
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hylleraas- and Kinoshita-type wave functions with correct
cusp conditions

I. Hornyak and A. T. Kruppa
Phys. Rev. A 96, 052506 — Published 15 November 2017

DOI: 10.1103/PhysRevA.96.052506

http://dx.doi.org/10.1103/PhysRevA.96.052506


Hylleraas- and Kinoshita-type wave functions with correct cusp conditions

I. Hornyak∗ and A.T. Kruppa†

Hungarian Academy of Sciences Institute for Nuclear Physics

(Dated: November 2, 2017)

Finite terms Hylleraas- and Kinoshita-type variational wave functions are considered for three-
body systems. In Coulombic case local properties of wave functions are restricted by the Kato’s
cusp conditions. It is showed that Kato’s cusp conditions restrict the possible terms in variational
calculations. Constraints for the linear expansion coefficients are also derived and a recursion type
solution is given. Two trial functions with correct cusp conditions are determined for the ground
state of the He atom. Local and global properties of these wave function are studied through
calculations of mean values, local energy and quantities related to double photo-ionization.
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I. INTRODUCTION

For Coulombic systems the eigenfunctions exhibit pe-
culiar properties. These strange local behaviours occur
at those points in the configuration space where two or
more charged particles come together and so the poten-
tial between them is infinite. Kato showed that at two
particle coalescences the derivatives of the wave function
with respect to some well defined specific coordinates are
not continuous [1]. This phenomena is characterized by
the Kato’s cusp conditions.
The importance of the fulfilment of the Kato’s cusp

conditions have been demonstrated for double photo-
ionization [2–4]. The simplest description of the double
photo-ionization is the shake off mechanism. In dipole
approximation at high photon energies the double photo-
ionization cross section are expressed by the mean value
[5, 6] 〈ψ|δ(r1)|ψ〉. In this paper we consider two-electron
atoms and we denote the electron coordinates by r1,
r2 and the ground state wave function of the atom by
ψ(r1, r2). The calculation of the double photo-ionization
cross section can check the quality of the local properties
of the wave function just at the electron-nucleus coales-
cence.
At higher photon energies the quasi-free mechanism

dominates. The cross section now is determined not only
by the region of the electron-nucleus coalescence but that
part of the coordinate region where |r1−r2| = 0 since the
cross section expression contains the term 〈ψ|δ(r12)|ψ〉
and the function ψ(r1,0) [7, 8]. The behaviours of the
wave function in these regions are described by the Kato’s
cusp conditions.
The ground state wave functions of three-body sys-

tems are mainly determined by variational methods. In
highly accurate calculations, around twenty decimal dig-
its accuracy for the ground state energy of the He atom,
the basis size is roughly a thousand or more [9–13]. It
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is clear that even nowadays in scattering calculations it
is computationally prohibitive to use such functions for
the ground state. If we use smaller basis size the cusp
conditions are severely violated and this may have effect
on physical quantities. For example in the derivation of
the double photo-ionization cross section it was assumed
that the cusp conditions are satisfied [2].

In earlier papers describing the photo-ionization pro-
cess few terms Hylleraas-type [14] wave functions are
used for the initial state [2, 3, 7] and there were no at-
tempts to use trial functions with correct cusp conditions.
Ten and thirty-nine terms Kinoshita-type [15] wave func-
tions, trial functions with logarithmic terms are also used
to describe the photo-ionization [2, 7, 16] but without ex-
act cusp conditions. The Hylleraas-type trial function is
a power series expansion in terms of the Hylleraas vari-
ables s, t and u. A more general expansion was intro-
duced by Kinoshita [15] where negative powers of the s
and u variables can appear. It is known that the Hyller-
aas series cannot satisfy the Schrodinger equation in for-
mal sense [17] and the main purpose of the use of negative
powers is to overcome this difficulty [15].

In recent papers such a variational calculations are car-
ried out, where interparticle coordinates are used, and
the exact fulfilment of the cusp conditions are taken into
account from the very beginning [18–20]. In this paper
we follow this line of research but we use Hylleraas- and
Kinoshita-type functions. The Kinoshita trial function
has very few applications. However the power of the
method is clearly demonstrated in [21, 22]. We do not
know any calculation where Kinoshita-type function was
used with correct cusp conditions.

