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We theoretically investigate the high-harmonic generation (HHG) from periodical structures
driven by an intense laser pulse. Including the full bands, the single electron time-dependent
Schrödinger equation (TDSE) is numerically solved in the velocity gauge using Bloch states to
obtain the emission spectra. The contributions from different crystal sites are identified using the
localized Wannier functions and time-frequency analysis. It is found that the cut-off energy of
harmonics is depending on the migration distance of the electron and the instantaneous laser field
strength when the electron transports into the related sites. We show that the coherence among
different sites during electron propagation is crucial for HHG from solids which can be taken advan-
tages to control the individual site contribution to the certain frequency range of the total harmonic
spectra.

I. INTRODUCTION

High harmonic generation (HHG) from solids paves a
new efficient way of producing ultra-short pulses into
attosecond regime [1–9]. Subjected to long-wavelength
strong few-cycle laser pulses, the optical and electronic
properties of bulk crystalline solids are strongly modi-
fied transiently giving rise to various of non-perturbative
characters [10]. In order to identify the physics behind,
connection to and differentiation from the atomic gas
cases are often being made with fruitful insights [6, 11], a
complete understanding of HHG from solids is still being
in pursuit.

For crystalline solids, the discrete bound states appear-
ing in the atomic cases turn into bands of continuum with
different crystal momenta. The energy-momentum dis-
persion relation deviates from the parabolic dispersion of
atomic cases, which defines the scaling law of the cut-
off harmonic energy for solids as a linear function of the
driving laser field strength [1, 12, 13]. Within the mean-
field approximation, the dynamics of HHG from a peri-
odical structures can be understood in the single-electron
picture. Following excitation from the valence band to
the conduction band, the electron is driven under the
laser field. When it recombines into the original hole
state previously created in the valence band, harmonic is
emitted with photon energy of the band gap at the cor-
responding instantaneous crystal momentum [12]. Such
a generalized rescattering model for HHG from solids is
thus proposed resembling the formulation of HHG from
atomic gases [14–16]. Within this rescattering in two-
band model, the cut-off energy cannot go beyond the
maximum band gap. But clearly, when the laser inten-
sity is high enough, the crystal momentum can go beyond
the first Brillouion zone and higher bands come into play
through Laudau-Zener tunneling [17–21]. At the same
time, multiple deflections of the electron wave at the edge
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of the Brillouion zone causes the Bloch oscillations [22] of
the induced electron current that emits harmonics with
frequency in multiple integers of the Bloch frequency [5].
The complex dynamics involved stimulates the theoreti-
cal treatment of dividing the current into the intraband
and the interband components [2] and full-band simula-
tions [23–25] have recently been performed.
Because the crystalline solids are extended systems

with periodic structures, the electron dynamics driven
by the laser field and the resulted harmonic emission are
encoded with spatial information [26, 27]. The coherent
transport of the electron and the holes have significant
effects on HHG. Due to the relaxation from inelastic scat-
tering, the coherent length of the electron wave is limited
which could hamper the harmonic emission. In addition,
under the coherent excitation from strong laser fields,
the dimension of electronic wave packet decreases and is
confined into few crystal sites. The translational invari-
ance of a periodic structure is destroyed resulting in the
localized Wannier-Stark ladder states [28–30] with en-
ergy separated by the Bloch frequency Fa0, where a0 is
the lattice constant and F is the electric field strength.
As hinted in our previous work [31] and others [32] on
diatomic molecules with nuclear distance of R, the elec-
tron dynamics exhibits a drastic difference from the case
of atoms that the ionized electron localized in one atomic
core can migrate into the other core emitting harmonics
at a cut-off energy of FR, which is analogy to the Bloch
frequency. Therefore it would be interesting to investi-
gate HHG from solids in the coordinate space and to ex-
plore how the coherence among electron waves localized
at different sites contribute.
In this work, we calculate and analyze the harmonic

spectra from a one-dimensional periodic structure sub-
jected to a carrier-envelop phase (CEP) stabilized laser
pulse. The time-dependent schrödinger equation(TDSE)
is solved in the basis of Bloch states [23, 33] in the velocity
gauge, where the full bands are included. By examining
the harmonic emission from each individual crystal site,
we obtain the spatial information during the process of
HHG. We identify that there exists quantum paths corre-
sponding to the recombinations of the electron into crys-
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tal sites different from the original site where the electron
is localized initially. In particular, we show that the lo-
calized states are strongly dressed by the intense laser
pulse, such that the maximum frequency of the harmon-
ics is determined by the coherent propagation length and
the dynamic Bloch frequency being proportional to the
instantaneous laser field strength.

