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A (k,n)-threshold secret-sharing scheme allows for a string to be split into n shares in such a way that any
subset of at least k shares suffices to recover the secret string, but such that any subset of at most k — 1 shares
contains no information about the secret. Quantum secret-sharing schemes extend this idea to the sharing of
quantum states. Here we propose a method of performing computation securely on quantum shared secrets. We
introduce a (n,n)-quantum secret sharing scheme together with a set of protocols that allow quantum circuits
to be evaluated securely on the shared secret without the need to decode the secret. We consider a multipartite
setting, with each participant holding a share of the secret. We show that if there exists at least one honest
participant, no group of dishonest participants can recover any information about the shared secret, independent

of their deviations from the protocol.

The connected nature of modern computing infrastructure
has led to the widespread adoption of distributed and dele-
gated computation [1]], with hard computational tasks rou-
tinely delegated to remote computers. In such a setting,
the computation’s security is a real concern. In the field of
quantum cryptography, aside from quantum key distribution
[2, 3], quantum protocols have appeared for secure computa-
tion tasks such as secure multi-party computation [4], blind
computation [SH8] and verifiable delegated computation [9-
13]. We focus on a different form of secure computation,
namely the evaluation of quantum circuits on shared secrets.

A secret sharing scheme, keeps an r-bit string r as a se-
cret, via encryption into an s-bit string s. These s bits are
subsequently distributed among n parties, with the intention
that whenever the colluding parties are too few, they can-
not perfectly recover the secret r. Reversibility of the en-
cryption allows the secret r to be recovered when all of the
n-parties assemble the data that they were distributed. In a
(k,n)-threshold scheme for classical secret sharing [14} [15],
no group with fewer than k colluding parties can reconstruct
the secret r, and any k parties can reconstruct r. Similarly
in a (k,n)-threshold quantum secret sharing scheme, a secret
quantum state of s qubits is shared among n parties such that
no group fewer than k colluding parties can reconstruct the
secret quantum state [16420], and any k parties can recon-
struct the secret quantum state. Here, we present an (n,n)-
threshold quantum secret sharing scheme that also supports
provably secure evaluation of quantum circuits on the shared
secret, where the size of each share is independent of the num-
ber of parties.

Threshold secret sharing schemes that support computation
in the classical context have been extensively studied. When
the parties interact only via broadcast channels and if the size
each party’s share grows with n, arbitrary Boolean functions
can be computed on (k,n)-classical threshold secret sharing
schemes for any k [21]; if instead the size of each party’s
share must be equal to the secret’s size, only linear functions
can be computed whenever k > 2 [21]. The problem of only
being able to compute linear functions in a theshold secret
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sharing scheme is often circumvented by assuming its verifia-
bility [22]]. However verifiable secret sharing [23] is impossi-
ble without an honest majority when only broadcast channels
are permitted [24]. Indeed previous schemes for multipartite
quantum computation build upon quantum verifiable sharing
schemes which also require an honest majority [25}26]. Since
our scheme works with at least an honest party, it is not a gen-
eralization of any classically existing scheme to the quantum
case, and is markedly different from previous schemes for se-
cure multipartite quantum computation.

Our secret sharing scheme with computation is closely re-
lated to quantum homomorphic encryption schemes [27-H31]],
that allow the performed quantum computation to be pub-
lic and require the decoding algorithm to be independent of
the depth of the computation. Indeed, we are motivated by a
quantum homomorphic encryption scheme [29] that supports
transversal evaluations of Clifford gates, and present a secret
sharing scheme that allows the evaluation of Clifford gates by
requiring the n non-interacting parties to perform the corre-
sponding Clifford operations in parallel. A constant number ¢
of non-Clifford gates can also be implemented securely via a
coordinated gate teleportation using logical magic states. Our
encoding is based on a randomized stabilizer code, and indeed
in a similar manner it is possible to derive a range of secret
sharing schemes which allow for varying non-universal com-
binations of gates to be evaluated locally (and hence securely)
based on error-correction codes which allow transversal eval-
uation of these gates. Our innovation is two fold: we show
how to achieve an (n,n) threshold scheme, which is not pos-
sible based on any single quantum error-correction code due
to upper bounds on the distance [32], and we show that uni-
versality can be achieved through the use of gate-teleportation
using magic states. While this second claim may seem an ob-
vious consequence of corresponding results in quantum fault-
tolerance, this does not directly follow. Rather, it is important
to show that the communication necessary to apply correc-
tion operators following gate teleportation cannot be used to
compromise the security of the shared secret, even when all
but one party behave dishonestly. Since the security of our
scheme is independent of the security of the quantum homo-
morphic encryption scheme in Ref. [29], the no-go results for
fully quantum homomorphic encryption schemes with both
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perfect [33]] and imperfect [34] information theoretic security
do not limit the class of circuits which can be evaluated.