The Kato’s cusp conditions are studied mainly using
the interparticle coordinates. Here we give the differen-
tial cusp equations in Hylleraas coordinates. For finite
terms trial wave functions we study consequences of the
cusp equations. It turns out that the fulfilment of the
Kato’s cusp condition restrict which type of Kinoshita
terms can enter into a trial function. Furthermore we
give the correct cusp equations in terms of the linear ex-
pansion coefficients and determine a recursive solution of
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the cusp equations. In the case of He atom we construct
a Hylleraas- and a Kinoshita-type wave functions with
correct cusp conditions and study the local and global
properties of them through calculations of mean values,
local energy and double photo-ionization.
Our work is organized as follows: the Hamiltonian and

the trial wave functions are discussed in chapter II, the
cusp equations are given in section III. The proof of the
cusp equations are given in the Appendix. In section IV
we outline how to correct a ten and a twenty terms wave
functions in order to satisfy the cusp conditions. The
results of the numerical calculations are presented also
in this chapter. Finally conclusions are given.

II. HAMILTONIAN AND WAVE FUNCTION

For the description of S states of two-electron atoms
it is enough to use three scalar variables. The Hylleraas
variables are s = r1 + r2 = |r1| + |r2|, t = r1 − r2 =
|r1| − |r2| and u = r12 = |r12| = |r1 − r2|. The variables
r1, r2 and r12 are called interparticle coordinates.
The action of the Hamilton operator on a wave func-

tion φ(s, t, u) can be decomposed in the form

Hφ = Henφ+Heeφ+Kφ. (1)

The electron-nucleus (e-n) interactions and the electron-
electron (e-e) potential are contained in the operators
Hen and Hee, respectively. The explicit forms in Hyller-
aas coordinates are [13]

Henφ = −φss − φtt − 2
φs + φt + Zφ

(s+ t)
− 2

φs − φt + Zφ

(s− t)
(2)

Heeφ = −φuu +
−2φu + φ

u
, (3)

where the standard shorthand mathematical notation is
used for the partial derivatives. The full Hamiltonian
contains one more term, K is a part of the kinetic en-
ergy operator. The other parts of the kinetic energy are
included in the operators Hen and Hee. We have

Kφ = −
(u2 + st)(φs,u + φt,u)

(s+ t)u
−

(u2 − st)(φs,u − φt,u)

(s− t)u
.

(4)
For the wave function of a two electron atom Hylleraas

suggested [14] an expansion of the form

φ(s, t, u) = exp(−αs)
∑

l,m,n

hl,m,ns
lumtn, (5)

where α is a positive real number, l,m and n are non-
negative integers, furthermore n is even for wave func-
tions with singlet spin part. Since its introduction this
form of variational trial function has huge number of suc-
cessful applications. There are several generalizations of

the Hylleraas expansion. A recent comparison of the con-
vergence rate of the binding energy is given in [12] using
the most important expansion forms.
An alternative expansion to the Hylleraas one is due

to Kinoshita [15]. It was suggested to use such an expan-
sion where negative powers in s and u are allowed. The
explicit form reads

φ(s, t, u) = exp(−αs)
∑

l,m,n

kl,m,ns
l
(u

s

)m
(

t

u

)n

. (6)

The terms in a Kinoshita wave function are characterized
by a triplet of non-negative integers. We will use the
notation [l,m, n] for such a triplet. When we talk about
an [l,m, n] term it means the function wl,m,n(s, t, u) =

exp(−αs)sl
(

u
s

)m (

t
u

)n
.

Kinoshita showed [15] that the recursion relation sat-
isfied by the coefficients kl,m,n does not lead to contra-
dictions. This is not true for the original Hylleraas ex-
pansion [12, 17]. The result of the work [15] means that
(6) can be considered as a formal solution, but of course
this does not mean anything about the convergence of
(6). If we use the restriction l ≥ m ≥ n then we get back
Hylleraas-type function so the Kinoshita ansatz is more
general than the Hylleraas one so sometimes we use only
the Kinoshita attribute.