In order to mimic the decoherence effects, a spatial
filter is applied in the simulation showing that the har-
monic spectra is depending on how far the electron can be
coherently transported. Such a coherence among differ-
ent crystal sites is crucial for extending harmonic cut-off
energy and for coherently manipulating HHG and other
nonlinear processed such as high sideband generation
[34, 35] in the presence of decoherence from electrons,
phonons and defects. As a demonstration, we also show
that the harmonic emission from different sites can be
controlled by the CEP of the laser pulse, which can be
used to better tailor the generated attosecond pulses.

This paper is organized as follows: In Sec. II, the
method is summarized. In Sec. III, we present and dis-
cuss the numerical results of the harmonic emission spec-
tra, with focus on the related electron dynamics and the
effects of electron localization. A summary on the im-
portant finds is given in Sec. IV. Atomic units are used
unless stated otherwise.

II. METHOD

Firstly we give a brief review of the methods for calcu-
lating HHG from a crystal lattice in laser fields (see, e.g.,
[23, 36]). The field-free eigenstates of the crystal electron
can be found by solving the Schrödinger equation

[

p2

2m
+ v(r)

]

φki = ǫi(k)φ
k

i , (1)

subjected to the periodical boundary condition, φki (r +
L) = φki (r), where m is the mass of the electron and L

corresponds to the size of the crystal which is macroscop-
ically large. The periodical potential in the solid is given
by v(r) that v(r + a0) = v(r) with a0 being the lattice
constant. According to the Bloch Theorem, the Bloch
function takes the form of

φki (r) = eik·ruki (r), (2)

with uki being a periodical function such that

uki (r+ a0) = uki (r). (3)

The eigenenergies ǫi(k) determine the dispersion relation
between the electron energy and the crystal momentum
k within the ith band.

Subjected to an external time-varying electro-magnetic
field represented by the vector potential A(t), the time
evolution of the crystal can be described by the time-

dependent Schrödinger equation (TDSE) in the velocity
gauge

i
∂

∂t
ψk(t) =

[

[p− eA(t)]
2

2m
+ v(r)

]

ψk(t), (4)

where e = −1 is the electron charge in atomic units and
the dipole approximation has been assumed. The to-
tal wave function is expanded by using the unperturbed
Bloch functions,

ψk(t) =
∑

i

aki (t)φ
k

i , (5)

where i runs over the accessible bands. We explicitly
label the wave function by k that is conserved when ne-
glecting the inelastic scattering by electrons and phonons.
Assuming all the electron initially occupying in the

highest valence band with every particular crystal mo-
mentum k, the current density driven by the laser field
can be expressed by

j kn(t) =
e

m

(

〈ψk

n(t) |p|ψ
k

n(t)〉 − eA(t)

)

. (6)

The time-dependent laser-induced macroscopic current
j (t) is given by:

j (t) =
∑

n

∫

j kn(t)d
3k. (7)

The harmonic spectra can be obtained by the Fourier
transformation of the macroscopic current.
In the numerical implementation, the Bloch functions

are expanded using a set of Nmax plane waves,

uki (r) =

Nmax
∑

j=1

Ck

i,j exp [iK j · r] , (8)

where K j =
3
∑

α=1

mα
j bα denote reciprocal lattice vectors,

mα
j are integers and bα are the primitive vectors of the

reciprocal lattice. The periodical potential v(r) can be
represented in the basis of Fourier series:

v(r) =

Nmax
∑

j=1

vje
iK j ·r, (9)

with

vj =
1

Ω

∫

Ω

e−iKj ·rv(r)dr, (10)

where Ω is the volume of a site.
Alternatively, the TDSE can be solved directly on the

grids in the coordinate space. Both methods has been
applied in this investigation and agreement has been
reached. The space coordinate representation helps to
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connect the understanding of HHG from crystals and
from atoms. For example, we can identify the spatial
information of HHG processes by constructing the Wan-
nier function [29] from ith band localized at the nth site
through

