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We study the breaking of the discrete time-translation symmetry in small periodically driven
quantum systems. Such systems are intermediate between large closed systems and small dissipative
systems, which both display the symmetry breaking, but have qualitatively different dynamics. As
a nontrivial example, strongly different from the familiar case of parametric resonance, we consider
period tripling in a quantum nonlinear oscillator. We develop theoretical methods of the analysis
of period tripling, including the theory of multiple-state resonant tunneling in phase space with the
account taken of the involved geometric phase. For moderately strong driving, the period tripling
persists for a time, which is exponentially long compared to all dynamical times. This time is further

extended by an even weak decoherence.

I. INTRODUCTION

The breaking of translation symmetry in time, first
proposed by Wilczek [1], has been attracting much at-
tention recently. Such symmetry breaking can occur only
away from thermal equilibrium [2]. It is of particular in-
terest for periodically driven systems, which have a dis-
crete time-translation symmetry imposed by the driving.
Here, the time symmetry breaking is manifested in the
onset of oscillations with a period that is a multiple of the
driving period tp. Oscillations with period 2¢r due to si-
multaneously initialized protected boundary states were
studied in photonic quantum walks [3]; period-two oscil-
lations can also be expected from the coexistence of Flo-
quet Majorana fermions with quasienergies 0 and hn/tp
in a cold-atom system [4]. The onset of broken time-
symmetry phases was predicted and analyzed [5-10] in
Floquet many-body systems, and the first observations of
such phases in disordered systems were reported [11, 12].

In classical systems coupled to a thermal bath, on the
other hand, the effect of period doubling has been well-
known. A textbook example is an oscillator modulated
close to twice its eigenfrequency and displaying vibra-
tions with period 2t [13]. The oscillator has two states
of such vibrations; they have opposite phases, reminis-
cent of a ferromagnet with two orientations of the mag-
netization.

The goal of this paper is to establish a relation be-
tween the symmetry breaking in the quantum coherent
and incoherent regimes. Of interest in this respect are
almost isolated driven quantum systems with a few de-
grees of freedom. They are intermediate between large
coherent systems and dissipative dynamical systems, and
the transition between different regimes can be carefully
examined. A driven nonlinear quantum oscillator is a
good example of such an “intermediate” system. It is
also of interest on its own, as it models diverse physical
systems, from trapped electrons to Josephson junctions
to electromagnetic and nanomechanical modes [14, 15].

It follows from our analysis that an oscillator can dis-
play period doubling not only in the incoherent, but also
in the coherent regime. However, of primary interest to
us is period tripling. In a disordered system, it was ob-
served in Ref. [12] for an elegant periodically repeated
pulse sequence.

As we show, period tripling displays a number of pecu-
liar features, which are generic for multiple-period tran-
sitions but do not occur in period doubling. They are
manifested both in the presence of dissipation and in the
quantum coherent regime. In a dissipative system, in
contrast to period doubling (cf. [16]), the period-tripling
transition cannot generically occur via the Landau-type
symmetry breaking as it would require continuous merg-
ing of the symmetric (zero-amplitude) and three broken-
symmetry states.

In the quantum coherent regime, period tripling re-
veals the nontrivial features of resonant tunneling be-
tween multiple states, which are degenerate by symme-
try and are centered at points in phase space rather than
coordinate space. Such tunneling is qualitatively differ-
ent from the familiar resonant tunneling in a symmetric
double-well potential [17] and its analysis requires new
means, which we develop. We find that the tunneling
is affected by a geometric phase, which comes from the
discrete rotation symmetry in phase space. Combined
with oscillations of the wave functions in the classically
forbidden region, it results in crossing of the eigenvalues
of the effective Hamiltonian with varying parameters, see
Fig. 1(b,e). To make the analysis complete, we establish
the conditions for the transition between the symmetry
breaking in the coherent and incoherent limits.