III. CUSP CONDITIONS FOR

KINOSHITA-TYPE WAVE FUNCTIONS

Equation (2) have two singularities the first one is at
s = −t and the second one is at s = t they correspond to
the e-n coalescences. The u = 0 singularity in (3) is due
to the e-e interaction. We will use the following notation:
a triplet of numbers in parentheses corresponds to the
s,t and u values. Later we will use a relation among the
s, t, u variables namely s ≥ u ≥ |t| ≥ 0. A general point
satisfying this restriction will be denoted by P = (s, t, u).
The singularities for the e-n coalescences occur at the

points (s,−s, s) and (s, s, s) (these correspond to the
cases when r1 = 0 and r2 = 0). The e-e coalescences
are at the points (s, 0, 0) (this form of points corresponds
to that part of the (s, t, u) point set where r12 = 0). We
will refer to the points of the two particle coalescences as
singularity points or coalescence lines.
The local energy Eloc = Hψ/ψ is suitable for measur-

ing the quality of the wave function [18, 23, 24]. For the
exact solution the local energy is a constant. In order to
have finite local energy it is necessary that the numera-
tors of right hand sides of (2) and (3) should be be zero
at the corresponding singularity points. We get

φs(s,−s, s) + φt(s,−s, s) = −Zφ(s,−s, s), (7)

φs(s, s, s)− φt(s, s, s) = −Zφ(s, s, s) (8)

and

φu(s, 0, 0) =
1

2
φ(s, 0, 0). (9)
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The Kato’s cusp conditions are usually given us-
ing the interparticle coordinates. Denoting the wave
function by ψ(r1, r2, r12) the e-n cusp conditions read
ψr1(0, r2, r12) = −Zψ(0, r2, r12), ψr2(r1, 0, r12) =
−Zψ(r1, 0, r12) and for the electrons ψr12(r1, r2, 0) =
1
2ψ(r1, r2, 0). Due to the change of variables we have

the transformation rules ∂
∂r1

→ ∂
∂s

+ ∂
∂t
, ∂

∂r2
→ ∂

∂s
− ∂

∂t

and ∂
∂r12

→ ∂
∂u

. Using these simple rules we should get

immediately Eqs. (7), (8) and (9). Our derivation how-
ever reveals that the finiteness of local energy leads to
the Kato’s cusp conditions in our problem.
In the Appendix we show that the coefficients kl,m,n

of a Kinoshita-type wave function have to obey certain
equations in order to satisfy the cusp conditions. The e-n
cusp condition leads to

∑

m,n

(m+ n)k0,m,n = 0 (10)

and
∑

m,n

[(m+ n− l)kl,m,n + (α− Z)kl−1,m,n] = 0, l > 0.

(11)
The fulfilment of e-e cusp gives

k0,1,0 = 0 (12)

and

kl,1,0 =
1

2
kl−1,0,0, l > 0. (13)

To have correct cusp conditions with finite terms wave
functions one needs two more additional constraints. The
restriction

kl,0,n = 0, n > 0 (14)

assures to have limit of the wave function at the singu-
larity points (s, 0, 0) s 6= 0. The second restriction

kl,1,n = 0, n ≥ 2 (15)

is necessary in order to have limit of φu at the e-e coales-
cence line (s, 0, 0), s > 0. These conditions are in agree-
ment with general considerations. Kinoshita only from
the analysis of the recursion relation showed (15). Ac-
cording to Kinoshita the coefficients kl,m,0 are undeter-
mined by the recursion relation, so we may put k0,1,0 = 0
in order to satisfy the cusp condition. Equation (14) is
also given in [15] but this condition was derived from
other principles. We finally note that (13) corresponds
to (A10) of [15] if (15) is considered.
We show in the Appendix that if we want the cusp

condition to be satisfied in the triple coalescence point
too we have severe restrictions for the terms with l = 0
and l = 1. The only possible terms are [0, 0, 0], [1, 1, 0]
and [1, 0, 0]. We will call this the l = 0 and l = 1 restric-
tions, respectively. In the case of Hylleraas-type function

these are not restrictions but in the case of finite term
Kinoshita wave function they are.
Using the l = 0 restriction (10) becomes 0k0,0,0 = 0

which can be fulfilled for arbitrary k0,0,0. We take in the
following k0,0,0 = 1 this choice effects only the normal-
ization of the trial function. Using equations (14), (15)
and (13) furthermore the l = 0 and 1 = 1 restrictions we
can turn (11) into the form

kl,0,0 =
∑

m>1,n

[(

m+n
l

− 1
)

kl,m,n + 1
l
(α− Z)kl−1,m,n

]

+ 1
l

(

α− Z − l−1
2

)

kl−1,0,0 +
α−Z
2l kl−2,0,0, l > 0.(16)

This is a recursive solution of the Kato’s cusp equations.
For finite Kinoshita-type wave function which satisfies

the e-e cusp conditions we have klmax,0,0 = 0, where the
maximum of the l values of the ansatz is lmax. For finite
trial functions from (11) it follows

