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Measurement-based quantum computing enables universal quantum computing with only adap-
tive single-qubit measurements on certain many-qubit states, such as the graph state, the Affleck-
Kennedy-Lieb-Tasaki (AKLT) state, and several tensor-network states. Finding new resource states
of measurement-based quantum computing is a hard task, since for a given state there are exponen-
tially many possible measurement patterns on the state. In this paper, we consider the problem of
deciding, for a given state and a set of unitary operators, whether there exists a way of measurement-
based quantum computing on the state that can realize all unitaries in the set, or not. We show that
the decision problem is QCMA-hard, which means that finding new resource states of measurement-
based quantum computing is harder than quantum computing itself (unless BQP is equal to QCMA).
We also derive an upperbound of the decision problem: the problem is in a quantum version of the
second level of the polynomial hierarchy.

I. INTRODUCTION

Measurement-based quantum computing [1] is another
model of quantum computing than the traditional circuit
model where universal quantum computing can be done
with only adaptive single-qubit measurements on cer-
tain many-qubit states which are called resource states.
Although it is mathematically equivalent to the circuit
model, the clear separation between the resource prepa-
ration phase and the resource consumption phase has en-
abled plenty of new results in, for example, fault-tolerant
quantum computing [2], condensed matter physics [3–
8], studying roles of quantumness in quantum comput-
ing [9, 10], secure quantum computing (blind quantum
computing) [11, 12], and quantum complexity theory [13–
15].

The first and the most standard example of universal
resource states is the graphs state [1], which is obtained
by applying CZ operators on all connected |+〉 states
placed on every vertex of a graph. Researchers have tried
to find more condensed-matter physically motivated re-
source states. For example, the Affleck-Kennedy-Lieb-
Tasaki (AKLT) state [16] was found to be a univer-
sal resource state [3–6]. Several tensor-network states
were also shown to be universal resource states by con-
sidering virtual quantum computing in the correlation
space [17]. Furthermore, low-temperature thermal equi-
librium states of some physically motivated Hamiltonians
were shown to be universal resource states for topologi-
cal measurement-based quantum computing [18, 19]. In
spite of much efforts, however, we have only a very short
list of universal resource states. One of the main reasons
of the difficulty of finding new resource states is the ex-
ponential increase of possible measurement patterns on a
given state. Therefore we have a natural question: how
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hard is it to find a new resource state? Is it, say, NP-
hard?
In this paper, we study the computational complex-

ity of finding new resource states of measurement-based
quantum computing. We consider the problem of de-
ciding, for a given state and a set of unitary operators,
whether there exists a way of measurement-based quan-
tum computing on the state that can realize all unitaries
in the set, or not. We show that the decision problem
is QCMA-hard. The class QCMA [20, 21] is a quantum
version of NP and defined in the following way:
A language L is in QCMA if and only if there exists

a uniformly-generated family {Vx}x of polynomial-size
quantum circuits such that

• If x ∈ L, then there exists a w-bit string y ∈ {0, 1}w
such that the probability of obtaining 1 when the
first qubit of Vx(|y〉⊗ |0n〉) is measured in the com-
putational basis is ≥ 2

3 . Here, n = poly(|x|) and
w = poly(|x|).

• If x /∈ L, then for any w-bit string y ∈ {0, 1}w, the
probability is ≤ 1

3 .

