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We analyze the time-dependent nonlinear response of helium atom to a strong laser pulse in form
of the induced nonlinear electric susceptibility. Our theoretical predictions are based on ab-initio
solutions of the time-dependent Schrödinger equation obtained using a numerical basis state method
and the short-time Fourier transform. The results qualitatively reproduce features seen in recent
experimental data. In particular, we observe deviations from the adiabatic (field-following) response
in the electric susceptibility at high intensities. According to our analysis a shift of the peak towards
the front of the pulse and changes in the concavity of the slope in the trailing edge of the pulse
can be related to the population of continuum states and bound excited states with high angular
quantum number during the interaction of the atom with the laser pulse.

PACS numbers: 42.65.An, 32.80.Wr

I. INTRODUCTION

The intensity dependent refractive index is an impor-
tant parameter characterizing the nonlinear response of
media in the interaction with short intense laser pulses.
It plays an important role in strong-field phenomena such
as self-focusing and self-phase modulation [1], high har-
monic and attosecond pulse generation [2–4] or femtosec-
ond pulse propagation [5–7]. Measurement and theoreti-
cal analysis of the nonlinear refractive index in gases and
other media have recently gained much interest (e.g., [8–
16]) in view of a discrepancy between experimental re-
sults concerning the higher order terms in a power series
expansion of the refractive index [17–20].

The controversial debate is related to the interpreta-
tion of a change from a positive to a negative nonlinear
refractive index as a function of laser intensity and the
impact of excitation and ionization of the target on this
behavior. The change is a crucial factor for an under-
standing of the mechanisms leading to long-range prop-
agation of intense laser pulses in gases and the atmo-
sphere. Moreover, it occurs at intensities at which there
is a transition from a perturbative to a nonperturbative
interaction between the electrons and the external laser
field [14, 16], which typically is accompanied by the onset
of other strong-field phenomena such as above-threshold
ionization [21, 22] and high-harmonic generation [23, 24].

Beyond the determination of the intensity dependence
[17, 20], recently the variation of the nonlinear refractive
index over the course of the interaction of atoms with the
laser pulse has been measured [18–20, 25]. At low intensi-
ties it was found that the index adiabatically follows the
change of the electric field amplitude, while at higher in-
tensities a shift of the position of the peak and changes in
the slope have been observed. This was attributed to the
generation of plasma by ionization of the medium during
the pulse [18]. Therefore, these measurements provide
insights into the dynamics of self-phase modulation and
self-focusing, relevant for the understanding of femtosec-
ond pulse propagation. Furthermore, the results give a
test for the theoretical models used for the calculation of

the nonlinear refractive index.
In this article we apply ab-initio solutions of the time-

dependent Schrödinger equation, obtained using a nu-
merical basis state method [26], to determine the non-
linear electric susceptibility induced by the interaction
of an atom with an intense laser pulse as a function of
time. The theoretical predictions confirm the features ob-
served in the experiment and provide information about
the influence of the time-dependent population of bound
excited states and ionization as well as the coupling be-
tween bound and continuum states on the observed tem-
poral variation of the index. Calculations are performed
for helium atom, the general conclusions however do not
depend on the characteristics of the ground state of the
target and are expected to hold for other rare gas atoms
as well.
In the next section we outline the methods used for

the calculation of the time-dependent nonlinear suscep-
tibility. Next, we present the results for helium atom
interacting with laser pulses at a wavelength of 800 nm
over a range of peak intensities. Characteristic features,
such as a shift of the peak towards the front of the pulse
and changes in the concavity of the slope at the trailing
edge, are then analyzed in view of the contributions from
different parts of the field-free spectrum. We end with a
brief summary.

