a function of energy, is owing to a combination
of factors. First, 30 degrees is near the kinematic node of
Y30 (which is at about 40 degrees). Since Y30 is the angu-
lar factor of the D4d3/2→εf5/2

term in Eq. (8), the terms

in Eq. (8) become competitive at 30 degrees, in con-
trast to other angles, causing considerable cancellation.
Specifically, the interference causes an inflection point in
the phase, in the 90 eV region, thereby resulting in the
bump in the energy derivative of the phase. The situa-
tion for the confined case is essentially the same with the
exception of the confinement oscillations; these are seen
to be present at all angles.

For the 4d−3/2,1/2 amplitude (see Fig. 1), the time de-

lay situation is somewhat similar with an angular depen-
dence resulting from the interference of Y31 and Y11, Eq.
(9). In this case, however, Y31 has a node at about 63
degrees. Correspondingly at 60 degrees the contribution
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of the normally dominant D4d3/2→εf5/2
term in Eq. (9) is

decreased considerably so that there is significant inter-
ference among the terms. This results in a near cancel-
lation around 90 eV, causing a Cooper-like minimum in
the amplitude; the amplitude goes through a deep mini-
mum because both the real part and the imaginary parts
go through zeros, but not exactly at the same energy, as
in the case of an ordinary Cooper minimum. Thus, in
that region, there is a very rapid increase in phase, fol-
lowed by a very rapid drop, again just like in an ordinary
Cooper minimum; there is a phase increase by π over a
small energy region resulting in a huge spike in the time
delay. This occurs in both the free and confined case, as
seen in Fig. 1, i.e., the perturbating potential does not
alter this cancellation. And, as in the previous case, the
confinement oscillations are present at all angles.

The 4d+
3/2,3/2 amplitude, shown in Fig. 1, is almost

exactly like the previous case, except for the situation at
60 degrees around 90 eV. The cancellation is much more
tenuous in this case and the confinement has an impor-
tant effect, as seen. The time delay for the free atom at
60 degrees exhibits a deep dip rather than a rise. This
occurs because near the Cooper-like minimum in the am-
plitude, where the imaginary part goes through a zero,
the real part of the amplitude has the opposite sign com-
pared to the other cases, thereby moving the phase in the
opposite direction. The perturbing potential alters this,
so that in the confined case, there is a spike, like the pre-
vious case, rather than a dip. Thus, there is a remarkable
sensitivity of both the phase and the time delay, in the
vicinity of these Cooper-like minima, to the details of the
variations in the signs of the real and imaginary parts of
the amplitude; this can be altered very significantly by a
small perturbing potential. And, as a consequence, the
difference in time delay at 60 degrees in the 90 eV photon
energy region between the free and confined atom is huge
(by attosecond standards), of the order of femtoseconds.

For the 4d−3/2,3/2 amplitude, also depicted in Fig. 1,

there is only a single term in the amplitude, Eq. (11);
hence, there is no angular dependence in this case. Thus,
the time delay is isotropic. Correspondingly, the time
delay is the result of the phase of the D4d3/2→εf5/2

tran-
sition, which is monotone decreasing for the free atom
case and yields a monotone decreasing time delay; the
confined case is essentially the same except for the con-
finement modulations around the free atom time delay.

The situation is similar for the time delays associated
with the six 4d5/2 amplitudes, shown in Figs. 2 and
3, but with important differences that arise mainly be-
cause there is a significant interchannel coupling effect
on the 4d5/2 photoinization matrix elements owing to
the interaction with the 4d3/2 matrix elements known as
spin-orbit-activated interchannel coupling (SOAIC), an
effect than has been seen experimentally and interpreted
thoretically in studies of photoionization cross sections
[45, 46]. Aside from the effect of interchannel coupling on
the magnitude of the 4d5/2 matrix elements, whence the
SOAIC effect arises, the coupling also affects the phase

FIG. 1: (Color online) Channel specific time delay as calcu-
lated using Eqs. (8) to (11) for the 4d3/2 initial state. Bold
lines are the Wigner time delay for Xe@C60 (abbreviated by
@ in the figures) and thin lines are for free Xe. Different colors
correspond to different angles.
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of the 4d5/2 matrix elements [47]. As a result, for ex-
ample, the 4d5/2 cases show an inflection point in the
phases in the 80 eV region. As a result, the time delay,
the derivative of the phase, is small around 80 eV but
rises with energy as the slope of the phase increases; it
starts to drop off at somewhat higher energies, mimick-
ing the 4d3/2 cases. In fact, except for the rise in time

delay around 80 eV, the 4d+
3/2,1/2 result is rather similar

to the 4d+
3/2,1/2 situation. This is not surprising since

the structure of the expressions for the two amplitudes is
quite similar. The confined case shows the same charac-
teristics with the added confinement oscillations.