ψR

i (r) =
∑

k

e−ik·Rφki (r), (11)

where R = na0. The individual contribution to HHG
from the nth site can be obtained by by projecting the
time-dependent wave function to the Wannier state lo-
calized at R:

jRi (t) = Re

[〈

∑

k

ψk |p− eA|ψR

i

〉〈

ψR

i |
∑

k

ψk

〉]

.(12)

The single active electron approximation is applied in
the formulation above, which suffers from neglecting the
decoherence from the inelastic scattering by lattices and
electrons. It can be partially remedied by incorporating
an imaginary potential UΓ(r) into the field-free hamilto-
nian

Ĥ0 = −
~
2

2m
∇2 + v(r)− iUΓ(r). (13)

In such a treatment, the eigenenergies become complex
values ǫi(k)− i

Γ

2
, where T = 1

Γ
gives the relaxation time.

On the other hand, UΓ(r) can also serve as a spatial
filter by proper choices to suppress those contributions
from far reached crystal sites when solving the TDSE in
the coordinate space. It helps identifying the individual
contributions from different sites to HHG as shown later.

III. RESULTS AND DISCUSSIONS

A. The dynamics of HHG in association with

electronic trajectory in x-space based on numerical

solving of TDSE

In Fig.1, we present the harmonic spectra calculated
from solving the single electron TDSE in one-dimension
with a periodical pseudo potential, V (x) = −0.37[1 +
cos(2πx/a0)], where the lattice constant a0 = 8 a.u..
The highest valence band and the lowest four conduc-
tion bands are shown in Fig. 1(a). The single cycle laser
pulse has a Gaussian profile with the center wavelength
of 3.2 µm, and the intensity of 5TW/cm2. The highest
VB are fully populated at the initial time.
Once the time-dependent Bloch wave functions are

found, the harmonic spectrum is obtained by the Fourier
transformation of the macroscopic current in Eq. 7,
which is shown in Fig. 1(b) with black solid line. Three
obvious plateaus are visible whose energies correspond
to the band gap energies between the highest VB and
the second CB (1.06 a.u.), the third CB (1.75 a.u.) and
the forth CB (2.51 a.u.), indicated by the vertical dotted
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FIG. 1: (a) The band structure used in our calculation, which
contains the highest VB and the four CBs. (b) The total har-
monic spectrum is plotted with black solid line. The black
dotted lines mark three obvious plateaus of the total harmon-
ics, which corresponding to the bandgaps among the highest
VB and the high-lying CBs. The green (grey) line represents
the decoherent summation (DC) of current under the action
of a spatial filter with width is 10a0. The separated har-
monic spectra from Wannier state localized at 1th crystal site
is shown with red dashed line. (c) The separated harmonic
spectra from Wannier states localized at 10th, 20th and 30th

crystal sites are shown with solid blue line, cyan (grey) line
and dashed magenta line respectively. The black dashed ar-
rows mark the cut-off of the harmonic spectra.

black lines [24].

The information of the band structure can be deduced
from the harmonic spectrum, while the dynamics of the
electrons in solids are closely related to the spatial peri-
odic structure. We use a spatial filter whose width is 10a0
to mimic the decoherence effects in simulation. The deco-
herent current induced harmonic spectrum is shown with
green (grey) line, while the cutoff energy of the decoher-
ent harmonic is significantly suppressed by the coherent
distance 10a0. This means that the harmonic spectrum
is depending on the spatial distance of the electron can
coherently transport. In order to investigate the spatial
structure dependence of the HHG from solids, the Bloch
wave function of the highest VB is converted to the Wan-
nier wave functions localized at different R using Eq. 11.
The total time-dependent wave function can be projected
on the localized Wannier states in different crystal sites
of the highest VB, which is used to separate the contri-
butions of different sites to the total high harmonics. In
the coordinate space calculation, the size of box is from
−100a0 to 100a0. The harmonic spectra emitted from
certain crystal sites located at a0, 10a0, 20a0, 30a0 are
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FIG. 2: (a) The time-frequency analysis of the separated
harmonics from 30th site is shown. (b) The trajectories of
electrons in coordinate space and the corresponding time-
dependent electric field (red solid line) are shown. The black
arrow indicates the moment t30r of the electron transiting to
30th site.