II. THEORETICAL METHOD

We obtain the time-dependent susceptibility χ(ω, τ)
from the time dependent dipole moment µ(t) of an atom
interacting with an external field E(t), linearly polarized
in z-direction, at frequency ω by applying the short time
Fourier transform as:

χ̃(ω, τ) =
F {µ(t)w(t − τ)} (ω)

F {E(t)w(t − τ)} (ω)
. (1)

We note that χ̃ is a complex quantity. Below we analyze
the real part χ = ℜ(χ̃), which corresponds to the ex-
perimentally accessible electric susceptibility. The imag-
inary part of χ̃ relates to absorption, which we do not
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further consider in the present work. w(t) is a window-
ing function and τ corresponds to the center of w(t). As
windowing function we have chosen in our calculations
the Dolph-Chebyshev window [27]. Optimized for the
narrowest central bandwidth at a given constant atten-
uation in the sidelobes, the Dolph-Chebyshev window is
usually defined via its discrete Fourier transform [28]:

W (k) =
cos

(
N cos−1[β cos

(
πk
N

)
]
)

cosh
[
N cosh−1(β)

] (2)

with

β = cosh

[
1

N
cosh−1 (10α)

]

, (3)

where k = 1, 2, . . . , N − 1 is the frequency bin, and N is
the total number of frequency bins in the window. The
attenuation of the sidelobes is controlled via the param-
eter α; in our calculations we have used α = 4 which sets
the attenuation to 80 dB. Test calculations have shown
that the results presented below are rather insensitive to
variations of α.
We find the time dependent dipole moment as the ex-

pectation value of the dipole operator as (we use Hartree
atomic units e = m = ~ = 1):

µ(t) = − < Ψ(t)|µ̂|Ψ(t) > . (4)

where Ψ(t) is the solution of the time-dependent
Schrödinger equation

(
p̂

2
+ VSAE(r) + E(t)µ̂

)

|Ψ(r, t)〉 = i
∂

∂t
|Ψ(r, t)〉 (5)

with

|Ψ(r, t)〉 =
∑

nlm

cnlm(t)|ψnlm(r)〉 (6)

=
∑

nlm

cnlm(t)|Rnlm(r)Ylm(Ω)〉 (7)

and Rnl(r) and Ylm(Ω) are the radial wave functions and
spherical harmonics, respectively, corresponding to the
field-free Hamiltonian

H0 =
p̂

2
+ VSAE(r) (8)

with a spherical symmetric single-active-electron poten-
tial VSAE(r) of the atom. In the present study we have
performed calculations for helium atom using the single
active electron potential [29]:

VSAE(r) = −
1

r
−
a1e

−c1r

r
−
a2e

−c2r

r
−
a3e

−c3r

r
(9)

with a1 = 1.231, a2 = −1.325, a3 = −0.231, c1 = 0.662,
c2 = 1.236, and c3 = 0.480. For a linearly polarized field
the basis set can be restricted due to the dipole selection
rule (∆m = 0). We consider the ground state of the

helium atom as the initial state and therefore include
states with m = 0 in the basis set only. In this basis set
the dipole operator is defined as:

µ̂ = −
∑

nln′l′

|ψnl0 >< ψnl0|z|ψn′l′0 >< ψn′l′0|, (10)

We find the radial functions unl(r) = rRnl(r) as nu-
merical solutions of the corresponding eigenvalue equa-
tion using the Numerov method on a logarithmic one-
dimensional finite-space grid with the boundary condi-
tions unl(r = 0) = unl(R0) = 0 [14, 26]. Due to the finite
box size R0 both bound and continuum parts of the spec-
trum are discrete. For the present set of calculations we
have set R0 = 1000 a.u., and basis states up to n = 2000
(corresponding to an energy of about 19 a.u., or about
515 eV) and l = 70.
Using the expansion of the full wave function into a set

of field-free basis states makes any observables accessible
for separation in contributions arising from the different
parts of the spectrum of the field-free Hamiltonian. For
the dipole moment and the related electric susceptibility
we split:

< Ψ(t)|ẑ|ψ(t) > =

bound-bound

︷ ︸︸ ︷

< Ψ(t)|P †
b
ẑPb|Ψ(t) > (11)

+

continuum-continuum
︷ ︸︸ ︷

< Ψ(t)|P †
c ẑPc|Ψ(t) >

+

bound-continuum

︷ ︸︸ ︷
[

< Ψ(t)|P †
b
ẑPc|Ψ(t) > +c.c.

]

where Pb is the projection operator onto the field-free
bound states which sets cn,l,0 = 0 for E > 0, and Pc is
the projection operator onto the rest of the spectrum, i.e.
the field-free continuum states. Although the separation
is done in terms of the field-free states and the charac-
terization of ’bound’ and ’continuum’ states becomes less
applicable during the interaction, it will give us insight
concerning the population of states with low and high
energy.