Note that the structure of the amplitudes with the
same initial state m quantum number and final state pho-
toelectron polarization ν are similar for both 4d3/2 and
4d5/2 initial states, not only in the above case, but in all
cases. Thus, it is evident that the time delays should be
similar as well. This is exactly what is seen from the com-
parison of Fig. 1 and Fig. 2, with some differences owing
to relativistic dynamics. One difference is the rising of
the 4d5/2 time delays at around 80 eV for most cases,
owing to the interchannel coupling, as explained above.
For another, unlike the 4d+

3/2,3/2 case, for 4d+
5/2,3/2 both

the free and confined time delays show a large dip at
60 degrees in the 90 eV region. The introduction of the
confinement potential does not change the situation qual-
itatively for the 4d+

5/2,3/2 amplitude, although it is seen

that it does move the dip up by a few eV to higher en-
ergy. Still another difference is seen in Fig. 2 for the
4d−5/2,3/2 time delay as compared to 4d−3/2,3/2. The sharp

positive spike in the 4d3/2 case at 60 degrees near 90 eV
becomes a negative spike for 4d5/2. It is thus found that
the Cooper-like minimum in the amplitudes have signif-
icant effects upon the time delay. It is also evident from
the comparisons of the 4d3/2 and 4d5/2 initial states that
relativistic effects can have huge consequences, particu-
larly near these Cooper-like minima.

The 4d±5/2,5/2 cases, Fig. 3, have no analogue in the

4d3/2 manifold because the latter cannot have m = 5/2.
Furthermore, since the present calculation is for linear
polarization of the incident photons, the final continuum
states for transitions from the 4d5/2,5/2 initial states must
also have m = 5/2. This means that only transitions
to εf5/2,5/2 and εf7/2,5/2 are possible (there can be no
4d → εp transitions). This follows from Eqs. (16) and
(17). In addition, since each amplitude involves only a
single spherical harmonic, the angular distribution must
be isotropic; this is seen for both 4d±5/2,5/2 cases in Fig.

3. Nevertheless, owing to relativistic interactions, each
amplitude consists of two terms which are slightly differ-
ent and can interfere. The 4d+

5/2,5/2 case does not appear

to show any significant effects of interference, although
the confining potential induces a factor of five increase
in the time delay at about 82 eV, thereby indicating the
sensitivity of the time delay to small perturbations. For
the 4d−5/2,5/2 case, the free atom time delay is monotone

FIG. 2: (Color online) Channel specific time delay as calcu-
lated using (12) to (15) for 4d5/2. Bold lines are the Wigner
time delay for Xe@C60 (abbreviated by @ in the figures) and
thin lines are for free Xe. Different colors correspond to dif-
ferent angles.
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decreasing from 80 eV, which suggests that interference is
going on in that energy region. The confined atom time
delay, however, is seen to behave quite differently; there
is a very large positive spike at 85 eV and an equally
large negative spike at about 110 eV. This occurs be-
cause the 4d−5/2,5/2 amplitude is quite small since it is

the difference of two roughly equal terms [Eq. (17)].
Thus, the addition of the confinement potential causes
oscillations in the matrix elements. This results in not
one but two Cooper-like minima in the amplitude, one
around 80 eV and the other about 110 eV, resulting in
the spikes. This does not happen in the 4d+

5/2,5/2 case be-

cause, as seen from Eq. (16), this amplitude is the sum
of the two terms. It is noteworthy that the Cooper-like
minima in the confined 4d−5/2,5/2 case occur despite the

absence of 4d → εp transitions in this amplitude; this
speaks to the importance of relativistic effects.

FIG. 3: Channel specific time delay as calculated using (16)
to (17)for 4d5/2. Bold lines are the Wigner time delay for
Xe@C60 and thin lines are for free Xe.

The calculated time delays for the weighted average
over the intial state magnetic quantum number m and
the final state photoelectron polarization [Eq. (19)] are
depicted in Fig. 4. Of importace here is that for free
Xe, for the 4d3/2 initial state, the time delays are mono-
tone decreasing with energy at all angles, while for the
4d5/2 initial state, they are rising from 80 eV (at all an-

gles) and only start decreasing at higher energies. This
occurs owing to the interchannel coupling between the
4d3/2 channels and the 4d5/2 channels, a purely relativis-
tic effect, as explained in connection with the individual
amplitude time delays. For the confined atoms, there
are significant oscillations around the free results due to
the confinement resonances. The amplitudes of these os-
cillations decrease with increasing energy, a well-known
charateristic of confinement resonances [42]. It is also
evident that these weighted averages do not exhibit any
of the huge spikes, positive or negative, present in the
time delays associated with the individual amplitudes.
This happens because these spikes are typically related
to the Cooper-like minima in the individual amplitudes
so that, like ordinary Cooper minima, the cross sections
are small in these regions and the effects are washed out
in the weighted averages. It should be mentioned, how-
ever, that there are intermediate weighted averages that
could be taken between the individual amplitude time
delays and the Eq. (19) averages. One might consider
the time delays in coincidence with photoelectron polar-
ization. Then the average, Eq. (19), would be summed
only over m, or in coincidence with the alignment of the
residual ion, in which case the sum would be only over
photoelectron polarization.

