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We analytically and numerically investigate the performance of weak-value amplification (WVA) and related
parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of a
general measurement strategy that involves sorting data into separate subsets based on the outcome of a second
“partitioning” measurement. Using a simplified correlated noise model that can be analyzed exactly together
with optimal statistical estimators, we compare WVA to a conventional measurement method. We find that
WVA indeed yields a much lower variance of the parameter of interest than the conventional technique does,
optimized in the absence of any partitioning measurements. In contrast, a statistically optimal analysis that
employs partitioning measurements, incorporating all partitioned results and their known correlations, is found
to yield an improvement – typically slight – over the noise reduction achieved by WVA. This result occurs
because the simple WVA technique is not tailored to any specific noise environment and therefore does not
make use of correlations between the different partitions. We also compare WVA to traditional background
subtraction, a familiar technique where measurement outcomes are partitioned to eliminate unknown offsets
or errors in calibration. Surprisingly, in our model of measurement, background subtraction turns out to be
a special case of the optimal partitioning approach, possessing a similar typically slight advantage over WVA.
These results give deeper insight into the role of partitioning measurements (with or without post-selection)
in enhancing measurement precision, which some have found puzzling. They also resolve previously made
conflicting claims about the usefulness of weak-value amplification to precision measurement in the presence
of correlated noise. We finish by presenting numerical results to model a more realistic laboratory situation of
time-decaying correlations, showing our conclusions hold for a wide range of statistical models.

I. INTRODUCTION

eak-value amplification (WVA) [1] is a technique that
has been used in a variety of experimental settings to per-
mit the precise measurement of small parameters [2–22].
Over the past few years, WVA has been the subject of
an ongoing debate over whether or not it can provide an
actual advantage in terms of the resulting measurement
precision [23–30]. Experimental scenarios with tempo-
rally correlated noise are one area where there have been
claims about an advantage for WVA. In this paper, we
delineate the situations under which WVA does, in fact,
improve measurement precision in the presence of cor-
related noise, and we compare it with competing ap-
proaches. This investigation leads to interesting connec-
tions between WVA and other techniques, such as back-
ground subtraction and lock-in amplification, which elu-
cidate the technical advantages that have already been
experimentally observed.

Alongside arguments regarding the usefulness of
WVA to precision measurement, there has continued to
be a great deal of work extending and improving the ba-
sic technique of WVA in other situations. Some recent
advances in the field include the incorporation of pho-
ton recycling of discarded events [31–33]; the observa-

tion that WVA can improve measurement precision in
cases with detector saturation [34], the optimization of
the shape of the meter probe [35], and a generalized
approach to probabilistic quantum metrology [36]. Of
particular interest is weak-value amplification with en-
tanglement [30, 37], squeezing [38], and the observa-
tion that weak-value amplification can suppress system-
atic errors [39], which is closely related to the present
work. We refer the reader to recent reviews for a wider
overview of the field [40, 41].

Weak-value amplification is an experimental tech-
nique that involves two measurements. In the first, a sys-
tem observable is measured via a weak interaction with
a measurement apparatus. The effect of this weak in-
teraction is to induce a small shift in the pointer of the
measurement apparatus. The size of this shift is deter-
mined by the observable (which is typically known) and
the coupling strength, which we are interested in estimat-
ing. In weak-value amplification this coupling strength
is usually very weak, so that very little information is
gained about the state being measured, and the corre-
sponding measurement disturbance is minimized. The
second measurement is a strong projective measurement
in a different basis on the system. Because the sys-
tem and measurement device are left weakly entangled
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by the first measurement, there are interesting correla-
tions between the two systems. These correlations can be
seen by repeating the two-measurement procedure iden-
tically many times and dividing the data set compiled
from the outcomes of the first measurement into parti-
tions based on the results of the second projective mea-
surement, and then averaging the different partition with
different weights. In conventional WVA, the weights are
zero and one. This corresponds to discarding certain
measurement outcomes based off the result of the sec-
ond projective measurement, and is called post-selection.
The mean shift of the pointer conditioned upon the post-
selection succeeding is proportional to the weak value. It
is defined in terms of the initial state of the system (|i〉),
the state the system is found to be in if the post-selection
succeeds, (|f〉), and the operator associated with the first
measurement, A,

Aw ≡
〈f |A|i〉
〈f |i〉

. (1)

The weak value can become quite large when the over-
lap of the initial and final state becomes very small. This
“amplification” of what would be a small shift in our
measurement pointer seems to open up the possibility
for improving the measurement precision. The catch is
that when the initial and final state have small overlap,
the post-selection occurs very rarely and so the retained
data set becomes quite small. The improvement in pre-
cision which might be expected from an amplified signal
is in fact often perfectly cancelled by the reduction in the
size of the data set in experiments where the measure-
ments are uncorrelated. In spite of this fact, there have
been several experimental metrological works, such as
Refs. [2, 3], which argued that WVA could offer an ad-
vantage in specific experimental situations. These claims
ignited a fierce debate over proper resource counting and
whether or not the advantage reported was a feature of
the experimental design or of the technique itself. In this
paper, we focus on the case of additive correlated noise,
and detail how WVA can yield an advantage over other
common experimental techniques.

This topic was first raised in 2011, when Feizpour,
Xing, and Steinberg (FXS) studied WVA under additive,
time-correlated, Gaussian random noise and claimed it
yielded an improvement in the signal-to-noise ratio of
the measured parameter over other common techniques
[42].

In the scenario considered by FXS, measurements are
performed sequentially in time under equivalent circum-
stances, but are not independent due to temporal correla-
tions in the noise. In contrast in WVA, post-selection
events naturally occur more rarely, helping the post-
selected data set remain uncorrelated. WVA is there-
fore robust to the detrimental effects of time-decaying
temporal correlations and, FXS claim, superior to other
approachs. More recently, however, others have argued

using Fisher Information methods that the WVA method
is inherently sub-optimal because it involves discarding
a portion of the measurement outcomes [24]. Using the
same Fisher information based approach, WVA has since
been shown to capable of capturing nearly all of the in-
formation, becoming asymptotically optimal. The op-
timal limit is possible to reach because the information
contained in the discarded measurement outcomes is a
tiny fraction of the total information (despite the dis-
carded outcomes making up the vast majority of the to-
tal number of outcomes) [27–30, 43]. The case with
correlated noise is more complex, however, because the
correlations within the post-selected partition are sensi-
tive to controlled parameters like the probability of post-
selection, and because there are correlations (and there-
fore information) between the post-selected and non-
post-selected partitions which must be considered. We
will revisit the case of correlated noise and show that
while WVA is much better than the conventional ap-
proach, in the temporally correlated noise case it is (typ-
ically) slightly inferior to a statistical analysis which op-
timally utilizes all partitioned outcomes and the correla-
tions between them. We will also show that WVA and the
optimal partitioning approach are closely related to back-
ground subtraction and lock-in amplification techniques
which are well known.