Our secret sharing scheme comprises of four procedures as
described in Protocol [[I We label qubits according to a 2-
dimensional arrangement as depicted in Fig. [I] In the input
procedure of Protocol [I, N = s+t qubits are initialized on a
single column, with the first s qubits containing the quantum
secret, and the last ¢ qubits each initialized in the magic state

T= % + %, where I, X, Y, and Z are the usual Pauli matri-

ces. These magic states are consumed during the evaluation
in reverse order, starting from the last row. We focus on the
case where n — 1 is divisible by 4. This is not a limiting fac-
tor, since one can prepare ["%w + 1 shares and give multiple
shares to a single party. In the encoding procedure of Proto-
col[I] n— 1 additional columns of N qubits in the maximally
mixed state are appended. This yields an Nn-qubit quantum
state arranged in a grid with N rows and n columns. Sub-
sequently a unitary encoding U is applied on the Nn qubits,
which spreads the quantum secret from the first column to all
the n columns. Here U = U; ® - -- ® Uy is a tensor product of
the unitaries Uy, ...,Uy, where each U, acts only on the x-th
row of qubits and comprises of only CNOT gates. Specifically
U, = B.A,, where (i) A, comprises of n — 1 commuting CNOT
gates with controls all on the first column and targets on each
of the remaining columns, and (ii) By comprises of n — 1 com-
muting CNOT with targets all on the first column and controls
on every other column. Although Uj is a fixed unitary, the in-
duced encoding is random because n — 1 of the qubits that Uy
acts on are random; the qubits from the second column to the
last column are initialized as either |0) or |1) with probabil-
ity 1/2. This random encoding maps the quantum secret into a
highly mixed state [29]. In the sharing procedure of Protocol
[I] the Nn-qubit quantum state is shared equally among n par-
ties, with each party receiving a single column of N qubits. In
decoding procedure of Protocol [T} the n shares are assembled,
the inverse encoding circuit U Tis performed, and all but the
first column of qubits are discarded, which leaves the quantum
secret.

To evaluate a quantum circuit on the shared secret, each
party performs quantum computation only on their share of
the quantum state. We consider the approximately universal
model of quantum computation based on a discrete set of gates
composed of Clifford group gates and a single non-Clifford
group gate, in this case T = |0) (0| +¢®/#|1) (1| although other
choices are possible. Quantum circuits composed of arbitrar-
ily many Clifford gates and up to some constant number ¢ of
T-gates can be evaluated on the shared secret. We consider
the evaluation of a sequence V = (Vj,...,V;) of such gates
on the s-qubit quantum secret shared by n parties. The gates
Vi,...,V, are unitary matrices on s qubits and are assumed
to be known to every party. Using the knowledge of V, each
party implements a sequence of operations on their share of
the qubits, as specified in Protocol 2] The computation is per-
formed between the sharing and decoding procedure of Proto-
col|l} as we now describe.

When V; is a Clifford gate applying non-trivially on some
set of logical qubits, each party performs V; on the correspond-
ing subset of their column of qubits, thereby collectively im-

Protocol 1 Secret sharing scheme

Here, /7 labels the qubit on the x-th row and the y-th column, and
2y labels the qubits on the x-th row.

1. Input: From the s-qubit quantum secret, assign the x-
th qubit to J7%; for x = 1,...,s. Assign 7 to each of
,%pl\/,kﬂ,l,,.,,{;ﬁvﬁ].

2. Encoding: To prepare the x-th logical qubit forx =1,...,N:
(a) Prepare each of J% »,...,.74 , in state %

(b) Apply A,: Perform a CNOT with control on % and
target on 73y, forevery y =2,...,n.

(c) Apply B,: Perform a CNOT with target on /77 ; and
control on % , for every y =2,...,n.

3. Sharing: Assign the qubits in the y-th column to the y-th
share fory=1,...,n.

4. Decoding:
(a) Assemble the n shares.

(b) Foreach x=1,...,N, implement By followed by A, on

Ry
(c) Output the qubits in the first column, discarding all
other qubits.
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FIG. 1. The upper portion of the figure shows the secret and
the magic states, located on the first column, and shaded red
and green respectively. The unshaded qubits are initialized in
the maximally mixed state. The unitaries Uy,...,Uy spread
the states from qubits in the first column to qubits in the re-
maining columns, such that the encoded secret resides in the
first s rows of qubits. Each party receives a single column of
qubits.

plementing Vlg" This procedure is depicted in Fig. for
single qubit Clifford gates, and Fig.[2B for a CNOT gate. Let
P ={I1,X,Y,Z} denote the set of the Pauli matrices. Then
the divisibility of n — 1 by 4 implies that for o € &2,

U(c@1*" U] = ™" (1)



Protocol 2 Gate evaluation on shared quantum secret
Given a gate V; to be evaluated on the shared secret:

* Clifford group: If V; is in the Clifford group each party ap-
plies V; to their share.

o T-gates: If V; is a T-gate on qubit j, each party y does as
follows
1. Apply a CNOT gate controlled by qubit j and targeted
on qubit N —k+ 1.