(α− Z)
∑

m,n

klmax,m,n = 0. (17)

It was mentioned but the correct form was not given in
[25] that equation (A9) of [15] generally does not correct.
In the case of the He atom (Z = 2) it is customary to
take α = 2. In this case (10) and (11) goes into (A9) of
Kinoshita’s paper [15]. However, our equations (10) and
(11) are valid for arbitrary Z and α. Since the energy
is very sensitive to the value of the parameter α [21, 26,
27] it is important to have such a wave function with
correct cusp conditions where the value of α can be freely
changed.
In the rest of the paper we will consider Kinoshita-type

wave functions with finite terms and impose the Kato’s
cusp conditions. For numerical calculations this means
that the energy expectation value have to be minimized
with respect to the parameters of the trial function but
the constraints (13),(16) and (17) have to be taken into
account.

IV. NUMERICAL RESULTS

An alternative and simple method to construct wave
function with correct Kato’s cusp condition is described
in [18, 19]. Assume that a function ψ(r1, r2, r12) with
correct cusp conditions is given. We can get a better
trial function if we take the following ansatz

ψ(r1, r2, r12)

.
∑

i,j,k

ri1r
j
2r

k
12, (18)

where i, j, k are non-negative integers and the dot above
the summation sign designates that the power series does
not include the first power of the coordinates. If we make
this restriction the new wave function is also satisfies the
cusp conditions. We call this procedure as GR method.
In the work [18, 19] the following standard separable
choice was made for ψ(r1, r2, r12)

ψ(r1, r2, r12) = e−2(r1+r2)
2β + 1− e−βr12

2β
, (19)
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where β > 0. This function satisfies the Kato’s cusp
conditions. We keep the notation of [18, 19] i.e. GR is the
sign the wave function and the integer number attached
to GR gives the number of independent parameters.
The excitation of atoms with photons gives a test for

the wave function of the atom. The ratio of cross sec-
tions for double σ++(ω) to single ionization cross sec-
tions (σ+(ω), σ+∗(ω)) by a photon is signed by R =
σ++(ω)/(σ+(ω) + σ+∗(ω)). For high photon energy and
using only the so called shake off mechanism with dipole
approximation it is derived [5, 6] that

Rd =
〈δ(r1)〉

N
− 1, (20)

where

N =
∑

nlm

∣

∣

∣

∣

∫

φ(r1,0)ψnlm(r1)dr1

∣

∣

∣

∣

2

. (21)

The single particle Coulomb wave function ψnlm(r1) de-
scribes an electron in the field of the nucleus. The no-
tation 〈δ(r1)〉 stands for the mean value of the operator
δ(r1) using the ground state wave function of the atom.
Correction to the ratio of the double-to-single electron
photo-ionization cross section due to the quasifree mech-
anism for small values of ω/c can be written [5, 8] in the

form R(ω) ≈ Rd +
√
128

5Z2

ω
c
C where

C =
〈δ(r12)〉

N
. (22)

A. Trial function with correct cusp conditions

Now we outline our strategy how to modify a given
Hylleraas- or Kinoshita-type wave function in order to
satisfy the cusp conditions. First a starting wave func-
tion is borrowed from the literature. We want to keep all
terms of the starting function because they are optimized.
However, if it contains such terms which do not satisfy
equations (14), (15) or the l = 0, 1 restrictions we have
to drop them. Unfortunately, the published Kinoshita-
type functions are such that they contain a few forbid-
den terms. For example the ten terms wave function in
[21] contains the terms [0, 3, 0], [1, 2, 0] and [1, 1, 2], the
twenty terms ansatz from the same paper includes the
terms [0, 3, 0], [1, 2, 0], [1, 1, 2] and [1, 2, 2]. These terms
and the action of Hamiltonian onto them are square in-
tegrable so it is legitimate to use them in a trial function.
However, the presence of these terms prevent to satisfy
the cusp conditions. Since we did not want to find the
optimal replacements so we decided to use Hylleraas-type
function for the starting wave function. We take the ten
and twenty term optimal Hylleraas wave functions of the
work [27].
The e-e cusp conditions are very simple so we follow

a very straightforward procedure. If the starting wave
function contains both the [l, 1, 0] and [l − 1, 0, 0] terms

we have nothing to do. Very frequently happens that
the starting wave function contains the term [l − 1, 0, 0]
([l, 1, 0]) but does not contain [l, 1, 0] ([l− 1, 0, 0]). There
are two solutions to fulfill the e-e cusp conditions. We
either delete the problematic term or we add the missing
one. Since we do not want to get energetically worse
wave function than the starting one so we always add
the missing term to the starting wave function.