shown in Fig. 1(b) and (c) with the dashed red line,
solid blue line, cyan (grey) line and dashed magenta line
respectively. The separated harmonic spectra from the
crystal sites located at a0, 10a0 have nearly no obvious
difference from the total spectrum, except for the overall
variation of harmonic intensities.

On the other hand, the harmonic spectra generated
from crystal sties beyond 10a0 show an extension of har-
monic order as indicated by the vertical black dashed
arrows in Fig. 1(c). In order to understand the differ-
ence, we shown in Fig. 2 (b) the time evolution of the
electron density in coordinate space. It is found that
the initially localized electronic wave function (at site 0)
spreads quickly into the neighboring 10 sites due to the
quantum diffusion caused by the valence band dispersion.
Because of this delocalization, it is hard to differentiate
the individual site contribution from the harmonic spec-
tra generated from the first 10 sites. However, as the
laser field continues to grow, the electron starts to move
beyond the first 10 sites. As shown in Fig. 2 (b), the
electron can be found even beyond 50a0. We are going
to show below that the extension of harmonic cut-off is
related to the electron localization in far reached sites.

In Fig. 2(a), we show the time-frequency analysis [12]
of the harmonics generated from the Wannier state lo-
calized at 30th crystal site. It can be seen there exists
that two major emission instants at t1 = −0.16T and
t2 = 0.14T , also there is a weaker harmonic emission af-
ter t3 = 0.7T . The three instants corresponds exactly to
the moments that the electron pass through the site at
30a0 as indicated by the black arrow for the earlier one in
Fig. 2(b). The connection demonstrates that HHG from
site 30 occurs at the instant that the electron recombines
into the site 30. But what determines the maximum en-

FIG. 3: (a) The red dots represent the moments of elec-
trons transiting to Wannier state localized at −50a0, −40a0,
−30a0, −20a0, −10a0, 10a0, 20a0, 30a0, 40a0, 50a0 respec-
tively, which contribute to the cut-off energies of the separated
harmonics. (b) The corresponding laser field. (c) Schematic
illustration of the electron transiting from the central site to
the 10th site in the field-driven potential wells, which arrange
like a ladder.

ergy of the emitted harmonics?
We denote the moment t1 when the electrons transit to

30th site as t30r . It can be seen that the harmonic emit-
ted at this instant is much higher than those emitted
after t3 = 0.7T . It suggests that not only the distance
of the electron migrating in the real space matters, but
also the corresponding instantaneous laser field strength
is crucial. The moments tNr when the electron transits
to N = −50,−40,−30,−20,−10, 10, 20, 30, 40, 50 site are
shown in Fig. 3(a) with red dots which are deduced from
both the electronic trajectories and the time-frequency
analysis. The corresponding electric field strength F (tNr )
can be found from Fig. 3(b) that depicts the electric
profile of the applied laser field. For example, the in-
stantaneous field strength of the electrons move to the
30th site F (t30r ) are equal 0.0062 a.u.. It is surprising
to find that the harmonic cut-off energy, calculated from
the spectra using the localized Wannier function and the
time-frequency analysis, both equals to 30a0F (t

30
r ).

