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Lieb and Robinson provided bounds on how fast bipartite connected correlations can arise in sys-
tems with only short-range interactions. We generalize Lieb-Robinson bounds on bipartite connected
correlators to multipartite connected correlators. The bounds imply that an n-partite connected
correlator can reach unit value in constant time. Remarkably, the bounds also allow for an n-partite
connected correlator to reach a value that is exponentially large with system size in constant time, a
feature which stands in contrast to bipartite connected correlations. We provide explicit examples
of such systems.

PACS numbers: 03.65.Ud

I. INTRODUCTION

Non-relativistic quantum mechanics is not explicitly
causal. Long-range interactions in many physical sys-
tems allow spatially separated subsystems to become cor-
related at arbitrarily high speed [1–3]. They enable su-
perior quantum applications such as fast quantum state
transfer [4]. However, in finite-dimensional systems with
only bounded, short-range interactions, there is a maxi-
mum speed at which correlations may grow [5]. If a bipar-
tite system is initially in a product state, Lieb-Robinson
bounds [6] imply that its bipartite connected correlation
function 〈AXAY〉−〈AX 〉 〈AY〉 at time t is upper bounded
by ∝ exp(vLRt − r) [7, 8], where r is the distance be-
tween the two subsystems X and Y, and vLR is the time-
independent Lieb-Robinson velocity. The bounds gener-
ate an effective light cone vLRt = r, outside which any
bipartite connected correlation function is exponentially
small.

The bounds of Lieb and Robinson are useful in many
contexts [9–13]. Recent experiments have measured
the precise shape of the light cone in many-body sys-
tems [14, 15]. In one case, a faster-than-linear light cone
was observed in an effective spin chain, thus indicating
the presence of long-range interactions [15]. The bounds
also have implications for quantum state preparation, as
preparation of a quantum state implies successful gener-
ation of all of its correlations. The Lieb-Robinson bound
on bipartite connected correlations therefore imposes a
lower limit for the time one needs to prepare bipartite
quantum states when only bounded, short-range interac-
tions are available. This statement can be directly gen-
eralized for multipartite quantum states. Lower limits
for preparation time can be obtained by applying Lieb-
Robinson bounds on every connected correlator between
all pairs of sites in a system. However, such two-point
connected correlators do not fully characterize multipar-
tite systems, the collective properties of which are bet-
ter captured by multipartite connected correlators. For
example, in pure states, multipartite correlations reveal
the presence of genuine multipartite entanglement [16].
Therefore it is natural to ask whether one may achieve

better understanding of multipartite systems by exam-
ining Lieb-Robinson-like bounds on multipartite correla-
tors. Such a study is timely, given the recent success-
ful measurement of multipartite connected correlators in
atomic superfluids [17].

In this paper, we generalize Lieb-Robinson bounds on
bipartite connected correlators to multipartite connected
correlators. We then show that there exist systems where
the bounds are saturated. We argue that the bounds on
multipartite correlations provide practical advantages
over bipartite bounds. In addition, our Lieb-Robinson
bounds on multipartite connected correlators imply that
exponentially large correlations can be created in fixed
time, independent of a system’s size. We provide explicit
examples of systems with this feature.

II. CONNECTED CORRELATIONS

Let us first define bipartite connected correlators. Con-
sider a set of n sites Γ and two distinct, non-overlapping
subsets X ⊂ Γ and Y ⊂ Γ. Denote by S(X ) the
set of observables for which support lies entirely in X .
The bipartite disconnected correlator between observ-
ables AX ∈ S(X ) and AY ∈ S(Y) is simply the expecta-
tion value of their joint measurement outcomes at equal
time, i.e. 〈AXAY〉. Often in experiments only single sites
are directly accessible. Observables are then supported
by single sites, i.e. |X | = |Y| = 1. In the following dis-
cussions we shall refer to such correlators as two-point
disconnected correlators.

We note that disconnected correlators contain both
quantum and classical correlations. For example in two-
qubit systems, the disconnected correlator 〈Z1Z2〉 (where
Z is the Pauli matrix) achieves maximal value in both
the fully classical state |00〉 and the maximally entangled
state 1√

2
(|00〉+ |11〉) [18]. Their difference lies in the

local expectation values 〈Z1〉, 〈Z2〉, which are maximal
for the product state and vanish for the maximally en-
tangled state. These local expectation values therefore
can be said to carry classical information of the systems
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(in pure states). The bipartite connected correlator is
constructed by subtracting this “classicalness” from the
disconnected correlator:

u2 (AX , AY) ≡ 〈AXAY〉 − 〈AX 〉 〈AY〉 . (1)

In general for mixed systems, if the joint state of X ∪ Y
is a product state, i.e. ρX∪Y = ρX ⊗ ρY , its disconnected
correlators 〈AXAY〉 are factorizable into 〈AX 〉 〈AY〉 and
therefore all bipartite connected correlators vanish. The
opposite is also true [16]:

Lemma 1. A density matrix ρ is a product state, i.e.
there exist complementary subsets X , X̃ such that ρ =
ρX ⊗ ρX̃ , if and only if

u2(AX , AX̃ ) = 0, (2)

for all observables AX ∈ S(X ) and AX̃ ∈ S(X̃ ).