It is known that the error bound (23 ,
1
3 ) can be amplified

to (1− 2−r, 2−r) for any polynomial r by using the stan-
dard argument of the error reduction used in other proba-
bilistic classes such as BPP [26], MA [27], and BQP [28].
Obviously QCMA contains BQP. (We have only to ig-
nore the witness.) Moreover, QCMA seems to be strictly
larger than BQP, since it seems to be difficult to find a
correct y in a quantum polynomial time. In fact, there
are several results that support QCMA 6= BQP. (For ex-
ample, it is obvious that QCMA contains NP. However,
BQP is not believed to contain NP [22].) Therefore, if we
assume QCMA 6= BQP, we can put our result concisely
as follows: “finding new resource states is harder than
quantum computing itself”.
We also study upperbounds of the problem. We show

that the problem is in a quantum version of the second
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level of the polynomial hierarchy. The polynomial hier-
archy is one of the most important concepts in complex-
ity theory, and its quantum versions were considered in
Refs. [23, 24].
There are many studies about relations between

measurement-based quantum computing and complex-
ity. In particular, the result [25] studied how quantum
resource states enhance the computational power of clas-
sical computing. Our result is in some sense a comple-
mentary to these studies: they study complexity below
BQP (BPP or classically-non-universal), while we study
complexity above BQP, such as QCMA.

II. MEASUREMENT-BASED QUANTUM

COMPUTING

Before giving the precise definition of the problem that
we show to be QCMA-hard, let us here explain an ab-
stract form of measurement-based quantum computing.
Assume that as a resource state, we are given an N -
qubit state |Ψ〉. Let U ≡ {Uy}y∈{0,1}w be a set of uni-
tary operators acting on n qubits (n ≤ N). We say
that the resource state |Ψ〉 is U-universal with precision
ǫ (0 ≤ ǫ ≤ 1) if there exists a polynomial-time classical
algorithm Λ such that for any y ∈ {0, 1}w,

1. We input (1, y) to Λ. Λ outputs a classical de-
scription of a single-qubit unitary operator u1. We
measure the first qubit of the resource state in the
basis {u1|0〉, u1|1〉}. We obtain the measurement
result m1 ∈ {0, 1}.

2. We input (2, y,m1) to Λ. Λ outputs a classical de-
scription of a single-qubit unitary operator u2. We
measure the second qubit of the resource state in
the basis {u2|0〉, u2|1〉}. We obtain the measure-
ment result m2 ∈ {0, 1}.

3. We input (3, y,m1,m2) to Λ. Λ outputs a classical
description of a single-qubit unitary operator u3.
We measure the third qubit of the resource state
in the basis {u3|0〉, u3|1〉}. We obtain the measure-
ment result m3 ∈ {0, 1}.

4. In this way, we repeat this adaptive single-qubit
measurements until all but the last n qubits of the
resource state are measured. In other words, when
we measure jth qubit of the resource state, we input
(j, y,m1, ...,mj−1) to Λ, and get a classical descrip-
tion of a single-qubit unitary operator uj from Λ.
We then measure jth qubit of the resource state
in the basis {uj|0〉, uj |1〉}, and obtain the measure-
ment result mj . We repeat it until j = N − n.
Let |ψ′

m〉, where m ≡ (m1, ...,mN−n), be the (nor-
malized) post-measurement state of n qubits of the
resource state that are not measured. We also de-
note the probability of obtaining m by pm. (For
example, if |Ψ〉 is the graph state, pm = 2−(N−n)

for all m, and |ψ′
m〉 is equal to Uy|0n〉 up to some

Pauli byproduct operators.)

5. We input (N − n + 1, y,m) to Λ. Λ outputs clas-
sical descriptions of single-qubit unitary operators
{vj}nj=1. We apply vj on jth qubit of |ψ′

m〉 to ob-
tain

|ψm〉 ≡
(

n
⊗

j=1

vj

)

|ψ′
m〉.

(This process is the “final byproduct correction”.
For example, if |Ψ〉 is the graph state, each vj is a
Pauli byproduct operator, and |ψm〉 = Uy|0n〉 for
all m.)

6. The state
∑

m pm|ψm〉〈ψm| is close to the ideal
state Uy|0n〉 in the sense of

1

2

∥

∥

∥

∑

m

pm|ψm〉〈ψm| − Uy|0n〉〈0n|U †
y

∥

∥

∥

1
≤ ǫ.

Here, ‖X‖1 ≡ Tr
√
X†X is the trace norm.