Using equation (11) with l = 1 and the l = 0 and l = 1
restrictions we get −k1,0,0 + (α−Z)k0,0,0 = 0. It follows
if α = Z then k1,0,0 = 0 and (13) implies k2,1,0 = 0. This
also means that if we want use an arbitrary value for α
then the terms [2, 1, 0] and [1, 0, 0] have to be present in
the trial wave functions.

To satisfy the e-n cusp condition is not as straight-
forward as the previous case. We have large freedom
how to correct the starting wave function in order to ful-
fill the cusp equations. If we have to add a new term
to the ansatz we have chosen a simple strategy. We
looked for what is the optimal term concerning the en-
ergy (including the cusp conditions). We searched for the
term in the following set of non-negative integer triplets
{[l,m, n]|l = 1, · · · , lmax,m = 0, · · · , 7, n = 0, · · · , 7}.
We did not re-optimize the previously fixed terms.

Using the outlined strategy we set up the following
trial functions. We take the ten term Hylleraas wave
function of [27]. We added the terms [3, 1, 0] and [1, 0, 0]
to satisfy the e-e cusp conditions. To get better energy we
added two more terms [4, 2, 0] and [3, 2, 0]. This function
is denoted by K10M14 and it is a Hylleraas-type trial
function. We use the following abbreviation system for
wave functions. First we sign somehow the original wave
function in the present example K10. If we add few terms
to the original ansatz it is denoted by K10M, the total
number of terms is attached to K10M. If the the cusp
conditions are imposed it is denoted by attaching capital
letter C to the end of the notation.

The ground state energies of the He atom using dif-
ferent wave functions are given in Table I. The wave
function K10M14 contains fourteen variational parame-
ters thirteen linear ones and one non-linear parameter,
α. The number of cusp conditions for the wave function
K10M14C is 8 so the wave function K10M14C contains
only 6 free parameters. This is the reason why the energy
of K1014MC deteriorates comparing it with K10M14.

Next we take the twenty terms Hylleraas wave function
of [27] as starting wave function. We have to add the
terms [3, 1, 0], [3, 0, 0] and [5, 1, 0] to satisfy the e-e cusp
conditions. Adding more terms to improve the energy
we observed that we have to use Kinoshita-type terms.
We added three more terms [5, 2, 0], [3, 5, 0] and [2, 7, 0].
Our twenty six terms wave function K20M26C contains
only 14 free parameters. If we compare the ground state
energies of wave functions with correct cusp conditions
we can notice that our procedure to enforce the cusp
conditions gives better results than the GR method. This
is best salient in the case K20M26C and GR29. Our wave
function not only has fewer terms but and one has to
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TABLE I. Global properties of different wave functions. Ground state energy, mean values of the operators δ(r1) and δ(r12)
are given. The νen and νee values measure the fulfillment of the cusp conditions. Quantities (R and C) characterizing the
double photo-ionization are displayed. For comparison results of large basis size calculations which can be considered exact are
also showed.

E 〈δ(r1)〉 〈δ(r12)〉 νen νee R C
K10M14 -2.903566 1.803 0.107 -1.98405 0.48289 0.017 0.0604
K10M14C -2.903482 1.815 0.107 -2.00000 0.49999 0.016 0.0596
GR14 -2.90342d 1.801 0.107 -2 0.5 0.016 0.0605
K20M26 -2.903720 1.810 0.107 -1.99685 0.47113 0.017 0.0600
K20M26C -2.903712 1.811 0.106 -1.99999 0.50000 0.016 0.0596
GR29 -2.90360d 1.807 0.107 -2 0.5 0.016 0.0602

exact -2.903724a 1.810a 0.106a -2 0.5 0.01645b 0.0597c

a Ref. [9]
b Ref. [6]
c Ref. [8]
d Ref. [19]

remember that the GR29 function has 29 free parameters
where as our has only 14 ones.