2. Apply a CNOT gate controlled by qubit N —k+ 1 and
targeted on qubit j.

3. Measure qubit N —k -+ 1 in the computational basis, and
broadcast the result m,,.

4. If the parity of m = (my,...,m,) is odd, apply the cor-
rection operator SX to qubit j.
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FIG. 2. The secret qubits are shaded red and the others in
green. A) Multipartite implementation of a logical Clifford
gate G on the x-th row. B) Multipartite implementation of a
logical CNOT operator. C) A logical gate teleportation proto-
col that implements a logical T-gate on the j-th logical qubit
without the Clifford correction. Collectively, the qubits on the
subsequently measured row are initialized in a logical magic
state. Correction proceeds by broadcasting the measurement
outcomes, and having each party apply a single Clifford gate
SX on the j-th qubit only when m has odd parity.

Since V; is in the Clifford group, it maps the Pauli group onto
itself,

=\ ®n
Ux(ViGViT ®I®n71)U; — Vi®n6®n (Vlo) ) (2)
Hence the transversal Clifford group gates correspond to the
logical Clifford group gates on our random codespace [29].
Via gate teleportation, one can perform a constant number

t of T-gates on the quantum secret. For each T-gate to be per-

. . ~ ®n ®@n ®@n
formed, a logical magic state T = 12,, +X 2/:/Y§ is prepared.

This is achieved by the input and encoding procedures of Pro-
tocol [T however one could replace this pre-sharing of magic
states with a procedure for the parties to interactively prepare
states on demand without the involvement of the initial sharer.
Each of these logical magic states is located on the last # rows.
To prepare T on the x-th row, the first qubit in the x-th row
is initialized as TH|0) with the remaining qubits maximally
mixed. The encoding unitary U, is subsequently applied. To
evaluate the k-th 7T-gate on qubit j of the shared secret, each
party applies a CNOT with control on the j-th qubit and tar-
get on the k-th last qubit of their share. They then apply a
CNOT with control on the k-th last qubit and target on the j-
th qubit. Each party y then measures the k-th last qubit in the
{]0),|1)} basis and broadcasts the measurement result m,, to
every other party over a public classical channel. Lastly, if the
parity of the measurement results m is odd, each party applies
a single-qubit Clifford gate SX on the j-th qubit. If the parity
is even, no such correction is necessary. Fig. 2IC depicts this
procedure. This method of evaluating each T-gate amounts to
implementing a logical gate teleportation protocol consuming
one magic state [35].

Denoting I = [¢", X = X®" Y = Y®" and Z = Z®",
the correct implementation of a logical T-gate on the state
p =27"(I +aX + bY + ¢Z) shared by the j-th qubit of each

party must yield 5 <7+ (a\}zb)y + w}??—&—cf) . This fol-
lows from the conjugation relations for the 7-gate given by
TXT' = L(X+Y), TYT" = X and TZT" = Z. Ev-

V2 V2’
ery party then performs the CNOT gates and performs the
measurements as depicted in Fig. PJC. The parity of m =
(my,...,m,) is equivalent to the observable Z on the k-th last
qubit of each share. If the parity is even, the resultant state on
the j-th qubit of every party is collectively

Boven — L+ (a—b)X (a+b)Y cZ

on 2"\/5 Znﬁ +27’

and the evaluation of the T-gate is successful. If the parity is
odd, however, the resultant state of these qubits is

3)

~ _Z+(a+b)7 (a—b)Y g
Podd = on /2 /2 Tk

Applying SX to each qubit transforms the state into Peyep, re-
sulting in a correct evaluation of the 7-gate.