Note that this definition of the universality is the uni-
versality of the state generation: we require that any
state is generated with high precision. It is the strongest
definition. If one is interested in only the output proba-
bility distribution of quantum computing, a weaker defi-
nition of universality, namely, any output probability dis-
tribution of quantum computing is samplable, is enough.
It is an interesting open problem to consider computa-
tional complexity for the weaker definition.

III. THE PROBLEM

Now we define the decision problem that we study,
which is a promise version of deciding whether a given
state is non-U-universal or not. We call the problem
NONUNIVERSALITYǫ for a parameter ǫ (0 ≤ ǫ ≤ 1):

• Input: U and |Ψ〉.

• YES: |Ψ〉 is not U-universal. In other words, for
any Λ there exists y such that,

1

2

∥

∥

∥

∑

m

pm|ψm〉〈ψm| − Uy|0n〉〈0n|U †
y

∥

∥

∥

1
≥ 1− ǫ.

• NO: |Ψ〉 is U-universal. In other words, there exists
Λ such that for all y

1

2

∥

∥

∥

∑

m

pm|ψm〉〈ψm| − Uy|0n〉〈0n|U †
y

∥

∥

∥

1
≤ ǫ.

The main result of the present paper is that the problem
is QCMA-hard for ǫ = 2−t, where t is any polynomial.
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IV. PROOF

Here we give a proof. Let us assume that a language L
is in QCMA, and let Vx be the corresponding verification
circuit for an instance x. Due to the standard argument
of the error reduction, we can assume without loss of
generality that the acceptance probability p satisfies p ≥
1 − 2−r if x ∈ L and p ≤ 2−r if x /∈ L, where r is
any polynomial. Fix one x. From Vx, we construct the
unitary operator U that acts on n+w+2r+1 qubits as
follows (see Fig. 1):

1. Apply Vx on |y0n〉 to generate Vx|y0n〉.

2. Add an ancilla qubit initialized in |0〉1 to generate
Vx|y0n〉 ⊗ |0〉1.

3. Flip the ancilla qubit if and only if the first qubit
of Vx|y0n〉 is |1〉. We therefore obtain

(|0〉〈0| ⊗ I⊗n+w−1)Vx|y0n〉|0〉1
+ (|1〉〈1| ⊗ I⊗n+w−1)Vx|y0n〉|1〉1.

Here I ≡ |0〉〈0|+ |1〉〈1| is the two-dimensional iden-
tity operator.

4. Add 2r ancilla qubits initialized in |02r〉2. We ob-
tain

(|0〉〈0| ⊗ I⊗n+w−1)Vx|y0n〉|0〉1|02r〉2
+ (|1〉〈1| ⊗ I⊗n+w−1)Vx|y0n〉|1〉1|02r〉2.

5. Apply a 2r-qubit unitary operator ME on the 2r
ancilla qubits |02r〉2 that changes the state |02r〉 to
the maximally-entangled state

|ME〉 ≡ 1√
2r

2r
∑

j=1

|j〉|j〉

if and only the first qubit of Vx|y0n〉 is |1〉. We
therefore obtain

(|0〉〈0| ⊗ I⊗n+w−1)Vx|y0n〉|0〉1|02r〉2
+ (|1〉〈1| ⊗ I⊗n+w−1)Vx|y0n〉|1〉1|ME〉2.

6. Apply V †
x on the main register. We thus obtain the

final state

U |y0n〉|0〉1|02r〉2
= V †

x (|0〉〈0| ⊗ I⊗n+w−1)Vx|y0n〉|0〉1|02r〉2
+ V †

x (|1〉〈1| ⊗ I⊗n+w−1)Vx|y0n〉|1〉1|ME〉2.