B. Global and local characteristics

A global approximate measure of the fulfillment of the
cusp conditions are the following ratios of mean values
[4, 9]

νen =
〈δ(r1)

∂
∂r1

〉

〈δ(r1)〉
νee =

〈δ(r12)
∂

∂r12
〉

〈δ(r12)〉
. (23)

The calculated values for different wave functions are
given in Table I. In order to completely characterize the
fulfillment of the Kato’s cusp conditions one has to study
the cusp ratio functions

ψr1(0, r2, r12)

ψ(0, r2, r12)
(24)

and

ψr12(r1, r2, 0)

ψ(r1, r2, 0)
. (25)

In the case of the exact solution these functions are con-
stant for all over the configuration space and its values
are −Z and 1

2 , respectively. In terms of Hylleraas vari-
ables the definitions are

Cen(s) =
φs(s,−s, s) + φt(s,−s, s)

φ(s,−s, s)
(26)

and

Cee(s) =
φu(s, 0, 0)

φ(s, 0, 0)
. (27)

The cusp ratio functions are two variable functions in
interparticle coordinates but they are simpler, one vari-
able functions in Hylleraas coordinates so it is easy to

display them. In Figure 1 these cusp ratio functions are
shown using different wave functions without imposing
the Kato’s cusp conditions. This Figure shows that it
is misleading to pick up a given point and give the cusp
ratio only at that point. For example, the total variation
of the function Cee(s) in the case of K10M14 is roughly
0.2 if s ∈ [0, 6]. Of course if the cusp conditions are
imposed for approximate wave functions like K10M14C
and K20M26C the cusp ratio functions are constants for
every s value (νen(s) = −Z, νee(s) = 1/2).

0.5

0.6

0.7

0.8

C
ee

K10M14
K20M26

0 1 2 3 4 5 6
s (a.u.)

-2.1

-2.05

-2

-1.95

C
en

FIG. 1. The cusp ratio functions for the trial functions
K10M14 and K20M26 functions. The upper part shows the
e-e the lower part displays the e-n cusp ratio functions.

The νen and νee values in Table I and the Figure 1
shows that with increasing basis size one can improve
the fulfilment of the cusp conditions. However for an ap-
proximate wave functions to get correct cusp conditions
one has to explicitly force the fulfilment of the cusp con-
ditions.
It is obvious that the mean values of the operators

δ(r1) and δ(r12) are sensitive to the cusp conditions.
This can be noticed in Table I when the mean values of
different wave functions are compared to the exact ones.
When the cusp conditions are imposed the mean values
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becomes closer to the exact ones. One can observe also
that our method gives better results than the GR pre-
scription.

As for the problem of the double photo-ionization it
was demonstrated by Åberg [2] that the R quantity of
the double photo-ionization is very sensitive to the Kato’s
cusp conditions. Now we have calculations for this quan-
tity which can be considered exact thanks to the works
[6, 8]. In these papers the authors applied the hyperhar-
monics method. Our results for the quantities R and C
which determine the ratio of the cross section for double
photo-ionization to single photo-ionization are given in
Table I. The effect of the fulfilment of the cusp conditions
onto the observables R and C is striking. We can not
only observe that the correct cusp conditions influence
the result but it has large positive effect on these quanti-
ties. Concerning the quantity C the fourteen terms wave
function K10M14C gives almost identical result with the
hyperharmonics method which uses several hundred ba-
sis functions. One can notice that the RG method gives
good result for R but fails to describe the quantity C.

Next we consider the local energy which checks the lo-
cal accuracy of the approximate wave function. A good
mean energy does not say too much about the quality of
the wave function a smooth local energy is much stronger
quality test [18, 23, 24]. When the local energy of differ-
ent wave functions are compared it is better to take into
account the energy differences of the model functions so
we follow the suggestion of [23] and we will plot the errors
in the local energy ∆Eloc = Eloc − E, which should be
zero for the exact solution. In the graphical demonstra-
tion we follow the standard way, the first electron is at a
distance r1 from the nucleus, the distance of the second
electron is r2. The r1 and r2 values are fixed and the
local energy is plotted as the function of θ, where θ is
the angle between the vectors r1 and r2. If r1 = r2 6= 0
then the θ = 0 value corresponds the e-e coalescence. It
is well know that the local energy is infinite at the two
particle coalescence points unless the Kato’s cusp condi-
tions are imposed. The upper part of Figure 2 shows the
errors of the local energy for the wave functions K10M14,
K10M14C and GR14 of Ref [19]. The same quantity for
the wave functions K20M26, K20M26C and GR29 are
displayed at the lower part of Figure 2. The divergence
of the local energy at the point θ = 0 can be observed
in the case of the wave functions K10M14 and K20M26.
However if we impose the cusp conditions there are no di-
vergences for the very simple wave functions K10M14C,
K20M26C, GR14 and GR29. The inset at the lower part
of Figure 2 shows the divergent and non-divergent prop-
erties of the wave functions more clearly since the region
around θ = 0 is enlarged.