This paper is organized as follows. In Sec.II, we intro-
duce the tools used in estimation theory: estimators; vari-
ance; the Cramér-Rao Bound; our metric of choice, the
Fisher Information; and a model for correlated Gaussian
noise. In Sec. III, we explore the Fisher Information as
an information metric using a simple two-measurement-
outcome example. In Sec.IV, we give an eigenvalue
analysis of the Fisher information, and show it may be
expressed as a weighted average of the eigenvalues of the
covariance matrix. The weak-value amplification effect
is introduced in Sec.V. An optimal partitioning measure-
ment approach is introduced in Sec.VI, which improves
slightly on the advantage achieved by WVA over the di-
rect method by including all partitioning states and the
correlations between them. This physics is illustrated in
Sec.VII, where an exactly solvable model is introduced,
and the variance of all the estimation strategies is given
explicitly and compared. A numerical investigation of
these issues is presented in Sec.IX, where an experimen-
tally motivated correlated noise model is given, and ana-
lyzed. Our conclusions are given in Sec. X.

II. PARAMETER ESTIMATION

Consider a common scenario in the natural sciences in
which the goal is the measurement of some unknown pa-
rameter. If the measurement is noisy, this can be accom-
plished by performing the same measurement procedure
many times under equivalent circumstances. Each mea-
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surement yields an outcome, which is compiled into a
data set. We represent this data set as {si}, where i iden-
tifies the ith measurement, i = 1, 2, ..., N . Measurement
outcomes can be scaled and shifted so the measured sig-
nal si can be modeled as the parameter of interest, d, and
noise, xi,

si = d+ xi (2)

where xi are zero mean Gaussian random variables [42].
In the most generic case, these variables may be corre-
lated. For example, this could occur if the source of
noise possessed temporal correlations which lasted for
several measurements. We define the correlation func-
tion Ci,j(x) = 〈xixj〉 - this is also called the covari-
ance matrix. Our task is to estimate the unknown pa-
rameter d, from the data set and our knowledge of the
covariance matrix. In this paper, we consider the covari-
ance matrix known, and the detailed knowledge able to
be applied to implement the optimal estimator of the un-
known quantity d. The extra resources required to es-
timate this matrix and implement the optimal estimator
are not considered [27], but this would amount to com-
pletely characterizing the sources of noise in our exper-
iment. By choice of estimator, we simply mean some
algorithm which maps our data set to an estimate of d.
Taking the arithmetic average corresponds to the most
conventional and straightforward estimator. Because the
noise has zero mean, this estimator is unbiased, which
means that in the limit of N → ∞, the estimate of the
parameter converges to d. There are many other unbiased
estimators which could be constructed depending on how
the measurement is designed and implemented.

We will discuss two different classes of measurement
design. The first class, which most conventional mea-
surements fall into, we term “direct”. “Direct” measure-
ments only involve measurements on the parameter of
interest. The second class, which we term “partition-
ing”, introduces a second measurement that is used to
sort the first measurement’s outcomes into different par-
titions. Often, “partitioning” class measurements possess
some advantage versus “direct” measurements, because
they can exploit correlations between different partitions.
The simplest “partitioning” class measurement involves
discarding all data points which fail to meet some crite-
rion assessed by the second measurement. This is post-
selection. While others have others have pointed out that
instead of discarding outcomes, they should be weighted
and optimally analyzed, our assertion is just that exploit-
ing such correlations may have significant advantages,
and that while the actual throwing out of data per se can
never increase the amount of information available, there
may be regimes where some (perhaps most) of the advan-
tage survives even this procrustean approach.

Take data set  
and average it  
to get the mean 

Take data set  
and average it  
to get the mean  

Optimally weight  
and          partitions to  
estimate the mean 
with minimum variance 

Direct vs WVA vs Optimal Partitioning Measurement 

FIG. 1. We schematically represent the original data set being
partitioned by the post-selection into two new data sets. The
direct measurement method (blue) requires only the original
data set, whereas the WVA measurement method (red) requires
only one of two partitions. In contrast to both of these ap-
proaches, the optimal partitioning method (green) utilizes both
partitioned sets of data

Once the “measurement design” has been specified,
the space of available estimators is infinite. As the vari-
ance associated with different estimators can vary wildly,
the “choice of estimator” is highly nontrivial. Conve-
niently, a technique called maximum likelihood estima-
tion [27] can be used to identify the estimator with mini-
mum variance in the large data set limit. Furthermore,
there is a mathematical theorem [44] that bounds the
minimum variance of an unbiased estimator to be larger
than the inverse Fisher Information. This allows us to
forgo discussion of estimators entirely, skipping directly
to the calculation of the Fisher Information, which is de-
fined as the inverse variance of the optimal estimator.
Find the Fisher Information for a given measurement sce-
nario, invert it, and one will have found the minimum
variance of any unbiased estimator.

III. THE FISHER INFORMATION IN A TWO
MEASUREMENT OUTCOME EXAMPLE

It is instructive to consider a pedagogical example that
will clarify the meaning of the Fisher Information, the
importance of the choice of estimator, and the signifi-
cance of the covariance matrix to this task. If we re-
turn to the scenario in the previous section, but imagine
collecting only two data-points, we will have a data set
(s1, s2) with assumed knowledge of the covariances and
variances. As before, our goal is to estimate the mean d.
The covariance matrix, which is a 2x2 matrix is:

C(s) =

(
Var(s1) Cov(s1, s2)

Cov(s2, s1) Var(s2)

)
, (3)
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where Var(s1),Var(s2) ≥ 0, and Cov(s1, s2) =
Cov(s2, s1) are all real numbers. The Cauchy-Schwartz
inequality (Cov(s1, s2)2 < Var(s1)Var(s2)) guarantees
both eigenvalues be non-negative which also guarantees
C to be positive semidefinite. The Cov(s1, s2) itself
can be positive or negative, representing either positive
or negative correlation between s1 and s2. Our goal is
to estimate the expectation value of our two data points
while minimizing the variance of our estimate. Were we
to use the first data point alone to estimate the mean,
the variance would be Var(s1); similarly, use of the sec-
ond data point alone gives Var(s2). Instead, we can use
a combination of the two data points as our estimator,
sest = αs1 +βs2, where α and β are constant weighting
factors. To keep this estimator unbiased we require that
α + β = 1. The variance of our estimator sest is given
by