In connection to our previous investigations about the
harmonic energies released from molecules [31], we here
propose a mechanism of HHG from periodical structures
in real space. For HHG from diatomic molecules, we have
demonstrated that the electron localized in one of the
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FIG. 4: (a) The separated harmonic spectra from Wannier
states localized at different crystal sites are showed. The blue
arrows indicate the cut-off energies. (b) The cut-off energies of
high harmonics from the Wannier states localized at different
crystal sites are shown with black circles. The corresponding
harmonic yields are labelled with red squares.

potential wells can recombine not only with the original
well, but also with the other one in different trajectories
and release different harmonic energies. One possible tra-
jectory is that electrons migrate between the laser field
dressed potential wells, which contributes to harmonics
with the energy FR, i.e. the energy difference between
the two laser dressed wells where R is the internuclear
distance. Analogously, HHG from solids exhibits sim-
ilar picture. For the carriers in the periodic potential
subjected to an intense electric field applied in the x di-
rection, Wannier-Stark Ladder states are formed [30] and
the resulting eigenspectrum is discrete and equidistant,
scaling linearly with the electric field strength. The en-
ergy difference between neighboring states is Fa0, and
the strong field dressed localized electronic wavefunction
has a long tail of the exponential decay spreading through
several crystal sites. Therefore when the electrons re-
combine into the N-th site, the radiated harmonics en-
ergy is NFa0 as illustrated in Fig. 3(c). Based on this
mechanism we proposed, the cut-off energies of harmon-
ics from localized Wannier function at N th crystal site
can be evaluated by Na0F (t

N
r ).

In order to verify this model, we replot the harmonic
spectra generated from N th crystal site with energy in
units of a0F (t

N
r ) shown in Fig. 4(a). It can be seen

clearly that as the crystal sites are further away from the
origin, the harmonic cut-off (indicated by the blue ar-
rows) is increased (from 10a0, 20a0, 30a0, 40a0 to 50a0).
To better demonstrating the dependence, the cut-off en-
ergies of harmonics from the different crystal sites are
shown with black circle in Fig. 4 (b). It is found that the
cut-off is directly proportional to the distance of the lo-
calized Wannier state from the origin, in agreement with
our expectation. We also show the harmonic yields from
different sites by integrating the harmonics at the plateau
in Fig. 4 (b). The yields decrease when the Wannier
state is localized at further crystal site. It is consistent
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FIG. 5: (a) The high harmonics spectra from the laser fields
with CEP=0 and CEP=π/2 are showed with red dashed line
and blue solid line, respectively. (b) The harmonic yields
from different crystal sites under the laser fields with CEP=0
and CEP=π/2 are shown with red squares and blue circles,
respectively.

with the actual situation of electrons in periodic struc-
ture that fewer electrons move to longer distance due to
the dispersion. In addition, we expect that the contribu-
tion from sites far away from the origin will be weaken
further under the action of decoherence and scattering
between electrons and lattices.
The trajectories of electrons in periodic structure is

sensitively dependent on the carrier-envelop phase (CEP)
of the few-cycle laser field. The harmonic spectra there-
fore reflects the spatial dynamics of electrons. As shown
in Fig. 5(a), the total harmonic spectra for the laser fields
with CEP=0 and CEP=π/2 are compared. The two
spectra are similar below 70th harmonic order, while the
intensity of harmonics generated from the laser field with
CEP= π/2 shows an obvious enhancement from 70th to
100th order compared to the spectra with CEP= 0. The
individual harmonic yields from different crystal sites are
compared in Fig. 5(b) for two CEPs. Because there is no
significant difference between the harmonic yields from
the 10th site (−10th site) with different CEP, the harmon-
ics below 70th order mainly contributed from the 10 sites
are almost the same. Nevertheless, the harmonic yield
of 20th site (−20th site) from CEP= π/2 is increased by
about two orders of magnitude compared with CEP= 0.
This is clearly reflected in the area from 70th to 100th

order of the harmonic spectrum, which is just the contri-
bution of the 20th site. Therefore, it is possible to observe
and control the contributions from different crystal sites
by adjusting the CEP of laser field in experiments. These
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investigations are helpful to guide the future experimen-
tal study about the electronic dynamics in solids.