III. RESULTS AND DISCUSSION

In this section we apply the numerical method pre-
sented above to obtain results for the electric suscepti-
bility of helium atom as a function of time during the
interaction with a short intense laser pulse. In all of our
calculations we have used a Gaussian envelope for a 10
cycle full width at half maximum (FWHM) pulse at a
central wavelength of 800 nm. The peak intensity of the
pulse is varied from 1.5×1014 W/cm2 to 3×1014 W/cm2.
In Fig. 1 we present the results for four different intensi-
ties (in TW/cm2): 300 (solid line), 250 (dashed line), 200
(dotted line), and 150 (dashed-dotted line) as a function
of time, which is scaled in terms of the cycle of the elec-
tric field. Results are shown for the middle 16 cycles of
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FIG. 1: (Color online) Time dependent susceptibility of he-
lium interacting with intense laser pulses at a wavelength of
800 nm and a pulse length of 10 cycles (FWHM of Gaussian
envelope). Peak intensities are 150 TW/cm2 (dashed-dotted
line), 200 TW/cm2 (dotted line), 250 TW/cm2 (dashed line)
and 300 TW/cm2 (solid line). Time is given in terms of the
electric field cycle, where t = 0 cycles denotes the center of
the pulse.

the field, where we have set t = 0 cycles to coincide with
the peak of the electric field. Experimental data for the
nonlinear refractive index have been obtained at similar
intensities [20].
For the lower intensities (150− 200 TW/cm2), our re-

sults show that the susceptibility adiabatically follows the
envelope of the field amplitude, i.e. properly scaled these
results do coincide with the results of the (windowed)
Gaussian envelope function. This is in agreement with
the expectation from a perturbative electron-field inter-
action. Above 200 TW/cm2, however, the results start to
deviate from this adiabatic behavior. At 250 TW/cm2

the peak of the susceptibility has slightly shifted away
from the center of the field towards the beginning of the
pulse, and at 300 TW/cm2 it has moved by more than a
full cycle of the driving field. This behavior is in quali-
tative agreement with results shown in the supplemental
material of Ref. [20].
At the highest intensities considered, one can observe

further deviations from the adiabatic behavior during the
trailing part of the pulse. In both cases there is an addi-
tional change of concavity in the slope near t = +1 cy-
cle, which initially appears at 250 TW/cm2 and becomes
more obvious at 300 TW/cm2. At the latter intensity
we also notice a second change at about t = +5 cycles.
We note that the deviations from the adiabatic behavior
occur at intensities at which previously a change in the
nonlinear refractive index (e.g., [17, 30]) and a transi-
tion from perturbative to nonperturbative electron-field
interaction [14] have been observed.

A. Analysis of time-dependent susceptibility

In order to obtain further insights into the results for
the time-dependent susceptibility we first present in Fig.
2(a) the contributions related to the field-free bound

FIG. 2: (Color online) a) Field-free bound-bound contribution
to the time dependent susceptibility and b) population in the
field-free bound excited states of the spectrum, taken at the
zeros of the driving field. Laser parameters and line styles are
the same as in Fig. 1.

parts of the spectrum. The results show that this contri-
bution to the electric susceptibility follows almost adia-
batically the envelope of the field. There is a small devi-
ation at the highest intensities, at which the value at the
end of the pulse is slightly larger than at the beginning
of the pulse. This can be readily understood from the
results for the population in the excited states, defined
as all bound states except the ground state, which is pre-
sented in Fig. 2(b). This population (taken at the zeroes
of the electric field) increases, adiabatically following the
field envelope, in the rising part of the pulse, but one
can see that the population does not completely return
to zero in the trailing part of the pulse, leaving a resid-
ual excited state population at the end of the pulse. The
amount of the residual population, as one would expect,
increases with an increase of the intensity of the pulse
and explains the differences between the bound-bound
contribution to the total susceptibility at the beginning
and at the end of the pulse.
The contribution to the time-dependent susceptibility,

shown in Fig. 2, is the largest term and therefore accounts
for the overall shape of the total susceptibility. Indeed,
at the lowest intensities, it almost entirely gives rise to
the adiabatic form, which closely follows the envelope of
the electric field. For the deviations from field-following
behavior, specifically the features we pointed out earlier
at higher intensities (c.f., Fig. 1), we will now turn to the
other contributions in Eq. (11).
The contribution to the time dependent susceptibil-

ity from the continuum part of the field-free spectrum is
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FIG. 3: (Color online) Same as Fig. 2, but for the continuum
part of the field-free spectrum.