Var(sest) = α2Var(s1)+β2Var(s2)+2αβCov(s1, s2).
(4)

We minimize the variance with respect to α, keeping
Var(s1),Var(s2),Cov(s1, s2) fixed. Doing so gives a
minimum variance of

Var(sest)min =
Var(s1)Var(s2)− Cov(s1, s2)2

Var(s1) + Var(s2)− 2Cov(s1, s2)
,

(5)
which is smaller than or equal to either
Var(s1) or Var(s2) for any allowed values of
Var(s1),Var(s2),Cov(s1, s2). We note that unlike
uncorrelated random variables, the inverse variance is
not additive. If instead we took equal weighting of the
two data points, α = β = 1/2, this would give

Var(sest)equal = Cov(s1, s2)/2+(Var(s1)+Var(s2))/4.
(6)

If the two outcomes are perfectly negatively correlated
[Cov(s1, s2)→ −

√
Var(s1)Var(s2)], then both the op-

timal and the equal weighting estimators have zero vari-
ance. This can be understood as resulting from anticor-
related fluctuations canceling each other out, for exam-
ple if s1 = d + x1, and s2 = d − x1, a straightfor-
ward averaging of s1, s2 will result in the perfect can-
cellation of the noise (x1). If the two outcomes are
perfectly positively correlated, but the variances are not
equal (Var(s1) 6= Var(s2)), the optimal variance van-
ishes, whereas the equal weighting variance limits to
that of using just a single outcome. This can be under-
stood by considering the case where s1 = d + 2x1, and
s2 = d+ x1. If our estimator is sest = 2s2 − s1, we can
eliminate the noise just like in the anti-correlated case.
When the variances are equal and the correlations are
positive, the optimal variance does not vanish because
the noise cannot be canceled without making the estima-
tor biased. In this case, the equal-weighting estimator
turns out to be optimal. We recall that the Fisher In-
formation is equal to the inverse of the variance of the

optimal estimator in the large data limit. The Fisher In-
formation is defined for smooth distributions as [44]

I = −
∫
ds1 . . . dsnP (s1, s2, ...sn|d)

∂2

∂d2
lnP, (7)

where P = P (s1, s2, ...sn|d) is the probability distribu-
tion of {s1, ...sn} given a fixed value of d. In our model,
it is taken as a multi-dimensional Gaussian distribution
with mean d1 and covariance matrixCij . From Ref. [27]
the Fisher information about the mean for Gaussian cor-
related noise is given by

I =

N∑
i,j

[C−1]i,j , (8)

and the Fisher information for N = 2 is simply the min-
imized variance we found previously

I =
Var(s1) + Var(s2)− 2Cov(s1, s2)

Var(s1)Var(s2)− Cov(s1, s2)2
= Var(s)−1

min.

(9)
It is convenient to introduce two parameters, an

asymmetry parameter, x = Var(s1)/Var(s2) ∈
[0,∞), and a relative correlation parameter, r =

Cov(s1, s2)/
√

Var(s1)Var(s2) ∈ [−1, 1]. Dividing the
inverse Fisher information by

√
Var(s1)Var(s2) gives a

function that depends only on r and x. We plot the in-
verse Fisher information in this case in Fig. 2, noting the
asymmetry in both r and x which we will now explore.

FIG. 2. Inverse Fisher information (minimum variance of s)
versus x and r, Eq. (9), plotted in units of

√
Var(s1)Var(s2).

We note that (9) indicates that negative values of
Cov(s1, s2) (or r) typically have higher Fisher informa-
tion than positive values; that is, anti-correlation is more
informative than correlation. In Figs. 3,4,5, we plot the
variance of sest versus α for different values of x and r.
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The minimum value of the estimator corresponds to the
inverse Fisher information for that choice of covariance
matrix. These figures highlight how the information that
can be extracted from a probability distribution depends
in a complicated way on the parameters of that distribu-
tion even in the simplest (two dimensional) cases. Im-
portantly, they show that while anticorrelations typically
increase the available information, positive correlations
can in certain circumstances also boost the amount of in-
formation that is available.

x=0.1

x=0.5

x=1

x=2

x=10

-1 0 1 2
α

1

2

3

4

5
Var [s]

FIG. 3. Variance of the estimator s versus α, Eq. (4). We
choose 50% correlated outcomes (r = 1/2), and plot for dif-
ferent values of asymetry (x).
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FIG. 4. Variance of the estimator sest versus α, Eq. (4). We
choose maximally correlated outcomes (r = 1), and plot for
different values of asymmetry (x).
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2

3

4
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Var [s]

FIG. 5. Variance of the estimator sest versus α, Eq. (4) We
choose the symmetric case (x = 1), and plot for different val-
ues of correlation between the outcomes (r).

In what follows, we will show that due to the prop-
erties of the Covariance matrix the Fisher Information
can be expressed simply in terms of the eigenvalues and
eigenvectors of C. This will pave the way for an exactly
solvable noise model, which we will use to address the
questions raised in section I by comparing the Fisher In-
formation of the various measurement strategies. Finally,
we will present a numerical investigation where the con-
clusions reached with the exactly solvable noise model
are shown to hold in experimentally realistic scenarios.

IV. EIGENVALUE ANALYSIS OF THE FISHER
INFORMATION

We recall that the covariance matrix C is a symmetric,
positive, semidefinite matrix. Therefore, we can make an
orthogonal decomposition of it as follows,

C = ODOT , (10)

where O is an orthogonal matrix, OT is its transpose,
and D is a diagonal matrix with eigenvalues σ2

j > 0 for
all j, since it is positive definite. We do not consider
σj = 0 for any j since that corresponds to a deterministic
outcome, which then gives infinite information (or zero
variance). It is then easy to see that the inverse of C is
given by

C−1 = OD−1OT , (11)

by direct calculation, where D−1 is a diagonal matrix
with elements σ−2

j > 0 for all j.
Substituting that decomposition to Eq. (8) gives

I =
∑
i,j

∑
k

Oi,kσ
−2
k OTk,j =

∑
k

σ−2
k

∑
i

Oi,k
∑
j

Oj,k.