Let us define

Uy ≡ U
[(

w
⊗

j=1

X
yj

j

)

⊗ I⊗n+2r+1
]

,

where yj is the jth bit of y, and Xj ≡ |0〉〈1|+ |1〉〈0| is the
bit-flip operator acting on jth qubit. (Remember that Vx

ME

Vx Vx
n

w-1

2r

FIG. 1: The unitary operator U . ME means the unitary
operator that changes |02r〉 to the maximally entangled state
|ME〉.

is universal by the definition of QCMA, and therefore Uy

covers a broad region of the circuit space.) We also define

|Ψ〉 ≡ |0n+w+2r+2〉.

First, we consider the case of x ∈ L. In this case, by
the assumption of L ∈ QCMA, p ≥ 1− 2−r for a certain
y. Note that whatever Λ we choose, what we can do
in the measurement-based quantum computation is just
measuring a single qubit of |Ψ〉 and then rotating each
of the n+w + 2r + 1 unmeasured qubits. Therefore, for
any Λ, |ψm〉 is an (n + w + 2r + 1)-qubit product state
for all m. Therefore, from Uhlmann’s theorem,

|〈ψm|Uy|0n+w+2r+1〉|2

= |〈ψm|U |y0n+2r+1〉|2
≤ F (ρ, σ)2

= (1− p)|〈ξ1ξ2|02r〉|2 + p|〈ξ1ξ2|ME〉|2
≤ (1− p)× 1 + p|〈ξ1ξ2|ME〉|2

≤ (1− p) + pF
(

|ξ1〉〈ξ1|,
I⊗r

2r

)2

= 1− p+
p

2r

≤ 2−r + 2−r

= 2−r+1,

where F (ρ, σ) ≡ Tr
√√

ρσ
√
ρ is the fidelity,

ρ ≡ Tr2(|ψm〉〈ψm|)
≡ |ξ1〉〈ξ1| ⊗ |ξ2〉〈ξ2|,

σ ≡ Tr2(U |y0n+2r+1〉〈y0n+2r+1|U †)

= (1− p)|02r〉〈02r|+ p|ME〉〈ME|,

Tr2 is the partial trace except for the send ancilla register,
and |ξj〉 (j = 1, 2) is a certain (actually product) r-qubit
state. Therefore

F
(

∑

m

pm|ψm〉〈ψm|, Uy|0n+w+2r+1〉〈0n+w+2r+1|U †
y

)

=

√

∑

m

pm|〈ψm|Uy|0n+w+2r+1〉|2

≤ 2
−r+1

2 .
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Hence we have shown that for any Λ, there exists y such
that

1

2

∥

∥

∥

∑

m

pm|ψm〉〈ψm| − Uy|0n+w+2r+1〉〈0n+w+2r+1|U †
y

∥

∥

∥

1

≥ 1− 2
−r+1

2

≥ 1− 2−t,

where we have taken r ≥ 2t + 1. It corresponds to the
YES instance of the NONUNIVERSALITY.
Next, we consider the case of x /∈ L. In this case, by

the assumption of L ∈ QCMA, p ≤ 2−r for any y. We
define Λ in such a way that

|ψm〉 = |y0n+2r+1〉

for any m. This is trivially possible as follows:

1. Measure the first qubit of |Ψ〉 = |0n+w+2r+2〉 in

the computational basis. Then we obtain |ψ̃m=0〉 =
|0n+w+2r+1〉 with probability 1.

2. Apply X
yj

j on the jth qubit of |ψ̃m=0〉 for j =

1, ..., w to obtain |ψm=0〉 = |y0n+2r+1〉.

Then, for any y,

∑

m

pm|〈ψm|Uy|0n+w+2r+1〉|2

= |〈ψm=0|Uy|0n+w+2r+1〉|2

= |〈y0n+2r+1|U |y0n+2r+1〉|2
= |〈y0n|V †

x (|0〉〈0| ⊗ I⊗n+w−1)Vx|y0n〉|2
= (1 − p)2

≥ (1 − 2−r)2

= 1− 2−r+1 + 2−2r

≥ 1− 2−r+1.