In particular, a nonzero bipartite connected correlator
implies bipartite entanglement in pure states. Lemma 1
is a consequence of Ref. [16]. We also present a simple
proof in Appendix A.

A natural generalization of the bipartite connected
correlator to multipartite systems is the Ursell func-
tion [19, 20]. The n-partite connected correlator between
n observables A1, . . . , An, which are supported by n dis-
tinct subsets of sites X1, . . . ,Xn, respectively, is defined
as

un (A1, . . . , An) =
∑
P

g (|P |)
∏
p∈P

〈∏
j∈p

Aj

〉
, (3)

where g(x) = (−1)x−1(x− 1)! and the sum is taken over
all partitions P of the set {1, 2, . . . , n}. The n-partite
connected correlators can be equivalently defined via ei-
ther recursive relations or generating functions (see Ap-
pendix B for details).

Multipartite connected correlators also arise naturally
in many other contexts. In quantum field theory, con-
nected Green’s functions are multipartite connected cor-
relators of field operators [21]. Mean field theory is an
approximation in which it is assumed that all connected
correlators vanish [22]; in fact, mean field theory fails
when there exist significant connected correlations, and
one must then seek higher-order approximations. The
cumulant expansion technique is similar to mean field
theory, but only multipartite connected correlators of
high enough order are ignored. Therefore, understanding
when connected correlations are negligible is important
for validating mean field theory and the cumulant expan-
sion.

The relation mentioned above between connected cor-
relators and entanglement holds for n-partite connected
correlators as well. It also follows from Ref. [16] that
n-partite connected correlators vanish in product states.
In particular, for pure states, a nonzero n-partite con-
nected correlator implies genuine n-partite entangle-
ment [23, 24]:

Lemma 2. If an n-partite system is in a product state,
i.e. there exist complementary subsystems X , X̄ ⊂ Sn
such that

ρ = ρX ⊗ ρX̄ , (4)

then all k-body connected correlators (2 ≤ k ≤ n) between
some observables A1, . . . , Ak1 , for which support lies en-
tirely on X , and observables B1, . . . , Bk2 , for which sup-
port lies entirely on X̄ (k1, k2 ≥ 1, k1 + k2 = k), vanish,

uk (A1, . . . , Ak1 , B1, . . . , Bk2) = 0. (5)

Corollary 1. If an n-partite pure state |ψ〉 has a nonzero
n-partite connected correlator, then it is genuinely n-
partite entangled, i.e. there exist no subsystems X and
X̃ such that |ψ〉 = |ψX 〉 ⊗ |ψX̄ 〉.

A direct proof of Lemma 2 is presented in Appendix C.
The combination of Lemma 1 and Lemma 2 tells us that
if the bipartite connected correlators are all zero between
two regions, then all higher-order connected correlators
are guaranteed to be zero except for the scenario where all
observables are supported on one region, or there exists
an observable supported on both regions.

Multipartite connected correlations also provide a
practical advantage over bipartite correlations, even
though the latter are sufficient to characterize a quan-
tum system. Consider a three-body system for example.
The collection of local expectation values and connected
correlators,

U =

{
〈A1〉 , 〈A2〉, 〈A3〉 , u2(A1, A2), u2(A1, A3),

u2(A2, A3), u3(A1, A2, A3)

}
, (6)

where each Aj runs over a complete single site basis (e.g.
the Pauli matrices X,Y, Z), defines a unique tripartite

quantum state. Another equivalent collection Ũ can be
constructed from U by replacing u3(A1, A2, A3) with a bi-
partite connected correlator between one subsystem and
the rest, e.g. u2(A1, A2A3). Although the two collections

U and Ũ are equivalent, u3(A1, A2, A3) and u2(A1, A2A3)
carry different information about the system. The 3-
point connected correlators u3(A1, A2, A3) characterize
global properties while u2(A1, A2A3) only tell us about
local properties across the cut between subsystem 1 and
the rest. If global properties, such as genuine 3-body
entanglement, are of concern, then tripartite connected
correlators are superior. To have a chance at detecting
genuine tripartite entanglement using only bipartite con-
nected correlators, one must consider all possible bipar-
titions of the system. There are only 3 such partitions
for a tripartite system, namely 1|23, 2|13 and 3|12. But
for n-partite systems, the number of bipartitions scales
exponentially with n. Computing all of them would be
impractical. Even then there is no guarantee they detect
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FIG. 1. A typical 3-body system. Each dot represents
one site. There are three relevant length scales r12, r23 and
r31. Which length scale will define the 3-body Lieb-Robinson
bound?

genuine multipartite entanglement. Consider for exam-
ple the following pure state of 3 qubits,

|ψ〉 =

√
5

24
|000〉+

√
1

8
|001〉+

√
1

12
|010〉+

√
1

12
|011〉

+

√
1

4
|100〉+

√
1

8
|101〉+

√
1

12
|110〉+

√
1

24
|111〉 .