(12)
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We define a vector v with components, vk =
∑
iOi,k.

This then gives

I =
∑
k

σ−2
k v2

k. (13)

Next we note that the O matrix is orthogonal, and there-
fore OOT = I , the identity matrix. Summing over both
indices we obtain∑

i,j,k

Oi,kO
T
k,j =

∑
k

v2
k =

∑
i,j

δi,k = N. (14)

Since the sum of the squares of the v vector components
must be N by orthogonality, we define a weight vector
w, whose elements are wi = v2

i /N , so that the sum of
the weights is 1. With this definition, the Fisher informa-
tion is

I = N
∑
k

σ−2
k wk. (15)

Thus, the Fisher information is given by the weighted
average of the eigenvalues of the covariance matrix, with
the weights related to the eigenvectors of covariance ma-
trix.

According to the Cramér-Rao inequality (CRI), the
variance of any unbiased estimator dest must be greater
than the inverse Fisher information [44],

Var[dest] ≥ I−1. (16)

Let us see if this is true in the case of the simple estimator
dest = (1/N)

∑
j sj . The variance is given by

Var[dest] = (1/N2)
∑
i,j

Ci,j . (17)

We can make a similar analysis as above, C = ODOT ,
to find

Var[d̂] = (1/N2)
∑
i,j,k

σ2
kOi,kOj,k. (18)

We can rewrite this as

Var[dest] = (1/N)
∑
k

σ2
kwk. (19)

The CRI can be restated in this case as the inequality∑
i

wiσ
2
i

∑
j

wjσ
−2
j ≥ 1. (20)

This relation can be proved directly with the Cauchy-
Schwarz inequality. We define a vector u1 of dimension
N with elements u1,i =

√
wiσi, and another vector u2

of the same dimension, with elements u2,i =
√
wiσ

−1
i .

The Cauchy-Schwarz inequality,

|u1 · u2| ≤ ||u1|| ||u2||, (21)

applied to these vectors gives
∑
i wiσi/σi = 1 for the

left hand side of (21), since wi are weighting factors, and
(
∑
i wiσ

2
i

∑
j wjσ

−2
j )1/2 for the right hand side of (21).

If a square root of a quantity is greater than 1, that quan-
tity is greater than 1 as well, establishing the desired re-
lation (20).

We note that a sufficient condition on C to make the
simple estimator efficient is that C’s rows (or columns)
all sum to the same number. This is equivalent to the
statement that C has an eigenvector e1 = (1, 1, . . . , 1)T .
By construction, all other eigenvectors are orthogonal to
this one, so the vector v will have components 0, except
for the first entry. Therefore, the weighting factors are
given by wj = (1, 0, 0, . . . 0). This gives the variance
(19) Var[d̂] = σ2

1/N , which saturates the CRB, as seen
from Eq. (15). In this case, σ2

1 is just the sum of any row
or column of C. As we will see in Sec. VII this result
will facilitate calculating the Fisher Information for our
simple correlated noise model.

V. INCLUDING THE WEAK-VALUE
AMPLIFICATION EFFECT

Let us now consider the weak-value case. In a weak-
value-type metrology experiment, a system is weakly
coupled to a meter via an interaction whose coupling
strength we would like to determine. We are interested
in the case where the weak value gets large, which oc-
curs when the initial and final states are nearly orthog-
onal. Experimental observations of weak-value amplifi-
cation must, therefore, involve choosing the initial and
final state to be orthogonal. When this occurs, and when
the coupling parameter g is small, one may still get a
large pointer shift, which in turn suggests the technique
might be useful as a way to measure the value of other-
wise small coupling constants g.

The interaction term can be written as the product
of some system observable, A, and an operator on the
pointer that we call P. The interaction Hamiltonian is
therefore

HI = d(t) P · A, (22)

where d(t) is a function with compact support near the
time of measurement. Usually, the interaction is approx-
imated as happening very quickly, for example: d(t) =
d δ(t), where d is the interaction strength. The pointer
operator is termed P, because the effect of HI is to gen-
erate translations in the conjugate variable (∝ d A) con-
sequently interpreted as a pointer position [45]. For the
measurement to be considered “weak” the pointer shift
must be much less than the uncertainty, (σ), in the po-
sition of the pointer, d 〈A〉 ≤ σ. In the standard weak-
value approach, the system is pre- and post-selected to be
in state |i〉 and |f〉. For an M dimensional system, there



7

areM simultaneously possible outcomes for a given pro-
jective measurement, with the probability of a given out-
come |f〉 given by γ = |〈f |i〉|2. While it is possible that
in general there may be information in the probability
of the selection [29, 46–48], in the usual approach, à la
Aharonov, the probability of selection is independent of
the parameter of interest, and all of the available infor-
mation is in the meter deflections [1, 29]. If the average
deflection in the absence of a second selective measure-
ment is given by d 〈i|A|i〉 = d〈A〉, then in the weak
limit, the Fisher information about d is multiplied by a
factor of 〈A〉2 (see Eqs. (7,8)). In contrast, in the pres-
ence of the second selective measurement, the deflection
is given by Awd, where

Aw ≡
〈f |A|i〉
〈f |i〉

, (23)

is defined as the weak value. We note that the weak-value
can be imaginary and that it is not bounded by the eigen
spectrum of the operator A. If the probability of post-
selection is made very small, the weak-value can become
very large, hence the term amplification. In this work,
we focus on real weak-values; see Refs. [27, 28, 49] for
a discussion of imaginary weak-value amplification.

If we make a weak-value amplification-type experi-
ment, with post-selection of probability γ, the resulting
data set, {si}, contains on average only γN data points
(where we recall that N was the number of data points
in the non-post-selected measurement). Whereas before
we would rescale the meter deflection by the expectation
value A in order to isolate the parameter of interest (d),
we now have to account for the amplification effect. Our
signal is boosted from d 〈A〉 to dAw and the correla-
tion matrix changes to C ′, and is now a smaller approxi-
mately γN×γN matrix. The Fisher information is given
by [27]

Iwv = A2
w

∑
i,j

[C ′−1]i,j . (24)

We can now treat this case like we did in the previous sec-
tion. We have a new covariance matrixC ′ with which we
can make a similar decomposition, C ′ = O′D′O′

T . The
dimension is reduced by a factor of ≈ γ. We make ex-
actly the same treatment as before, calling σ′2j the eigen-
values of C ′, and w′j the new weights.