If approximate wave functions are used and the cusp
conditions are not enforced in some way, divergence in
the local energy always appears no matter how good
wave functions are used. This is true even if logarith-
mic terms are present. The triple coalescence point is
well described using the complicated Fock-expansion of

order O
(

r21 + r22
)

in Ref.[23] but as the authors showed
the local energy of the second order Fock-expansion di-
verges at the two particle coalescence points, and only
the exponentiated second order Fock form is free from
divergence.
We present results for the errors in local energy away

from the two-particle coalescence lines in Figure 3. Both
Figures 2 and 3 show that our wave functions produce
smoother local energy than the wave functions of the GR
method. However concerning numerical computational
point of view the GR method is simpler than ours.
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FIG. 2. Errors in the local energy as the function of θ when
r1 = r2 = 1 a.u. Divergence at θ = 0 can be noticed for
wave functions K10M14 and K20M26. For wave functions
with correct cusp conditions there are no divergence at the
two particle coalescence point. The inset shows an enlarged
region around θ = 0.
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FIG. 3. Errors in the local energy away from the two-particle
coalescence lines as the function of θ, in the upper part r1 = 1
a.u. and r2 = 2 a.u. and in the lower part r1 = 0.5 a.u. and
r2 = 1 a.u.

V. CONCLUSIONS

We gave the correct form of the Kato’s cusp equa-
tions expressed by the linear expansion coefficients of
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the Hylleraas- or Kinoshita-type wave functions. A
recursion-type solution of the cusp equations is deter-
mined. We showed that the fulfillment of the cusp equa-
tions restrict the allowed form of the terms in the varia-
tional wave function. In order to fulfill the cusp equations
at the triple coalescence point one has to very heavily re-
strain the l = 0 and l = 1 terms which can be allowed in
a finite Kinoshita-type wave functions. For terms with
l = 0 and l = 1 negative powers of the variables s and u
are not allowed.
A fourteen terms Hylleraas-type wave function and

twenty six terms Kinositha-type wave function with cor-
rect cusp conditions are introduced for the description
of the ground state of the He atom. It was showed the
imposition of the Kato’s cusp conditions has large and
positive effect on the quality of the description of the
double photo-ionization.
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Appendix A: Derivation of the cusp conditions for

Kinoshita-type functions

First we start with the e-n cusp condition. Substitut-
ing the Kinoshita wave function (6) into right hand side
of the equation (7) we get

−Ze−αs
∑

l,m,n

kl,m,ns
l. (A1)

Direct calculation of the left hand side of (7) gives

e−αs
∑

l,m,n

[(l −m− n)− αs] kl,m,ns
l−1. (A2)

With these results the e-n cusp equation (7) can be
turned into the form

∑

l,m,n

[(m+ n− l − 1)kl+1,m,n + (α− Z)kl,m,n] s
l = 0.

(A3)
We can conclude that for each l the coefficients in front
of sl should be zero and this leads to (10) and (11). The
second e-n cusp equation (8) furnishes also (10) and (11).
The e-e cusp equation can be derived also with simple

manipulations but it needs more considerations. The e-e
cusp condition refers to the points (s, 0, 0), s > 0. Since
in a Kinoshita-type wave function u with negative power
can be present these points are not in the domain of
definition of the trial function (6). A finite limit of φ at
these points may exist. In case when negative power of

u appears in the trial function the e-e cusp condition (9)
has to be interpreted in limit sense

lim
P→(s,0,0)

φu(s, t, u) =
1

2
lim

P→(s,0,0)
φ(s, t, u). (A4)