(7)

Its 3-point connected correlator u3(Z1, Z2, Z3) = 1
18 im-

plies genuine tripartite entanglement in |ψ〉. Meanwhile,
non-zero bipartite connected correlators across the cuts
2|13 and 3|12, u2(Z2, Z1Z3) and u2(Z3, Z1Z2), only tell
us that there is entanglement between qubits 2 and 3.
Because the bipartite connected correlator across 1|23
u2(Z1, Z2Z3) is zero, it is inconclusive whether the first
qubit is entangled with the others without considering
higher order correlators.

This example demonstrates why multipartite con-
nected correlators are better candidates than bipar-
tite counterparts in multipartite entanglement detection
schemes. It is therefore important to understand how
these multipartite correlations evolve in physical systems.

III. MULTIPARTITE LIEB-ROBINSON
BOUNDS

Our main result is Lieb-Robinson-like bounds on n-
partite connected correlators in systems evolving from
fully product states under short-range interactions, e.g.

H =
∑
〈i,j〉

JijViVj , (8)

where Vi is the spin operator of the ith site, |Jij | ≤ 1
is the interaction strength between the ith and the jth

sites, and the sum is over all neighboring i, j. But before
we present the bounds, let us discuss general features we
expect from such bounds. These bounds are of the form

un ≤ Cn exp(vLRt− r), (9)

where Cn is a constant, r is a relevant length scale, and
vLR is the same Lieb-Robinson velocity as in the bipar-
tite bounds. Let us now examine the scaling of Cn with

a a

R

FIG. 2. A geometry where n sites (blue dots) are divided into
two cliques such that the clique size a is much smaller than
the distance R between cliques.

n. If all observables have unit norm, bipartite connected
correlators are upper bounded by 1 regardless of a sys-
tem’s size. However, multipartite connected correlators
can increase in value with the number of subsystems.
For example, in the n-qubit Greenberger-Horne-Zeilinger
(GHZ) state,

|GHZ〉 =
|0〉⊗n + |1〉⊗n√

2
. (10)

the n-point connected correlator un(Z1, . . . , Zn) =
O(nn) (details in Appendix E). Therefore we expect Cn
to grow with n as well, Cn = O(nn). Another constant
we would like to understand is the critical distance r. In
the Lieb-Robinson bound on a bipartite connected corre-
lator, the critical distance is simply the distance between
the two involved parties. However, in a multipartite sys-
tem there are many relevant length scales which could
possibly serve as the critical distance. As an example,
let us consider a three-qubit system (Fig. 1). Without
loss of generality we assume r12 < r23 < r31 where rij
denotes the distance between the ith and jth qubits. We
argue that a bound of the form (9) with r = r12 is valid
but trivial. Intuitively an observable initially localized
at the first qubit will need time to spread a distance r12

before “seeing” another qubit. Is there a stronger bound,
i.e. inequality (9) with larger value for r? The largest dis-
tance r31 would make the most sense, since at t = r31/v,
an observable initially localized at one qubit has enough
time to spread to all others. We shall show below that
the critical distance for the tightest bound is neither the
smallest (r12) nor the largest distance (r31), but actually
the intermediate length scale r23. This surprising result
leads to unexpected consequences, including the creation
of exponentially large connected correlations in unit time.

Theorem 1. Given n non-overlapping subsystems
{X1, . . . ,Xn} = S initialized to a fully product state
|ψX1
〉 ⊗ · · · ⊗ |ψXn

〉 and evolved under short-range in-
teractions, the n-partite connected correlator between ob-
servables Ai ∈ S(Xi) (i = 1, . . . , n) is bounded,

|un (A1, . . . , An)| ≤ Cn exp(vLRt−R), (11)

where vLR is the same velocity as in the bipartite Lieb-
Robinson bounds, Cn = nn

4 C2 with C2 being the constant
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in bipartite Lieb-Robinson bounds [25], and

R = max
S1⊂S

d(S1, S̄1) (12)

is the largest distance between any subset S1 ⊂ S and its
complementary subset S̄1. Here the distance d between
two sets of sites is the shortest distance between a site in
one set and a site in the other set.