The Fisher information is now given by

Iwv = A2
w(γN)

γN∑
k

σ′−2
k w′k, (25)

where the weights w′k are normalized. In order to ac-
count for the effect of the weak-value amplification, we
will later give a detailed model for the precise form
the weak-values take on. For the moment, we estimate

A2
w = 〈A〉2/γ, as is true in many weak-value imple-

mentation experiments. If that is so, we have

Iwv = N〈A〉2
∑
k

σ′−2
k w′k. (26)

We note that the amplification factor has canceled the
factor of γ which arose due to the reduced size of the
new covariance matrix. Comparing this relation to (15),
accounting for the multiplication of the Fisher informa-
tion with 〈A〉2, we see that both scale as N , and the
main change to the Fisher information is how the correla-
tions are affected by the post-selection. If the randomly
postselected events have the same type of correlations
as the non-post-selected case, then the Fisher informa-
tion is comparable - it is still a weighted average of (a
smaller number of) inverse eigenvalues. If the correla-
tions are reduced because retained measurements are fur-
ther separated in time reducing temporal correlations, for
example, then the Fisher Information could be larger and
WVA would possess an advantage over the direct mea-
surement approach. We will soon see that this is indeed
the case.

VI. OPTIMAL PARTITIONING MEASUREMENT

We next consider improving on the weak-value ampli-
fication scheme by incorporating the discarded measure-
ment results in our estimation strategy. This involves op-
timally implementing a partitioning measurement so that
all output channels and resulting correlations are used.
We will refer to this as an optimal partitioning class mea-
surement (OPM), which we can compare to the simpler
WVA case.

For an M dimensional system, there are M possible
outcomes of the second projective measurement on the
system, |f1〉, |f2〉, . . . , |fM 〉. For each of those possibili-
ties, there is a weak-value, so Aw,fj , j = 1, . . . ,M . The
distribution of events is assumed to be a multi-variable
Gaussian distribution P ({sj}|d), with mean ~µ = ~Awd
and covariance matrix C. Here, we define a vector of
weak-values, ~Aw, associated with each outcome with el-
ements Aw,fj , where j = 1, . . .M . We will now focus
on the M = 2 case.

Given N measurement outcomes, the selection tags
γN of the outcomes with one post-selection associated
with the final state |f〉, and the remaining (1 − γ)N
outcomes with the post-selection associated with the fi-
nal state |f⊥〉. We reorder the outcomes and label them
i = 1, . . . γN ; γN + 1, . . . N . This will not typically
be the temporal ordering. However, the first selection
is associated with the weak-value Aw, and the second
with A⊥w . We write the covariance matrix in 2× 2 block
form (this can be generalized for multiple partitionings
in the higher dimensional case). The probability distri-
bution is a multi-variable Gaussian distribution. It has
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mean µ = (Awd 1γN , A
⊥
wd 1(1−γ)N )T , where 1x is a

vector of x 1s. The covariance matrix in block form is

C =

(
C11 C12

C21 C22

)
, (27)

where C11 (of dimension γN×γN ), and C22 (of dimen-
sion (1− γ)N × (1− γ)N ) are the covariance matrices
associated with the two selections, and C12 = CT21 is the
correlation matrix between the selected outcomes, which
has dimension γN × (1− γ)N or (1− γ)N × γN .

The Fisher information for such a situation is given by
[44]

I = ∂dµ
T · C−1 · ∂dµ (28)

= I1 + I2 + I3 (29)

= A2
w

∑
ij

([C−1]11)ij + (A⊥w)2
∑
ij

([C−1]22)ij (30)

+ AwA
⊥
w

∑
ij

([C−1]12)ij +
∑
i′j′

([C−1]21)i′j′

 ,

where the sums run over the appropriate ranges. It is im-
portant to note that [C−1]kl, where k, l = 1, 2 refers to
the block-matrix form of the inverse of the entire C ma-
trix, not the inverses of each of the sub-blocks. Just as in
the simple example of the 2×2 covariance matrix, the to-
tal information exceeds using either selection state alone,
however, there may be cases where all the information is
in one of the selection states, and the other may be dis-

carded without any loss in variance. We will see such an
example in the next section.

It is also of interest to find the optimal estimators in
this case, using maximum likelihood methods. Each
event is filtered according to the selection state, and is
associated with a mean of that weak-value times d. The
covariance matrix is assumed to have the same values as
before (with a mean meter shift of Awd or A⊥wd) in the
weak measurement limit, but the indices are relabeled
to put the matrix into block form, associated with each
weak-value.

We can find the optimal estimator by solving for
the value of d that maximizes the log-likelihood,
logP ({sj}|d) = −(~s− ~Awd)T ·C−1 ·(~s− ~Awd)+const
with respect to the parameter d [27]. The maximum like-
lihood estimator is given by

dest =
~ATw · C−1 · ~s
~ATw · C−1 · ~Aw

, (31)

where ~s is a vector of outcomes.
For the special case of 2 selection states, with weak-

values Aw, and A⊥w , so ~Aw = (Aw 1γN , A
⊥
w 1(1−γ)N ),

we assume that each selection has outcomes 1, . . . γN ,
and γN + 1, . . . N . The inverse covariance matrix takes
the form of a 2 × 2 block matrix. We further break the
vector of outcomes in two, corresponding to each selec-
tion label, ~s = (~s1, ~s2). To give an explicit expression,
we express the estimator as a ratio, dest = N/D, in
which the numerator N is given by

N = (Aw 1γN , A
⊥
w 1(1−γ)N ) ·

(
[C−1]11 [C−1]12

[C−1]21 [C−1]22

)
·
(
s1

s2

)
, (32)

= Aw

γN∑
i=1

 γN∑
j=1

([C−1]11)ijs1,j +

N∑
j=γN+1

([C−1]12)ijs2,j

 (33)

+ A⊥w

N∑
i=γN+1

 γN∑
j=1

([C−1]21)ijs1,j +

N∑
j=γN+1

([C−1]22)ijs2,j

 ,

and the denominatorD is the Fisher information, (30).

VII. EXACTLY SOLVABLE MODEL

A. Direct case

We now consider a simplified model for correlated
noise, in which the covariance matrix corresponds to a
combination of uncorrelated noise in time (a) and per-
fectly correlated noise (c). The N × N covariance ma-

trix C is then a sum of a diagonal matrix and a matrix of
identical elements,

Cij = aδij + c, (34)

where the constant term in equation 34 reflects a shift
common to all elements of the data set (e.g., a system-
atic error), which is drawn from a zero-mean gaussian
distribution with a variance of c.