The Kinoshita wave function (6) is finite superposition
of the functions wl,m,n(s, t, u). We determine the limits
of wl,m,n(s, t, u) and ∂wl,m,n/∂u at the points (s, 0, 0),
s > 0 and from these we can simply construct (A4).
From the definition of wl,m,n it follows if m = 0 and

n > 0 the limit of wl,0,n at the singularity points does not
exist. This means that in the Kinoshita wave function
kl,0,n = 0, n > 0. Let’s take two zero sequences tk and uk
as k → ∞. When m > 0 we have the following estimate
|wl,m,n(s, tk, uk)| ≤ sl−mumk since |tk/uk| ≤ 1. We can
conclude that the limit of wl,m,n is zero when m > 0. We
can establish that

lim
P→(s,0,0)

φ = e−αs
∑

l

kl,0,0s
l, s > 0. (A5)

For the e-e cusp equation (9) we need the partial
derivative of wl,m,n with respect to u. To determine the
limit of this function at the points (s, 0, 0), s > 0 we
dissect the inspection according to the value of m.
If m > 1 the searched limit is zero since we have

the evaluation |∂wl,m,n(s, tk, uk)/∂u| ≤ sl−mum−1
k |m −

n|. In the case of m = 1 and n ≥ 2 the function
∂wl,m,n(s, tk, uk)/∂u does not have a limit at the points
(s, 0, 0), s > 0 so in the Kinoshita wave function we have
kl,1,n = 0 if n ≥ 2. It remains to consider the case when
m = 1, n = 0 and obviously the considered limit is zero.
Finally we consider the case m = 0. If m = 0 we have
already established that kl,0,n = 0, n > 0 so the only
case remained is wl,0,0 and the considered limit is zero.
Taking into account all the considerations we get for the
Kinoshita wave function

lim
P→(s,0,0)

∂φ

∂u
= e−αs

∑

l

kl,1,0s
l−1, s > 0 (A6)

In order to satisfy the e-e cusp equation (9) the compar-
ison of (A6) and (A5) shows that k0,1,0 = 0 and then we
get for (9)

∑

l≥1

[2kl,1,0 − kl−1,0,0] s
l = 0 (A7)

and this proves (13).
Since in Kinoshita-type wave function negative powers

of s and u can be present at the triple coalescence point
equations (7), (8) and (9) have to be considered in limit
sense

lim
P→0

(φs(s, t, u)± φt(s, t, u)) = −Z lim
P→0

φ(s, t, u) (A8)

and

lim
P→0

φu(s, t, u) =
1

2
lim
P→0

φ(s, t, u). (A9)
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First we inspect the right hand side of (A9). Let’s take
three sequences sk, tk, uk converging to zero as k → ∞.
We have the estimate |wl,m,n| ≤ slk since the sequences
satisfy the relation sk ≥ uk ≥ |tk| ≥ 0. From the estimate
it follows

lim
P→0

wl,m,n = 0, l > 0. (A10)

In the case l = 0 it is obvious that the limit P → 0
exists if and only if m = 0 and n = 0. This means that
k0,m,n = 0 if (m,n) 6= (0, 0). Other words in the case of
l = 0 the only term that is possible is [0, 0, 0]. All type
of partial derivatives of the function [0,0,0] exists so in
the rest of the Appendix we do not have to consider the
l = 0 case.

Now we consider the limit of ∂wl,m,n/∂u at 0. Ifm = 0
and n > 0 there is no finite limit i.e. kl,0,n = 0, n >
0. Since earlier we have found this rule this result gives
no new restrictions. If l,m > 0 we have the estimate

|∂wl,m,n/∂u| ≤ sl−1|m− n|. It follows

lim
P→0

∂wl,m,n

∂u
= 0, l > 1,m > 0. (A11)

It is trivial if l = 1 and m > 1,m 6= n the considered
limit does not exist and it is also obvious if l = m = 1
and n ≥ 2 finite P → 0 limit does not exist. We get that
(A9) restraints the l = 0 and l = 1 terms to the forms:
[0, 0, 0], [1, 0, 0], [1, 1, 0] and [1, n, n], n ≥ 2. Simple direct
calculation gives that the e-n cusp condition (A8) does
not allow the terms [1, n, n], n ≥ 2. We find that due
to the cusp conditions at the triple coalescence point the
only possible l = 0, 1 terms in a finite Kinoshita-type
function are [0, 0, 0], [1, 0, 0] and [1, 1, 0]. It remains to
check whether (A8) in the case of l ≥ 2 gives restrictions
or not. In this case we find for the l.h.s of (A8)

lim
P→0

exp(−αs)sl−2
(u

s

)m−1
(

t

u

)n−1

(−mt± ns).

(A12)
and from this it follows that we do not get new restric-
tions.
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