Proof. We shall explain our proof in the simplest case of
n = 3. We use the following identity (given in Appendix
B) to write disconnected correlators in terms of connected
correlators,

〈A1A2A3〉 =u3(A1, A2, A3) + u2(A2, A3) 〈A1〉
+ u2(A1, A3) 〈A2〉+ u2(A1, A2) 〈A3〉
+ 〈A1〉 〈A2〉 〈A3〉 . (13)

Notice that the last two terms on the right hand side sum
up to 〈A1A2〉 〈A3〉. If we move this term to the left hand
side, we obtain an expression of u3 in terms of only bipar-
tite connected correlators (and local expectation values),

u3(A1, A2, A3) =u2(A1A2, A3)− u2(A1, A3) 〈A2〉
− u2(A2, A3) 〈A3〉 , (14)

where the local expectation values 〈A2〉 , 〈A3〉 are be-
tween -1 and 1. Therefore we may bound the 3-body
connected correlator using the bipartite Lieb-Robinson
bound as follows,

|u3(A1, A2, A3)|
≤ |u2(A1A2, A3)|+ |u2(A1, A3)|+ |u2(A2, A3)|
≤ C2e

vLRt−r12|3 + C2e
vLRt−r13 + C2e

vLRt−r23

≤ 3C2e
vLRt−r12|3 , (15)

where r12|3 = min {r12, r13} is the distance from the third
site to the other two and C2 comes from bipartite Lieb-
Robinson bounds [15]. One may notice that at the be-
ginning the three sites play equal roles, but somehow
this symmetry is broken in Eq. (15). The reason is the
choice to team up 〈A1〉 〈A2〉 〈A3〉 and u2(A1, A2) 〈A3〉 af-
ter Eq. (13). Instead, we may replace the latter with ei-
ther u2(A2, A3) 〈A1〉 or u2(A1, A3) 〈A2〉 to obtain two dif-
ferent bounds in the form of Eq. (15), with either r23|1 or
r13|2 in place of r12|3. The tightest bound corresponds to
the smallest distance among r23|1, r13|2, r12|3, and hence
the theorem follows. Proof for general n follows the exact
same line and is presented in full in Appendix D.

Since the proof is inductive on the number of sites
n, the multipartite Lieb-Robinson bounds are in general
weaker than bipartite Lieb-Robinson bounds. Violation
of our bound for a multipartite connected correlator im-
plies violation of at least one bipartite bound. Neverthe-
less, the multipartite Lieb-Robinson bounds in Theorem
1 can be saturated. For example, consider a geometry
of n sites where they are divided into two non-empty

a)

b)

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ●

● ● ● ●

FIG. 3. n-qubit cluster states represented by one-dimensional
graphs of n vertices. a) Only consecutive vertices are con-
nected by edges of length 1. b) Some edges are longer than 1
but interactions are still local.

cliques, each of spatial size a. The two cliques are sepa-
rated by a large distance R� a (Fig. 2). Lieb-Robinson
bounds of n-partite connected correlators for this geome-
try are saturated by preparing the GHZ state of n qubits,
which can be done in time t ≈ R/vLR.

Whether our n-partite Lieb-Robinson bounds are tight
for all geometries is still an open question. The geometry
of Fig. 2 resembles a bipartite system, where each clique
plays the role of one party. There are geometries which
are very different from bipartite systems and, as a
consequence, they offer some unique and interesting
implications. For example, as mentioned before, the
critical distance in the multipartite Lieb-Robinson
bound is neither the largest nor the smallest distance.
In the asymptotic limit of large n, these quantities can
be very different. We shall now examine such examples.

IV. FAST GENERATION OF MULTIPARTITE
CORRELATION

In a bipartite system, the time needed to create bi-
partite correlators of order O(1) increases proportional
to the distance between the two subsystems. It is nat-
ural to expect the time needed to create n-point corre-
lators of order O(1) in an n-partite system to increase
with the spatial size of the system. However, Theorem 1
suggests that it may not necessarily be the case. For ex-
ample, consider an equally spaced one-dimensional chain
of n qubits [see Fig. 3]. If the distance between two con-
secutive qubits is fixed, the spatial length of the chain
increases as O(n). Therefore 2-point connected correla-
tors between the end qubits can only be created after
O(n) time. Meanwhile, Theorem 1 suggests that n-point
connected correlators of order O(1) between all n qubits
might be created in O(1) time using only nearest neigh-
bor interactions, enabling almost instant n-partite gen-
uine entanglement. As we show below, systems with such
a feature do exist.

One example is the one-dimensional cluster state.
Cluster states (also called graph states) are multipartite
entangled states [26] useful for one-way quantum compu-
tation [27, 28]. They have a simple visual representation
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FIG. 4. Time evolution of the n-point connected correlator

u2(Z1, Z2, . . . , Zn) =
[
sin2(2t)

]n−1
of the state in Fig. 3a for

different n. Here we plot the time-dependent correlator for a
few values of n. In the limit of large n the correlator remains
zero for most of the time before briefly jumping to 1 at t = π

4
.

using associated graphs. For a graph G = (V,E), the cor-
responding cluster state can be constructed as follows: i)
Associate each vertex in V with one qubit initialized in

state |+〉 = |0〉+|1〉√
2

; ii) Apply a controlled-Z gate to every

pair of qubits connected by an edge in E. A controlled-
Z gate on two qubits i and j can be implemented by
evolving the system for a time π