shown in Fig. 3(a), accompanied by the population in the
field-free continuum states taken at the zeros of the driv-
ing electric field (Fig. 3(b)). At the lowest intensity (150
TW/cm2, dashed-dotted curve), the shape of the suscep-
tibility as a function of time is adiabatic, and positive,
though small. At these intensities, the population in the
field-free continuum states is mainly transient during the
pulse and there is almost no residual population in the
continuum at the end of the pulse.

In contrast, at the highest intensities, 250 TW/cm2

(dashed line) and 300 TW/cm2 (solid line), we observe
a much stronger population of the field-free continuum
states which continues to increase beyond the peak of
the pulse up to t = +1 cycle. As one would expect,
the onset for the continuum population appears earlier
in the pulse and the continuum population is larger as
the intensity of the laser pulse increases. The fast rise of
the continuum population over a short interaction time
is also a signature for a change to a nonperturbative field
interaction. In agreement with previous results [14] we
observe this behavior for the interaction of a helium atom
with a laser field at 800 nm in an intensity regime of
2−3×1014 W/cm2. In the remaining part of the trailing
edge of the pulse there is a decrease until about t = +5
cycle, and the remaining population in the continuum at
the end of the pulse corresponds to ionization. We note
that this transfer back from the continuum to the bound
(excited) states of the atom in the trailing part of the
pulse has been observed before (e.g., [26, 31, 32]).

The trends in the continuum population are reflected
in the corresponding contribution to the electric suscep-
tibility (Fig. 3(a)) at the highest intensities. For exam-

FIG. 4: (Color online) Same as Fig. 2a) but for the cross-term
contributions.

ple, there is a minimum, corresponding to the negative
contribution from the continuum part to the susceptibil-
ity, at about t = +1 cycle. Furthermore, the features
in the contribution from the field-free continuum states
at the highest intensities can well explain the signatures
we pointed out in the total susceptibility (Fig. 1). The
strong growth in the continuum population (and corre-
sponding negative contribution from the continuum con-
tributions to the susceptibility) shows up in the total
susceptibility as a shift in the peak of the susceptibility
towards earlier times in the pulse, which confirms the
explanation given by Wahlstrand et al. [20]. The peak
in the population (and the corresponding minimum in
the susceptibility) at around +1 cycle relates to the first
change in concavity observed in the electric susceptibil-
ity during the trailing part of the pulse. On the other
hand, the second change at about t = +5 cycles at 300
TW/cm2 (Fig. 1) corresponds to the slow down in the
back transfer of population from the continuum to the
bound excited states.
Finally, the contributions to the susceptibility from

the cross terms (between field-free bound and continuum
states, c.f. Eq. (11)) are shown in Fig. 4. We observe a
field envelope following negative contribution and small
deviations at higher intensities. Overall, the variation in
this contribution is however small and, hence, it is not
important for the understanding of the dynamic features
seen in the total susceptibility.

B. Role of orbital angular momentum

As mentioned previously, we attribute the nonadia-
batic signatures in the total susceptibility at high inten-
sities as due to a transition from perturbative to nonper-
turbative interaction of the field with the target atom. In
particular, the population of the continuum states clearly
shows features of a nonperturbative interaction, e.g. the
exponential growth in continuum state population over
a short interaction time. Although it is difficult to fur-
ther separate perturbative and nonperturbative effects in
our ab-initio calculations, we noticed that the transition
between the corresponding regimes is related to a popula-
tion of states with angular momentum quantum number
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FIG. 5: (Color online) Population in (a) field-free bound
states and (b) field-free continuum states with l ≤ 1. The lines
represent the results of calculations for pulses with peak inten-
sity 150 TW/cm2 (dashed-dotted line), 200 TW/cm2 (dotted
line), 250 TW/cm2 (dashed line), and 300 TW/cm2 (solid
line).

larger than 1.