Therefore

F
(

∑

m

pm|ψm〉〈ψm|, Uy|0n+w+2r+1〉〈0n+w+2r+1|U †
y

)

=

√

∑

m

pm|〈ψm|Uy|0n+w+2r+1〉|2

≥
√

1− 2−r+1.

Hence we have shown that there exists Λ such that for
any y

1

2

∥

∥

∥

∑

m

pm|ψm〉〈ψm| − Uy|0n+w+2r+1〉〈0n+w+2r+1|U †
y

∥

∥

∥

1

≤ 2
−r+1

2

≤ 2−t.

It corresponds to the NO instance of the NONUNIVER-
SALITY. In summary, we have shown that the promise
problem is QCMA-hard.

V. UPPERBOUND

In the previous section, we have shown that the prob-
lem NONUNIVERSALITY is QCMA-hard. In other
words, we have derived an lower bound of the problem.
It is an important open problem to find any better lower
bound and better upper bound of the problem, or to show
that the problem is complete for a complexity class. Here
we point out that a quantum version of Π2, which we call
QΠ2, is an upper bound of the problem. We define the
class QΠ2 as follows:
A language L is in QΠ2(a, b) if and only if there exists

a uniformly generated family {Vx}x of polynomial-size
quantum circuits such that

• If x ∈ L then for any λ-bit string Λ there exists a
w-bit string y such that the probability of obtaining
1 when the first qubit of Vx(|Λ〉|y〉|0n〉) is measured
in the computational basis is ≥ a. Here, λ,w, n =
poly(|x|).

• If x /∈ L then there exists a λ-bit string Λ such that
for any w-bit string y the probability is ≤ b.

It is obvious that QΠ2 is in PSPACE. (We have only
to try all possible Λ and y.) Other types of quantum
generalizations of the polynomial hierarchy were studied
in Refs. [23, 24].
We can show that the problem NONUNIVERSALITY

is in QΠ2(1 − 2ǫ, 2ǫ). In fact, since measurement-based
quantum computing can be simulated by a circuit model,
there exists a polynomial-size quantum circuit V and
polynomials t and n such that the reduced density op-
erator of some n qubits of V (|Λ〉|y〉|0t〉) is

ρ ≡ U †
y

(

∑

m

pm|ψm〉〈ψm|
)

Uy.

We then measure all qubits of ρ in the computational
basis, and reject if and only if all qubits are 0. The
acceptance probability p is therefore

p = 1− 〈0n|U †
y

(

∑

m

pm|ψm〉〈ψm|
)

Uy|0n〉,

which means

1−
√

1− p ≤ 1

2

∥

∥

∥

∑

m

pm|ψm〉〈ψm| − Uy|0n〉〈0n|U †
y

∥

∥

∥

1
(1)

and

1

2

∥

∥

∥

∑

m

pm|ψm〉〈ψm| − Uy|0n〉〈0n|U †
y

∥

∥

∥

1
≤ √

p. (2)

For the the yes case, for any Λ, there exists y such that

1

2

∥

∥

∥

∑

m

pm|ψm〉〈ψm| − Uy|0n〉〈0n|U †
y

∥

∥

∥

1
≥ 1− ǫ.
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From Eq. (2), it means 1− ǫ ≤ √
p. Therefore

p ≥ 1− 2ǫ+ ǫ2

≥ 1− 2ǫ.

For the no case, there exists Λ such that for any y,

1

2

∥

∥

∥

∑

m

pm|ψm〉〈ψm| − Uy|0n〉〈0n|U †
y

∥

∥

∥

1
≤ ǫ.

From Eq. (1), it means 1−√
1− p ≤ ǫ. Therefore

p ≤ 2ǫ− ǫ2

≤ 2ǫ.

Hence we have shown that the problem is in QΠ2(1 −
2ǫ, 2ǫ).
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