4 under the Hamiltonian,

H
(i,j)
cZ = I + Zi + Zj − ZiZj , (16)

where Z is the diagonal Pauli matrix. Some cluster
states, e.g. Fig. 3, only require application of finite-range
controlled-Zs. Meanwhile, the generating Hamiltonians
(16) commute with each other and therefore they can be
applied simultaneously. Therefore such cluster states as
well as their correlations can be created in constant time
O(1). In particular, within an n-independent time π

4 we
can create |un(Y1, X2, X3 . . . , Xn−1, Yn)| = 1 in a cluster
state with only nearest neighbor interactions (Fig. 3a).
This example shows that n-point connected correlators
of order O(1) can be created in unit time O(1), inde-
pendent of a system’s size. Yet, we can do better, i.e.
we can create exponentially large n-point connected cor-
relators in unit time. For example, in the cluster state
of Fig. 3b, we allow each site to interact within a larger
neighborhood. It still takes 3π

4 = O(1) unit time to pre-
pare the state, while direct calculation shows that one

of its correlators grows exponentially as 2
n−1
3 (Appendix

E).
In the above examples we have discussed how much

time it takes to grow connected correlations from fully
uncorrelated states. A relevant question is whether
it can be expedited by some initial correlations [29].
To answer this question, we look at the time depen-
dence of connected correlators in an n-qubit system
initialized to |00 . . . 0〉 and evolved under the Hamil-
tonian

∑
〈i,j〉XiXj . If this system has the geometry

of Fig. 3a, we find the n-point connected correlator

un(Z1, . . . , Zn) =
[
sin2(2t)

]n−1
(Appendix E). We plot

this function for a few values of n in Fig. 4. For large
n the correlator remains negligible for most of the time
and rapidly grows to 1 near t = π

4 . In other words,
the connected correlator only needs a very small time
δt � 1 to grow from almost zero to a significant value.
It gives evidence that creation of multipartite states can
be expedited by small initial correlations. We remark
that while the exact correlator un(Z1, . . . , Zn) is negligi-
ble at any time before π

4 , there may exist other sets of
observables for which n-point connected correlators are
non-negligible.

V. OUTLOOK

Although the relation between genuine multipartite
entanglement and multipartite connected correlations is
simple for pure states, whether one can infer any informa-
tion about genuine multipartite entanglement of a mixed
state from its multipartite correlations is still an open
question.

In our model, only short-range interactions between
two sites are present. An immediate question is how the
Lieb-Robinson bounds generalize to other models with
long-range interactions or interaction terms which involve
more than two sites.

Current techniques to measure multipartite connected
correlators require statistics of all measurement outcomes
that factor into Eq. (3). Connected correlators up to
tenth-order have been measured using this approach [17].
However, such a method is infeasible for connected corre-
lators of very high order, as the number of disconnected
correlators that must be measured grows exponentially
with n. It is therefore an open question whether there
exist experimentally accessible observables, e.g. magne-
tization [30], which manifest multipartite connected cor-
relators directly.
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Appendix A: Proof of Lemma 1

In this section we provide a proof of Lemma 1. One di-
rection of the lemma is straightforward. If the joint state
is a product, i.e. ρ = ρX ⊗ ρX̃ , then all bipartite discon-

nected correlators between AX ∈ S(X ) and AX̃ ∈ S(X̃ )



6

are factorizable, 〈AXAX̃ 〉 = 〈AX 〉 〈AX̃ 〉. Therefore all bi-
partite connected correlators vanish. To prove the oppo-
site direction, that is vanishing of all bipartite connected
correlators implies ρ is a product state, let

{
ΓXµ
}

denote
a complete normalized basis for density matrices of X ,

and likewise for
{

ΓX̃µ

}
. Any joint state of X and X̃ may

be written as

ρ =
1

N

(
IX∪X̃ +

∑
µ

〈
ΓXµ
〉

ΓXµ ⊗ IX̃ +
∑
ν

〈
ΓX̃ν

〉
IX ⊗ ΓX̃ν

+
∑
µ,ν

〈
ΓXµ ⊗ ΓX̃ν

〉
ΓXµ ⊗ ΓX̃ν

)
, (A1)

where N = |HX ⊗ HX̃ | is the dimension of the joint
Hilbert space. Since all bipartite connected correlators
vanish, 〈

ΓXµ ⊗ ΓX̃ν

〉
=
〈
ΓXµ
〉 〈

ΓX̃ν

〉
(A2)

for all µ, ν. Therefore ρ is also factorizable,

ρ =
1

N

(
IX +

∑
µ

〈
ΓXµ
〉

ΓXµ

)
⊗
(
IX̃ +

∑
ν

〈
ΓX̃ν

〉
ΓX̃ν

)
.

(A3)

Thus the lemma follows.