To show this characteristic feature we present in Figs.
5 and 6 the populations in the field-free excited bound
states (panels (a)) and continuum states (panels(b)),
recorded at the zeroes of the field, for all states with
l ≤ 1 (Fig. 5) and for all states with l > 1 (Fig. 6). At all
intensities considered the population in the low angular
momentum states adiabatically follows the field envelope,
while the population in the higher l-states mainly occurs
in the trailing part of the pulse. Moreover, the latter pop-
ulation is predominantly observed at higher intensities.
The results in Fig. 6(a) also show that the trapping in
excited states during the trailing part of the pulse, seen
in various previous studies (e.g., [26, 31, 32]), appears to
have significant contributions from states with l ≥ 2.

The same characteristic difference can be seen in the
contributions to the total electric susceptibility, shown in
Fig. 7. While the contributions from states with low an-
gular momentum follow adiabatically the field envelope
(panel a), in agreement with expectations from lowest-
order perturbation theory, those from states with high
angular momenta (panel b) clearly deviate from this be-
havior, in particular at the highest intensities considered.
All the characteristic features that we pointed out at the
outset of this section can thereofore be related to the
slope of the high l-state contributions.

FIG. 6: (Color online) Same as Fig. 5, but for l > 1.

FIG. 7: (Color online) Contributions to the total suscepti-
bility from (a) low (l ≤ 1) and (b) high (l > 1) angular
momentum states. Laser parameters and line styles as in Fig.
5.

IV. SUMMARY

We have presented a theoretical analysis of the time-
dependent electric susceptibility of helium atom inter-
acting with a short intense laser pulse. The analysis
is based on numerical results using an expansion of the
time-dependent wavefunction in a set of basis states and
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the application of the short-time Fourier transform. In
agreement with recent experimental data, the theoreti-
cal predictions show deviations from the adiabatic (field-
following) behavior, expected from lowest-order pertur-
bation theory, at the highest intensities considered. The
shift in the peak towards the front of the pulse and the
changes in the concavity of the slope in the trailing edge
of the pulse have been related to the population in the
field-free continuum states and bound excited states with
high angular momentum due to a non-perturbative inter-
action between the atom and the electric field of the laser
pulse. The conclusions do not depend on the character-
istics of the ground state of the target and are expected
to hold for other rare gas atoms as well.
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[13] C.K. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A.D.
Bandrauk, L. Berge, and S. Skupin, Phys. Rev. A 87,
043811 (2013).

[14] A. Spott, A. Jaron-Becker, and A. Becker, Phys. Rev. A
90, 013426 (2014).

[15] M. Tarazkar, D.A. Romanov, and R.J. Levis Phys. Rev.
A 90, 062514 (2014).

[16] A. Spott, A. Becker, and A. Jaron-Becker, Phys. Rev. A

91, 023402 (2015).
[17] V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt.

Express 17, 13429 (2009); Opt. Express 18, 3011 (2010).
[18] J.K. Wahlstrand, Y.-H. Cheng, Y.-H. Chen, and H.M.

Milchberg, Phys. Rev. Lett. 107, 103911 (2011).
[19] J.K. Wahlstrand, Y.-H. Cheng, and H.M. Milchberg,

Phys. Rev. A 85, 043820 (2012).
[20] J.K. Wahlstrand, Y.-H. Cheng, and H.M. Milchberg,

Phys. Rev. Lett. 109, 113904 (2012).
[21] P. Agostini, F.Fabre, G. Mainfray, G. Petite, and N.K.

Rahman, Phys. Rev. Lett. 42, 1127 (1979).
[22] G. Petite, P. Agostini, and H.G. Muller, J. Phys. B: At.

Mol. Opt. Phys. 21, 4097 (1988).
[23] A. McPherson, G. Gibson, H. Jara, T.S. Luk, I.A. McIn-

tyre, K. Boyer, and C.K. Rhodes, J. Opt. Soc. Am. B 4,
595 (1987).

[24] M. Ferray, A. L’Huillier, X.F. Li, L.A. Lompre, G. Main-
fray, and C. Manus, J. Phys. B 21, L31 (1988).

[25] J. H. Odhner, D. A. Romanov, E. T. McCole, J. K.
Wahlstrand, H. M. Milchberg, and R. J. Levis, Phys.
Rev. Lett. 109, 065003 (2012).

[26] S.H. Chen, X. Guo, Y. Li, A. Becker, and A. Jaroń-
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