IV. SUMMARY

In conclusion, the dynamics of electrons are investi-
gated through numerically solving the TDSE in the Bloch
basis. Based on the delocalized Bloch function in mo-
mentum space, the total high harmonic spectrum shows
several plateaus, and the band structure information can
be deduced. In addition, it is more intuitionistic to con-
ceptualize the dynamics of electrons in real space. The
calculated trajectories in real space show that the ini-
tially localized electrons can transit far away in the crys-
tal sites arranged like a ladder under the strong laser

field, during which the electrons show the significant lo-
calization. The separated contribution in total harmon-
ics from a single crystal site is calculated by the localized
Wannier function to investigate the localization. We find
out that the separated harmonic energy is proportional
to both the distance the electrons migrate and the in-
stantaneous field strength. Because of the obvious CEP
dependence of the trajectories, our work paves the way
to control the localized contributions from a certain crys-
tal site to HHG from solid. It is valuable to synthesize
the attosecond pulse and probe the complicated periodic
structure and the electron dynamics of the solid on a mi-
crometer scale. This work is supported by the National
Basic Research Program of China (973 Program) under
Grant No.2013CB922203, and the NSF of China (Grant
No.11374366 and No.11404401).

[1] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini,
L. F. DiMauro, and D. A. Reis, Nature Physics 7, 138
(2010).

[2] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug,
P. B. Corkum, and T. Brabec, Phys. Rev. Lett. 113,
073901 (2014).

[3] O. Schubert, M. Hohenleutner, F. Langer, and B. Ur-
banek, Nature Photonics 8, 119 (2014).

[4] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr,
U. Huttner, S. W. Koch, M. Kira, and R. Huber, Na-
ture 523, 572 (2015).

[5] T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T.
Hassan, and E. Goulielmakis, Nature 521, 498 (2015).

[6] G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne,
K. J. Schafer, M. B. Gaarde, and D. A. Reis, Nature
534, 520 (2016).

[7] T. Tamaya, A. Ishikawa, T. Ogawa, and K. Tanaka, Phys.
Rev. Lett. 116, 016601 (2016).

[8] T. Meier, G. von Plessen, P. Thomas, and S. W. Koch,
Phys. Rev. Lett. 73, 902 (1994).

[9] D. Golde, T. Meier, and S. W. Koch, J. Opt. Soc. Am.
B 23, 2559 (2006).

[10] M. Lucchini, S. A. Sato, A. Ludwig, J. Herrmann,
M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gall-
mann, and U. Keller, Science 353, 916 (2016).

[11] G. Vampa, B. G. Ghamsari, S. Siadat Mousavi, T. J.
Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov,
D. M. Villeneuve, A. Staudte, P. Berini, et al., Nature
physics 64, 39 (2017).

[12] G. Vampa, C. R. McDonald, G. Orlando, P. B. Corcum,
and T. Brabec, Phys. Rev. B 91, 064302 (2015).

[13] Z. Guan, X. Zhou, and X. Bian, Phys. Rev. A 93, 033852
(2016).

[14] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1994).
[15] M. Lewenstein, P. Balcou, Y. M. Ivanov, A. LHuillier,

and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
[16] J. Zhao and Z. Zhao, Phys. Rev. A 78, 1 (2008).
[17] C. Zener, Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences 145,
523 (1934).

[18] D. Golde, T. Meier, and S. W. Koch, Phys. Rev. B 77,
075330 (2008).

[19] D. Golde, M. Kira, T. Meier, and S. W. Koch, Physica
Status Solidi (B) 248, 863 (2010).

[20] C. R. McDonald, G. Vampa, P. B. Corkum, and
T. Brabec, Phys. Rev. A 92, 033845 (2015).

[21] C. Yu, X. Zhang, S. Jiang, X. Cao, G. Yuan, T. Wu,
L. Bai, and R. Lu, Phys. Rev. A 94, 013846 (2016).

[22] F. Bloch, Zeitschrift für Physik 52, 555 (1929).
[23] M. Korbman, S. Y. Kruchinin, and V. S. Yakovlev, New

J. Phys. 15, 013006 (2013).
[24] M. Wu, S. Ghimire, D. A. Reis, K. J. Schafer, and M. B.

Gaarde, Phys. Rev. A 91, 043839 (2015).
[25] N. Tancogne-Dejean, O. D. Mücke, F. X. Kärtner, and

A. Rubio, Phys. Rev. Lett. 118, 087403 (2017).
[26] Y. S. You, D. A. Reis, and S. Ghimire, Nature physics

13, 345 (2017).
[27] E. N. Osika, A. Chacón, L. Ortmann, N. Suárez, J. A.
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