Appendix B: Equivalent definitions of multipartite
connected correlator

In this section we present some definitions of the mul-
tipartite connected correlation function which are equiv-
alent to Eq. (3). The multipartite connected correlator
can also be generated by [20]:

un(A1, . . . , An) =

[
∂n

∂λ1 . . . ∂λn
ln
〈
e
∑n

i=1 λiAi

〉]
~λ=0

,

(B1)

where the partial derivative is evaluated at ~λ =
(λ1, . . . , λn) = 0. This generating form will be used
in Appendix E to evaluate multipartite connected cor-
relators of the GHZ state. An equivalent way to define
multipartite connected correlators is via lower-order cor-
relators,

un (A1, . . . , An) = 〈A1 . . . An〉 −
∑
P

′ ∏
p∈P

u|p|

(
Ãp

)
,

(B2)

where the sum
∑′

P is taken over all partitions of
{X1, . . . ,Xn} except for the trivial partition P =

{X1, . . . ,Xn}, and Ãp = {Ai : i ∈ p} denotes the set of
all observables with indices in set p. We shall find this
definition useful for the inductive proof of Theorem 1 and
in Appendix E.

Appendix C: Proof of Lemma 2

In this section we prove the connection between factor-
izability and vanishing connected correlators in Lemma
2. We shall prove this lemma inductively using generat-
ing functions of multipartite connected correlators (B1),

ln

〈
exp

 k1∑
i=1

λiAi +

k2∑
j=1

λ′jBj

〉

= ln

〈
exp

(
k1∑
i=1

λiAi

)〉
+ ln

〈
exp

 k2∑
j=1

λ′jBj

〉 .
(C1)

The first term on the right hand side is independent of
any λ′j . Therefore, partial derivatives with respect to
λ′js will make the first term vanish. Similarly, the sec-
ond term will also vanish after partial derivatives with
respect to λis. Therefore multipartite connected corre-
lators, which are nth order partial derivatives of the left
hand side with respect to both λis and λ′js, will vanish.
The lemma follows.

Appendix D: Proof of Theorem 1

In this section we prove Theorem 1 by induction on
n. When n = 2, the inequalities reduce to bipartite
Lieb-Robinson bounds. Assuming that it holds for any
2 ≤ n ≤ k − 1, we shall prove that it holds for n = k.
We start with the recursive definition of connected cor-
relators (Appendix B):

〈A1 . . . Ak〉 =
∑

P∈P(S)

∏
p∈P

u|p|

(
Ãp

)
, (D1)

where P(S) denotes the set of all partitions of S =

1, . . . , k, and Ãp = {Ai : i ∈ p} denotes the set of all ob-
servables with indices in set p. Consider one particular
bipartition of S, e.g. S = S1 ∪ S2 such that S1 ∩ S2 = ∅.
The partitions of S can then be divided into two types.
Partitions of the first type have elements that lie entirely
on either S1 or S2. They therefore belong to the set
P(S1)⊕P(S2). The sum over these partitions in Eq. (D1)
can then be factored into a product of two sums over
P(S1) and P(S2),[ ∑
P1∈P(S1)

∏
p1∈P1

u|p1|

(
Ãp1

)][ ∑
P2∈P(S2)

∏
p2∈P2

u|p2|

(
Ãp2

)]

=

〈∏
i∈S1

Ai

〉〈∏
i∈S2

Ai

〉
, (D2)

where we have used the definition (D1) for the sets S1

and S2. The terms in (D1) we have not yet summed over
are partitions in which some elements overlap with both
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S1 and S2, namely P(S) \P(S1)⊕P(S2) ≡ P12. We can
then rewrite (D1) as

〈A1 . . . Ak〉 =uk(A1, . . . , Ak) +

〈∏
i∈S1

Ai

〉〈∏
i∈S2

Ai

〉

+
∑

P3∈P12

∏
p3∈P3

u|p3|

(
Ãp3

)
. (D3)

Rearranging equation (D3) in terms of bipartite con-
nected correlators, we have

uk(A1, . . . , Ak) = u2

(∏
i∈S1

Ai,
∏
i∈S2

Ai

)

−
∑

P3∈P12

∏
p3∈P3

u|p3|

(
{Ai∈p3}

)
. (D4)

Therefore,

|uk(A1 . . . Ak)| ≤

∣∣∣∣∣u2

(∏
i∈S1

Ai,
∏
i∈S2

Ai

)∣∣∣∣∣
+

∑
P3∈P12

∏
p3∈P3

∣∣∣∣u|p3|( {Ai∈p3})∣∣∣∣ . (D5)

The first term is bounded by ∝ exp(vt−d(S1, S2)), where
the distance between subsystems S1 and S2, i.e. d(S1, S2),
is defined as the smallest separation distance between a
site in S1 and a site in S2. To bound the second term,
we first realize that the connected correlators here are
between at most k − 1 points, and therefore our induc-
tion hypothesis applies. For each connected correlator u,
there can be two possibilities. It can involve subsystems
supported by both S1 and S2, or supported by either S1

or S2 alone. If we sum over those of the second type,
we again get expectation values which are bounded by
1. For the connected correlator u that involves qubits in
both S1 and S2, by the induction hypothesis it is bounded
by exp(vt − r), where r is the largest distance between
any bipartitions of the subsystems. By dividing those

subsystems into those in S1 and those in S2, the dis-
tance r has to be at least the one between S1 and S2, i.e.
r ≥ d(S1, S2). Therefore the second term in Eq. (D5) is
also bounded by exp(vt− d(S1, S2)). In the end, we get

|uk(A1, . . . , Ak)| ≤ Ck exp [vLRt− d(S1, S2)] (D6)

for some constant Ck to be determined. For each choice
of bipartition {S1, S2}, we get one such inequality. The
tightest bound is obtained from the bipartition with the
largest distance d, i.e.