Equation 34 has a simple eigensystem, because the
characteristic equation for the eigenvalues, det(C −
σ2I) = 0 may be solved by substituting σ2 = cσ′2 + a,
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and noting that σ′2 solves for the eigenvalues of the ma-
trix of all 1s. The latter matrix has one eigenvalue of
N , and the rest 0. The first normalized eigenvector is
e1 = (1, 1, . . . , 1)/

√
N , corresponding to the N eigen-

value, and the otherN−1 eigenvectors corresponding to
the 0 eigenvalue are constructed orthogonal to e1.

This result indicates that the eigenvalues of C are

σ2
j = (Nc+ a, a, a, . . . , a), (35)

with the same eigenvectors mentioned above. The pos-
itive semidefinite condition requires that c ≥ −a/N .
We can now apply the procedure outlined above by writ-
ing the orthogonal matrix formed from the orthonormal
eigenvectors as

O = (e1, e2, . . . , eN ). (36)

The vector vk =
∑
iOi,k =

∑
i(ek)i may be computed

for this model by using the orthonormality conditions of
the vectors ej . This is because the sum runs down the
column of each unit basis vector. Using the properties∑

i

(e1)i =
√
N, e1 · ej =

∑
i

(ej)i = 0, (37)

for every unit vector with j 6= 1, we find

v = (
√
N, 0, 0, . . . , 0), w = (1, 0, 0, . . . 0), (38)

for this model. Noting the Eq. (14) is correct, we find the
Fisher information (15) with the shifted mean is

Ic = 〈A〉2 N

Nc+ a
. (39)

We can compare this to the case of uncorrelated noise, in
which

C̃ij = (a+ c)δij , (40)

and where the Fisher Information is

Iuc = 〈A〉2 N

c+ a
. (41)

We see the effect of the correlations is to contribute to
the denominator such that in the limit of N → ∞ the
information (39) saturates at 1/c.

It is interesting to compare this result with the equal
weighting estimator, Eq. (17). Since there is only one
non-zero weight, the result is

〈A〉2Var[d̂] =
1

N2

∑
ij

(aδij + c) =
a

N
+ c = 〈A〉2I−1.

(42)
We see in this case, the improved estimation strategy
does not help reduce the variance beyond simply aver-
aging the data. This result is easily predicted from the

structure of the covariance matrix as previously shown.
As c → −a/N , the information diverges, or the vari-
ance vanishes. On the other hand if the correlations are
positive (c > 0), the information is invariably reduced.
This reduction is easily understood as being the result
of an unknown offset (c) which is not reduced by in-
creasing the number of measurements (N ) (in the limit
of N →∞, the variance limits to c rather than zero, see
also Ref. [50]).

B. Weak-Value case

We can apply the same model as above to the Fisher in-
formation in the weak-value case. In this case, along with
the measurement of the parameter of interest, a second
partitioning measurement is performed, which divides
the first set of measurements into a retained and a dis-
carded partition. As we saw before d〈A〉 → Awd. How-
ever, with this particular noise model, the covariance ma-
trix is exactly the same as in the non-post-selected case
(because every event has correlation c with every other
event, and auto-correlation a). Consequently, we can
just apply the above results to Eq. (24) to find the post-
selected Fisher information to be

Iwv = A2
w

γN

a+ γNc
. (43)

Replacing A2
w = 〈A〉2/γ, the post-selection probability

cancels in the numerator, and we find the same Fisher
information (39), but with the effective change of

c→ γc. (44)

That is, post-selection reduces the size of the correlation.
However, the resulting advantage depends on the kind of
noise: If c < 0, the post-selection increases the variance,
whereas if c > 0, the post-selection reduces the variance
of the optimal estimator. The later is in accordance with
the findings of Ref. [42] for this model. We note that, as
before, there is no difference between the optimal esti-
mator and the equal-weighting estimator.

We note that while γ can be made arbitrarily small,
the Fisher information is bounded by the necessity of
sampling some high-information content events, selected
from the covariance matrix elements a + c, giving the
bound

Iwv ≤ 〈A〉2
N

a+ c
. (45)

This result represents an enormous suppression of the
detrimental effects of noise accompanied by a significant
reduction in the size of the data set. The WVA technique
is able to recover the performance of the conventional
method in the uncorrelated noise limit by simply select-
ing a small enough γ. If for some experimental reason, γ
is bounded to be larger than some minimum, γmin, gives
a practical limit to the noise reduction (44).
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C. Using the other selection - optimal partitioning
measurement

We now apply the results of Sec. VI to our model to
see how much the Fisher information may be improved
by the optimal partitioning method, which involves opti-
mally weighting both the “post-selected” and the “post-
selection rejected” partitions of the data set in order to
estimate the parameter of interest. Comparing this ap-
proach to the WVA strategy will tell us how much infor-
mation was discarded by the post-selection step in WVA.
The Fisher information may be explicitly evaluated in
our exactly solvable model. This is because the exact
inverse of matrix (34) is given by

C−1
ij =

(a+ cN)δij − c
a2 +Nac

, (46)

as can be checked by direct calculation, CC−1 = I . It
is straightforward to see that summing over both indices
in (46) returns the Fisher information (39). The Fisher
information with weak-value amplification, Eq. (30) in
this special case, has the exact form:

I =
aN [γA2

w + (1− γ)(A⊥w)2] + cγ(1− γ)N2(Aw −A⊥w)2

a2 +Nac
.

(47)

Term 1

Term 2

Term 3

Total

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ϕ

0.2

0.4

0.6

0.8

1.0
ℐ

FIG. 6. Different contributions to the Fisher information in
Eq. (30) versus φ, in units of N/a, the uncorrelated Fisher in-
formation. Term 1 (I1) is proportional to A2

w; term 2 (I2) is
proportional to (A⊥

w)2, and term three (I3) is proportional to
AwA

⊥
w . We take N = 100, c/a = 0.5.