A (k,n)-threshold quantum secret-sharing scheme [[17, [18]]
is a quantum operation that maps a secret quantum density
matrix to an encoded state that can be divided among rn parties
such that (1) any k or more parties can perfectly reconstruct
the secret quantum state, and (2) any kK — 1 or fewer parties can
collectively deduce no information about the secret quantum
state. Protocol [I] satisfies the first property when k = n, since
the encoding procedure is perfectly reversible with inverse op-
eration given by the specified decoding procedure. For the
second property, consider the result of encoding a state

Psecret =2 Z WO &)

ccPes

“4)



according to Protocolm Here 6 = 01 ®...® 0 and wg = 1
when o is the trivial Pauli operator, ¢ = I, It is the coef-
ficients we for the non-trivial Pauli operators ¢ in 9% that
collectively define the quantum secret. From Eq.[I} the result-
ing state is

Psecret = 27F ( Z W00®n> & %®t7 (6)

cePBs

where the tensor product in ¢®” is taken across different
shares of the secret. Property (2) follows, since the reduced
density matrix for any subsystem of n — 1 shares (i.e. n—1
columns) is necessarily the maximally mixed state, because
all non-trivial o are traceless.

Regarding the security of Protocol 2] we consider the state
of the system across a bipartition between a single honest
party, who follows the protocol, and the remaining n — 1 par-
ties who are unrestricted in their actions. We show that the
bits broadcast by the honest party are uniformly random and
independent of the other parties’ actions. Given a sequence of
gates (Vi,...,V,) with the honest party acting as described by
Protocol [2] our strategy is to show that after evaluation of the
{-th gate, the state of the system has the form

¢ ) [O®0 ¢
= X (S )ers @
e P
oe{lX,y}®—*

. . ¢
where k < ¢ is the number of T-gates in (Vy,...,Vy), {b(o,)e}

is a set of scalars, and { x((;e)e} is a set of operators on the dis-
honest parties’ system. We have excluded the honest party’s
measured qubits, as these are in a product state with the rest
of the system.

Our proof is inductive. We assume that the system is in
a state pj((f’i;tl) of the form of Eq. [7| after evaluating the first
¢ —1 gates. If V; is a Clifford group gate, the honest party
applies V; on some subset of the first s qubits of their share,
while the dishonest parties may perform any completely pos-
itive and trace preserving map on their side of the bipartition.
Since VZI®SV; = I®% and V(z(@@sV; = 295, linearity of the
operation applied by the dishonest parties on their side of the
bipartition results in the state pj(fi)m in the form of Eq. [7] as
claimed. When V; is a T-gate on qubit j, the situation is more
complicated. Since honest party’s actions only affect the j-
th qubit and k-th last qubit of his share, the effect of these
actions on all combinations of Pauli operators on these two

qubits which can have non-zero coefficients in pj((fi;tl) is given
by the first column of Table[l] By applying CNOT operations
as prescribed by the first two steps of the T-gate procedure
in Protocol 2} the honest party transforms these operators into
the corresponding Pauli operators given by the second column
of Table|l} The absence of I ® Z implies that the expectation

for my, the measurement result of the honest party’s measure-
ment, is precisely zero. Hence my is uniformly random and
independent of the non-trivial weights {5 ¢ }. The measure-
ment’s effect on the Pauli operators is given by the third col-
umn of Table [T which implies that the resulting state is in

0 ® 6 Tjk (I® (mu|) T (I ® |my))
I®1 I®I I
I®X X®X 0
I®Y YoXx 0
X®l I1®X 0
X®X X®l1 X
X®Y Y®I Y
Yol ZRY 0
Y ®X Y®Z (=1)m™y
YQY -X®Z (—1ym+lx
zZel VA=YA (—=1)ymz
Z®X Y®vY 0
ZRY XY 0

TABLE I. The values of (i) 0; ® 6, (ii) the resulting operator
T; x after applying steps 1 and 2 of the T-gate procedure of
Protocol [} and (iii) (I ® (mul)Tjx(I® |mu)) for op € 2, 6 €
{I,X,Y}.

the form of Eq.[7} Since the correction SX is a local Clifford
group operator, the final state pj(fi)m is of the correct form inde-
pendent of the parity of m. Since the initial state after sharing,
given by Eq.[6]is of the form of Eq.[7] the induction hypothe-
sis holds for all 0 < ¢ < L, and the measurement results of the
honest party convey no information usable by the dishonest
participants to recover Pgecret-

Our scheme therefore represents an (n,n)-threshold secret
sharing scheme that also allows evaluation of quantum circuits
on the shared secret without lowering the threshold. While the
complexity of such circuits is limited in terms of the number
of T'-gates to the number of corresponding magic states incor-
porated in the initial sharing, the possibility of creating such
states as needed without involving the initial sharer presents
an interesting avenue for future research. Intuitively, the secu-
rity of our scheme is based on a randomized error correction
code which leaves only weight n operators constant while ad-
mitting transversal Clifford gates. This suggests that the use
of less random error-correction codes will allow for (k,n)-
threshold schemes for other values of k.
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