|uk(A1, . . . , Ak)| ≤ Ck exp [vLRt−R] (D7)

with R = maxS1
d(S1, S2). Thus the hypothesis is true

for n = k, and by induction it holds for any n.
We now prove the second part of the theorem, i.e. Cn ≤

nn C2

4 . Clearly it holds for n = 2. We prove that if the
statement holds up to n = k−1, it must also hold for n =
k. Recall that a k-point connected correlator is bounded
by (D5). The first term of (D5) is bounded by 1. We
need to find a bound for the sum. Note that at the critical
time t = R/v, the only non-negligible contributing terms
are those involving S′1 ⊂ S1 and S′2 ⊂ S2 such that the
distance between S′1 and S′2 is exactly R (by construction
the distance is at least R).

Let S
(0)
1 ⊂ S1 and S

(0)
2 ⊂ S2 be such that the distance

between any s1 ∈ S(0)
1 and s2 ∈ S(0)

1 is always R. The
point is that only connected correlators that involve such
s1 and s2 will contribute to the sum. We now count
the contribution from such correlators. If we take k1

subsystems from S
(0)
1 , k2 subsystems from S

(0)
2 and k3

subsystems from S
(0)
3 = S \S(0)

1 ∪S
(0)
2 , their contribution

is O
(
(k1 + k2 + k3)k1+k2+k3

)
. Note that summing over

connected correlators of leftover subsystems, we get their
disconnected correlator, which is bounded by 1. Note
also that by counting this way, some terms will appear
more than once, so we get a loose bound. Denoting by

m1,m2,m3 the size of S
(0)
1 , S

(0)
2 and S

(0)
3 , we can bound

the constant Ck by summing over all possible choices of
k1 + k2 + k3 ≤ k − 1,

Ck ≤
C2

4

m1∑
k1=1

m2∑
k2=1

m3∑
k3=0

(
m1

k1

)(
m2

k2

)(
m3

k3

)
(k1 + k2 + k3)k1+k2+k3 (D8)

≤ C2

4

m1∑
k1=1

m2∑
k2=1

m3∑
k3=0

(
m1

k1

)(
m2

k2

)(
m3

k3

)
(k − 1)k1+k2+k3 (D9)

=
C2

4
(km1 − 1)(km2 − 1)km3 < K0k

m1+m2+m3 = kk
C2

4
. (D10)

Thus Ck ≤ kk C2

4 holds for n = k, and by induction it holds for any n.

Appendix E: Calculation of connected correlators

In this section we show how connected correlators are
calculated for the GHZ states, the cluster states and the

product state evolved under the XX Hamiltonian.
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a. The GHZ state

The generating function of un(Z1, . . . , Zn) evaluated
for the GHZ state of n qubits is

gn ≡ ln

〈
exp

{
n∑
i=1

λiZi

}〉
GHZ

(E1)

= ln

[
1

2
exp

(
n∑
i=1

λi

)
+

1

2
exp

(
−

n∑
i=1

λi

)]
(E2)

= ln

[
cosh

(
n∑
i=1

λi

)]
. (E3)

Let λ ≡
∑n
i=1 λi. Then

∂gn
∂λi

=
∂gn
∂λ

∂λ

∂λi
=
∂gn
∂λ

(E4)

for all i. Therefore the multipartite connected correlator
above is given by

un(Z1, . . . , Zn) =
∂ngn
∂λn

∣∣∣∣∣
λ=0

=

[
∂n

∂λn
ln(coshλ)

]
λ=0

.

(E5)

Note that this connected correlator has the same parity
as n. Therefore for odd n, it vanishes. For even n, the
correlator is given by

un =
2n(2n − 1)Bn

n
, (E6)

where Bn is the nth Bernoulli number. In the large n
limit, the Bernoulli number is approximated by

|Bn| ≈ 4

√
πn

2

( n

2πe

)n
. (E7)

Therefore the n-point connected correlator of the GHZ
state grows as un ∝ n−1/2( 2

πe )nnn = O(nn).

b. The cluster states

For each vertex i in a cluster state’s graph, we can asso-
ciate an operator Xi

∏
j∈N (i) Zj , where N (i) denotes the

set of vertices adjacent to i. These operators generate a
stabilizer group of which the cluster state is a simultane-
ous eigenstate. Operators outside of this group have no
disconnected correlations. Using the stabilizer group, we
can count the number of contributing disconnected cor-
relators in the definition of connected correlators (3). For
example, for the observables Y1, X2, X3, . . . , Xn−1, Yn in
the cluster state in Fig. 3a, all low-order disconnected
correlators vanish. Therefore,

un(Y1, X2, X3, . . . , Xn−1, Yn)