In order to compare the different methods, we adopt
the standard model of the weak-value, taken from [28]:

Aw = − cot(φ/2), A⊥w = tan(φ/2), γ = sin2(φ/2),
(48)

where φ/2 is the overlap angle between |f〉 and |i〉, the
pre- and post-selected states. This model leads to the

simplification of the three terms defined in (30) as

I1 =
aN cos2(φ/2) + cN2 cos4(φ/2)

a2 +Nac
, (49)

I2 =
aN sin2(φ/2) + cN2 sin4(φ/2)

a2 +Nac
, (50)

I3 =
2cN2 sin2(φ/2) cos2(φ/2)

a2 +Nac
. (51)

The sum of these three terms is

Is =
N

a
. (52)

Remarkably, the total Fisher information is now indepen-
dent of the value of φ, and is larger than the uncorrelated
Fisher information. Assuming c > 0, we recall that just
using the one selection state had the effect of reducing
c → γc. We see here that adding in the other selection
state and their correlation allows us to eliminate the ef-
fect of c entirely. In Fig. 6, we show the various contribu-
tions to the combined Fisher information using both out-
put selections. The Fisher information (30) comes from
the three terms from each sub-block. We note that if it is
the case that c < 0, then it is clearly advantageous to use
the direct measurement scheme. Below we tabulate the
Fisher Information of the three approaches we consider
in white and slow noise limits.

Approach — Uncorrelated Noise — Correlated Noise

FI Direct N
a+c

N
a+Nc

FI WVA N
a+c

N
a+c

FI OPM N
a+c

N
a

Table 1: In this table, the Fisher Information is
summarized in the uncorrelated and correlated noise

limits for the three different strategies we consider: the
direct approach, the weak value approach, and the

optimal partitioning approach. In this figure, N is the
number of measurements carried out, (γN is the
number of retained measurements in the WVA

approach), a is the variance of the white noise, and c is
the variance of the unknown systematic. From the figure

we can see OPM removes all effect of c, while WVA
reduces its effect by a factor of N , recovering exactly
the variance achievable in the absence of correlations.

Summarizing the chart above, we have found that all
three approaches are identical in terms of measurement
performance in the uncorrelated noise limit. Whichever
is experimentally easier to implement, therefore, has the
advantage. In the correlated noise limit, WVA has a clear
advantage over the direct approach, confirming the work
of Feizpour, Xing, and Steinberg [42]. What Feizpour
et. al. did not consider, however, is that unlike in the
white noise limit, once there are correlations between
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measurements, retaining all partitions and the correla-
tions between them becomes advantageous. In fact, in
the same regime where WVA has a real quantitative ad-
vantage over the conventional approach, it turns out to be
slightly inferior to the optimal partitioning method.

D. Limiting optimal estimators

We see from the above analysis that with the OPM
approach, the selection angle φ simply changes how the
information is distributed in the various outcomes. It is
instructive to focus on the form of the optimal estimators
(32) in the two extreme limits for our exactly solvable
model: γ � 1, the weak-value amplification limit, and
γ = 1/2, the balanced limit, in order to understand how
the optimal partitioning approach is able to completely
eliminate c.

In the very unbalanced limit, the term proportional to
Aw dominates the Fisher information. The weak-values
are given approximately by Aw ≈ −2/φ, A⊥W ≈ φ/2,
and the asymmetry is given by γ ≈ φ2/4. We find the
optimal estimator to be

dest ≈ dwvest −
Awcγ

a+Nc

 γN∑
j=1

s1,j +

N∑
j=γN+1

s2,j

 ,

(53)
where the weak-value estimator dwvest is defined as

dwvest =
Aw
N

γN∑
j=1

s1,j . (54)

The total (correlated) optimal estimator is just the weak-
value estimator, plus another term involving the sum of
all the data, whose average is approximately 0, and its
prefactor vanishes as c → 0. The additional term is able
to account for the (known) correlations in the system and
make a further suppression of the variance, at the cost of
having to process all collected data.

We now turn to the balanced case, where φ =
π/4, γ = 1/2, and the weak-values are Aw = −1,
A⊥w = 1. In this case, the weighting prefactors in front of
the collected data cancel out, and we find the estimator

dbest =
1

N

N/2∑
j=1

s2,j −
N∑

j=N/2+1

s1,j

 , (55)

that is, we simply subtract the data from output channel
1 from that of output channel 2, and divide by N . This
result (55) is identical to the “background subtraction”
technique commonly used in experimental labs to elim-
inate correlated noise. We discuss this in more detail in
the next section.

VIII. BACKGROUND SUBTRACTION

Background subtraction typically involves partitioning
measurement outcomes into two types: measurements of
signal plus background noise, and measurements of just
background noise. By comparing the two partitions, un-
known offsets or errors in calibration can be corrected.
Background subtraction can also be used to suppress
temporally correlated noise by sampling the noise back-
ground at least once per correlation time and subtracting
off the slowly evolving offset. Unfortunately, optimiz-
ing how often to sample the background noise is usually
a hard problem. This is because usually both white and
slow noise are present, and oversampling the background
(sampling more than once per correlation time) ceases
to reduce either. Optimizing the amount of background
subtraction (as opposed to normal measurements) is only
possible with knowledge of the correlation time of the
noise. This makes it preferable, when possible, (as it is
in our example), to alternate the sign of the signal instead
of chopping it on and off. In this variant of background-
subtraction, measurement outcomes are partitioned into
two types: measurements of a background noise plus sig-
nal, and measurements of background noise minus sig-
nal. By subtracting the two partitions and dividing by
two (just like in section III), we can eliminate any slow
noise present while also averaging down the white noise.

While we have considered partitioning measurements
using post-selection, it is possible to achieve the same
result by alternating the preparation. It is worth noting
that the additional information gained by this more com-
plex use of the partitioning measurement is very marginal
compared to WVA. Furthermore, we believe there may
be situations where alternating the preparation is experi-
mentally challenging. For example, in certain optical im-
plementations of WVA, where different degrees of free-
dom of the same photon can be used to encode signal
information and post-selection information, background
subtraction can occur at much higher rates than signal
preparation [3].

IX. NUMERICAL INVESTIGATION

We will now retun to our original (and more experi-
mentally relevant) noise model. This noise model repre-
sents a familiar scenario in a laboratory. Measurements
are made sequentially in time and are compiled into a
data set {si}. As before, a measurement outcome si
can be decomposed into the parameter of interest, d, and
a Gaussian distributed, zero-mean, random variable, xi,
such that

si = d+ xi, (56)
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where i = 1, 2, ..., N . We take the covariance matrix to
be

Ci,j = aδi,j + ce−|i−j|∆t/τ . (57)

Here, ∆t sets the time between subsequent measure-
ments, τ represents the correlation time of the noise, and
the ratio of a to c sets the relative amount of white noise
to slow noise (except in the limit where τ → 0 where all
noise is white). For simplicity we will use the unitless
quantity η = τ/∆t (the “average” number of correlated
measurements) to represent the correlation time of the
noise.