An important point to be emphasized, as mentioned
earlier, is that, pump-probe photoionization experiments
involve the absorption of a second photon (streaking [7],
RABBITT [9], etc.) The presence of a second photon has
consequences for the time delay. In fact, the measured
time delay can be thought of as a sum of the Wigner time
delay, τW , and τcc/CLC , the time delay due to the sec-
ond (probe) photon, also called Coulomb-laser coupling
(CLC) [14] or continuum-continuum coupling (cc) [48].

τatomic = τW + τcc/CLC , (20)

The present calculation deals only with the Wigner time
delay, τW . However, since the existing experimental tech-
niques involves two photons, it is of interest to briefly
discuss the consequences of the probe photon. τcc/CLC
decreases rapidly from above the ionization threshold [49]
and, thus, since the present calculations are well above
the 4d thresholds, it is expected that it is small. The
initial indication was that τcc/CLC is hardly dependent
on the partial waves [49]. However, a recent RABBITT
study of the angular dependent time delay in He [50]
showed this is not the case. The time delay from the
spherically symmetric 1s shell becomes angular depen-
dent close to the kinematic node of Y20 at the magic angle
because of an enhanced competition of the s → p → d
and s → p → s photoabsorption channel. This angu-
lar dependence of CLC corrections was also implicitly
demonstrated in a recent theoretical study of the two-
photon ionization of the 2p shell of Ne [51]. The Wigner
time delay, taken alone, could not account for the calcu-
lated atomic time delay. Similarly, the second photon ab-
sorption can alter the presently calculated angular depen-
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FIG. 4: (color online) m and final state spin average time
delay for 4d3/2 and 4d5/2 as calculated using Eq. (19). Bold
lines are the Wigner time delay for Xe@C60 (abbreviated by
@ in the figures) and thin lines are for free Xe. Different colors
correspond to different angles.

dent time delays. However, if the difference between the
photoionization time delays for Xe and Xe@C60 are stud-
ied, τcc/CLC , which depends upon the effective charge of
the residual ion [14, 48] should vanish so that the mea-
surement would return the difference in the free and con-
fined Wigner time delays. It is hoped, therefore, that the
present results might stimulate such a measurement.

IV. CONCLUSIONS

Wigner time delay in photoionization from 4d3/2 and
4d5/2 subshells have been calculated for free and con-
fined Xe using a relativistic many-body formalism, the
relativistic-random-phase approximation (RRPA). There
were seen to be 10 relativistic amplitudes from the 4djm
initial states with positive values of m. It was found
that six of the amplitudes generate a phase that is angle-
dependent, and thus, a Wigner time delay that depends
upon the angle between the observation direction and the
photon polarization direction. Over most of the energies

and angles studied, the confined results were found to
modulate around the free results with rather substantial
amplitudes, tens of attoseconds or more, particularly at
the lower energies, owing to the well-known confinement
resonances. New effects were uncovered in the angular
dependence of the Wigner time delay including Cooper-
like minima in the amplitudes. In the vicinity of these
Cooper-like minima, it was found that the phase of an
amplitude could vary quite rapidly, with energy, thereby
resulting in rather large time delays, hundreds or thou-
sands of attoseconds. These effects were found to oc-
cur both in the free and confined cases. However, owing
to the sensitivity of the amplitudes near the Cooper-like
minima, the large excursion of the time delay were in op-
posite directions in the free and confined atoms, in some
cases.

A purely relativistic effect was found in the 4d−5/2,5/2
amplitude. The time delay for free Xe, in this case, de-
creases monotonically in contrast to the case for Xe@C60

where huge excursions in the the delay were exhibited,
greater than 1000 as, at two different energies, very much
larger than could be expected due to confinement reso-
nances. This behavior was traced to the interference be-
tween the 4d5/2 → εf5/2 and 4d5/2 → εf7/2 transitions
which are different only owing to relativistic interactions.
The interference generated several Cooper-like minima.
As a result, the Wigner time delay exhibited huge posi-
tive and negative values in the energy region of these min-
ima. It is, thus, evident that relativistic interactions can
induce interferences which result in large physical effects.
Time delay measurements in coincidence with spin polar-
ization of the photoelectron and alignment/orientation of
the residual ion (to determine the m quantum number of
the initial state) are, however, beyond current experimen-
tal capabilities. Nevertheless, the present results should
stimulate research along these lines.

Taking the weighted averages of the amplitudes, the
effects of these Cooper-like minima were found to be
largely gone because, by their very nature, in the vicin-
ity of the minima, the magnitude of the amplitudes were
small. Thus, they do not contribute much to the aver-
ages. Nevertheless, the results showed significant quali-
tative and quantitative differences between the 4d3/2 and
4d5/2 cases for both free and confined Xe, thereby indicat-
ing that relativistic effects are of importance, even away
from the Cooper-like minima. It was also demonstrated
that measurements of the difference in time delays be-
tween free and confined atoms should be most revealing.
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Jiménez-Galánn and U. Keller, Phys. Rev. A 94, 063409
(2016).

[51] I. A. Ivanov and A. S. Kheifets, Phys. Rev. A 96, 013408
(2017)


	Introduction
	Theoretical Method
	Photoionization amplitude
	Formulation of the angular dependent time delay

	Results and Discussion
	Conclusions
	Acknowledgments
	References