= 〈Y1X2X3 . . . Xn−1Yn〉 = 1. (E8)

Similarly, by direct counting we find the n-point
connected correlator of Fig. 3b cluster state

un({Tj : j = 1, . . . , n}) = 2
n−1
3 , where Tj = Xj for

all 1 < j < n such that j ≡ 1 (mod 3), and Tj = Yj
otherwise.

c. The product state evolved under the XX Hamiltonian

The time evolution shown in Fig. 4 can be verified as
follows. The time-dependent state of n qubits evolving
from |00 . . . 0〉 under H =

∑
〈i,j〉XiXj can be written in

the form of a matrix product state,

|ψ(t)〉 =
∑

i1,...,in∈{0,1}

ci1i2...in(t) |i1i2 . . . in〉 , (E9)

the coefficients of which are given by

ci1i2...in(t) = Li1Ai2(t)Ai3(t) · · ·Ain−1(t)Rin(t), (E10)

where

L0 =
(
1 0

)
, (E11)

L1 =
(
0 1

)
, (E12)

A0(t) =

(
cos t 0

0 −i sin t

)
, (E13)

A1(t) =

(
0 cos t

−i sin t 0

)
, (E14)

R0(t) =

(
cos t

0

)
, (E15)

R1(t) =

(
0

−i sin t

)
. (E16)

Note that this matrix product state is in left canonical

form (i.e.
∑
i L
†
iLi =

∑
iA
†
iAi = I) and it is normalized

(
∑
iR
†
iRi = 1). Our goal is to first determine all dis-

connected correlators of the form 〈O1O2 · · ·On〉 where
Oi is either I or Z. Because all such operators are di-
agonal on each site, we can write the expectation value
itself as a matrix product. In the end, we find that the
disconnected correlator picks up a factor of cos(2t) for
each “boundary” between a Z operator and an I opera-
tor. For instance, on a 5-qubit system, the expectation
value 〈Z2Z3Z5〉 = 〈IZZIZ〉 = [cos(2t)]

3
, as there are 3

relevant boundaries: between qubits 1–2, 3–4, and 4–5.
From this, it is already obvious that our connected

correlator un (Z1, . . . , Zn) will be some polynomial of the
variable cos(2t). Given some partition P, we would like
to determine the power to which cos(2t) is raised. Let us,
for sake of example, denote our partition by letters of the
alphabet. On 5 qubits, ABBCA corresponds to the prod-
uct of disconnected correlators 〈Z1Z5〉 〈Z2Z3〉 〈Z4〉 =

〈ZIIIZ〉 〈IZZII〉 〈IIIZI〉 = [cos(2t)]
6
. In general, the

product of disconnected correlators will be [cos(2t)]
2v

where v is the number of bonds that border two distinct
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subsets of the partition. (In the case of the example AB-
BCA, this includes each bond except the one between
sites 2–3, which are both in the same subset, B.)

Now we would like to count the number of partitions
which contribute to the term with power 2v. Because
the coefficient in the connected correlator depends on the
number of subsets in the partition |P|, we must consider
separately partitions with different numbers of subsets.
Given n qubits, there are n − 1 bonds between qubits.
Thus there are

(
n−1
v

)
different ways to choose v bonds

which connect different subsets of the partition. Given
these v bonds, there are

{
v
a

}
different ways to construct

partitions with (a+ 1) total subsets. (Here,
{
v
a

}
denotes

a Stirling number of the second kind.) Thus, the number
of partitions on n qubits with v bonds that border two
distinct subsets and with (a+1) total subsets is

(
n−1
v

){
v
a

}
.

Note that
∑n−1
v=0

(
n−1
v

)∑v
a=0

{
v
a

}
is equal to the nth Bell

number Bn, so we have indeed accounted for all possible
partitions.

As mentioned above, given a partition, two factors of
cos(2t) are picked up for each bond that borders two dis-
tinct subsets. In general, we can compute the expectation
value of the connected correlator from Eq. (3) as follows:

un (Z1, . . . , Zn) =
∑
P

(−)|P|−1(|P| − 1)!
∏
P∈P

〈∏
p∈P

Zp

〉

=

n−1∑
v=0

v∑
a=0

(−1)a a!

(
n− 1

v

){
v

a

}
[cos(2t)]

2v

=

n−1∑
v=0

(
n− 1

v

)
[cos(2t)]

2v
v∑
a=0

(−1)a a!

{
v

a

}

=

n−1∑
v=0

(
n− 1

v

)
[cos(2t)]

2v
(−)v

=

n−1∑
v=0

(
n− 1

v

)[
− cos2(2t)

]v
=
[
1− cos2(2t)

]n−1

=
[
sin2(2t)

]n−1
, (E17)

where we have used the identity
∑v
a=0(−1)a a!

{
v
a

}
=

(−1)v [31].
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