This noise model captures an experimentally common
scenario, wherein there is a white noise floor (repre-
sented by a) and some correlated noise arising due to
experimental imperfections (represented by c). Over-
coming technical noise of this kind is quite challenging,
hence the interest in a technique that is robust against it.

We have already considered two limiting cases of this
generalized noise model. In the “white noise limit,” η →
0 and measurement outcomes are uncorrelated. In the
opposite limit, η →∞ and the covariance matrix reduces
to the directly solvable one from section VII,

Ci,j = aδi,j + c. (58)

We refer to this as the “slow noise limit.” This limit rep-
resents taking the correlation time of the noise to in-
finity resulting in a scenario where estimation error is
increased by some unknown offset, c. We have previ-
ously treated the two limits of our noise model for all
three measurement approaches considered (direct, WVA,
and OPM). We expect the effects of the correlations to
grow as the correlation time (or η) increases, smoothly
connecting our two limits for all the measurement ap-
proaches considered. Finding the Fisher Information in
this intermediate regime, however, is challenging due to
the complex structure of the covariance matrix. In order
to find the Fisher Information, we generate large covari-
ance matrices with the appropriate structure and invert
and sum them while varying the correlation time. This
allows us to smoothly connect the two limits. In fig-
ure 7, the Fisher Information for both the WVA method,
the direct method, and background subtraction (equiv-
alent to OPM) is plotted as a function of the average
number of correlated measurements, η. In each sce-
nario, the Fisher Information is found through construc-
tion of the covariance matrix that would be produced by
the measurement design and then inverted and summed.
For comparison, the inverse variance of the mean asso-
ciated with the equal-weighting estimator is also found
analytically and plotted in solid lines. In the two limits
(η → 0 and η → ∞) the two estimators are equivalent.
In the intermediate regime, the equal-weighting estima-
tor is no longer strictly optimal. It deviates only very
slightly from the Fisher Information as a result of the fi-
nite size of the covariance matrices we consider (due to
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FIG. 7. The Fisher information for the direct method Id, the
partitioning WVA method Iwva, and the partitioning balanced
method (corresponding to background subtraction) I50/50 are
plotted for different values of dimensionless correlation time
η = τ/∆t. The inverse variance of the equal-weighting esti-
mator is also plotted for the three approaches considered. In
this figure N = 1000, a = 1, c = 0.05, and γ = .005.
The knee in the performance of the WVA approach occurs at
η = 1/γ, where retained measurement outcomes begin to be-
come correlated again.

the boundaries of our data set certain measurements are
correlated to more measurements than others). In figure
7, as expected, as η → 1, the Fisher information in the di-
rect method degrades swiftly, while the Fisher Informa-
tion of the weak-value method is unaffected. Only after
η approaches 1/γ, (γ was arbitrarily chosen to be 1%),
does the performance of the weak-value method begin to
diminish. If γ is fixed, then in the limit of η → ∞ the
minimum variance becomes a/N+γc. Even in the inter-
mediate regime, with weak correlations, post-selection
suppresses the detrimental effects of the correlations by
increasing the time between retained measurement out-
comes.

These results confirm the work of Feizpour, Xing, and
Steinberg who argued that WVA-based measurement es-
timation strategies afforded an advantage in a correlated
noise limit over direct methods. They also agree with
Ferrie and Combe’s observation [24] that WVA does not
always achieve globally optimal performance. We see
that the OPM/BS technique slightly outperforms WVA
as soon as the correlation time becomes comparable to
the time between measurements. This difference can be
substantial if the minimum probability of post-selection
is large; however, if it is on the order of 1

γ it is quite small.
In figure 7 the relative size of a and c that represent the
white and slow portions of the noise was chosen in or-
der to visually differentiate the different approaches. In
typical situations, c is much less than a, for otherwise an
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experimentalist would be easily able to detect it in prepa-
ration for the experiment. If, however, the value of c is on
the order of a/N , then an experimentalist would have to
spend more time characterizing the noise then perform-
ing the experiment - an unlikely scenario in all but the
most heroic metrology experiments. A realistic value for
c is therefore on the order of a/N , and we see that in this
scenario the additional advantage afforded by optimally
using all the data is

∆I =
N

a
− N

a+ c
≈ 1

a+ a/N
. (59)

This cost in precision limits to 1/a as N → ∞ and is
equal to the information which would be gained by a sin-
gle additional measurement in this scenario. These nu-
merical results confirm that the conclusions reached us-
ing our simplified model for correlated noise hold gener-
ically in more realistic laboratory situations with noise
environments with time decaying correlations.

X. CONCLUSIONS

We have investigated how the introduction of a sec-
ond partitioning measurement affects parameter estima-
tion. Using a realistic model for additive, Gaussian, time-
correlated noise we found that, for all the cases consid-
ered, introducing a second partitioning measurement af-
fords an advantage in the Fisher Information over a di-
rect measurement method (no second partitioning mea-
surement) once the correlation time of the noise becomes
longer than the measurement rate. Furthermore, we have
found that if one or more output channels from the par-
titioning measurement are filtered (corresponding to a

WVA-like post-selection), the majority of this advan-
tage is retained. Thus, WVA can help dramatically sup-
press the detrimental effects of slow noise, recovering the
performance achieved in the white-noise limit by effec-
tively decreasing the correlations between retained mea-
surement outcomes. The informational cost of the post-
selection step is studied by comparing the Fisher Infor-
mation of the WVA approach with an optimal partition-
ing measurement scheme, which utilizes all the data and
correlations between partitions. The cost of discarding
all but one partition is found to be related to the ratio
of the magnitudes of the slow and white noise. We ar-
gue that in a typical laboratory situation, this cost will
be comparable to the information gained by performing
a single extra measurement and is, therefore, negligible.
An analysis of the estimators used by OPM leads us to
the realization that in the balanced case, OPM is equiva-
lent to probabilistic background subtraction. This insight
provides a unified framework for understanding when
partitioning-class measurements, and specifically weak-
value amplification, can be useful. In conclusion, in ex-
perimental settings with time-correlated noise, if back-
ground subtraction or other optimal partitioning mea-
surement methods are technically challenging to imple-
ment or if a substantially reduced data set is desirable,
WVA vastly outperforms conventional measurement ap-
proaches and is near-optimal.
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