The paper is organized as follows. In Sec. II we intro-
duce multiple-period Floquet states of a driven oscillator,
discuss the rotating wave approximation (RWA), relate
the eigenvalues of the Hamiltonian in this approxima-
tion and the quasienergies, and introduce the operator of
discrete rotations in phase space. In Sec. III we formu-
late the problem of tunneling between the minima of the



RWA Hamiltonian function in phase space. In Sec. IV we
calculate the symmetry-related phase difference of the in-
trawell functions, the geometric phase. In Sec. V we find
the tunnel splitting of the lowest eigenvalues of the RWA
Hamiltonian with the account taken of the oscillations of
the wave functions in the classically forbidden region. In
Sec. VI we discuss the onset of period tripling. We also
show how dissipation leads to a transition from the coher-
ent interwell tunneling to incoherent interwell hopping.
The details of the calculations are given in Appendices A
and B. All results of this paper, except for the sketches
Fig. 1(d) and Fig. 3, were posted in [18].

II. MULTIPLE-PERIOD FLOQUET STATES.

Coherent quantum dynamics of a driven system is con-
veniently described by the Floquet (quasienergy) states
Ye(t). Such states are eigenstates of the operator T,
of time translation by tp, Ti,9:(t) = Y(t + tp) =
exp(—ietp /h)e(t). For a broken-symmetry state ¥ ¢,
with an integer K > 1, time translation by tp is
not described by the factor exp(—ictp/h). Instead,
Vien(t + Ktp) = exp(—Kiegtr/M) YK e (t). We call
Vi e a period-K Floquet state. It is an eigenstate of
TKtF = (TtF)K, but not Ttp-

Multiple-period states naturally occur if the number
of states of the system N — oo. For such systems, the
quasienergy spectrum is generally dense, cf. [19]. Then
one can find states ¥. and ., with the difference of the
quasienergies |¢ — &’| infinitesimally close to fuwp /K with
integer K > 1 (or to hwpk/K with k < K); here wp =
27 /tp is the driving frequency. A linear combination
a).(t) + &’ (t) is a period-K state. The expectation
value of dynamical variables in such a state oscillates with
period Ktr. However, generally the functions 1. and .
will be of a very different form, making the oscillation
amplitude exponentially small.

The situation is different for an oscillator driven close
to an overtone of its eigenfrequency wy, i.e., for wp ~
Kuwy. Classically, such an oscillator in the presence of
dissipation can have coexisting states of subharmonic
vibrations with period 27K /wp, which differ in phase
by 2n/K, cf. [20]. In the quantum coherent regime,
the oscillator has sets of quasienergy states where the
quasienergy differences within a set are very close to
hwr /K in a broad parameter range. These states result
from tunnel splitting of the states symmetrically posi-
tioned in phase space and localized near the minima (or
maxima) of the Hamiltonian function of the oscillator in
the frame rotating at frequency wr/K, see Fig.1(c,d).

As we show below, for some interrelations between the
parameters, for pairs of the localized symmetric states
in phase space the tunnel splitting becomes exactly zero.
Respectively, in the lab frame the quasienergy difference
between such states is exactly equal to hwp/K. Off-
diagonal matrix elements of the dynamical variables cal-
culated for the corresponding states are large, making
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FIG. 1. (a) Quasienergy levels of a driven oscillator. The
results are for the drive frequency wr close to 3wo, f is the
scaled driving amplitude. For f = 0 the states from top to
bottom are the lowest Fock states of the oscillator |0) (red),
|2) (green), and |1) (blue). The same color coding is used in
panels (b) and (e). The dimensionless Planck constant for
motion in the rotating frame is A = 0.3, see Eq. (8). (b) A
multiplet formed when the same quasienergies are calculated
mod (fwr/3). (c) The scaled Hamiltonian function g of the
driven nonlinear oscillator, Eq. (10), for f = 1.2; @ and P
are the coordinate and momentum in the frame rotating at
frequency wr /3. (d) The orbits for several low-lying intrawell
states of the Hamiltonian g for f = 3.5; the values of g on the
orbits are in excellent agreement with the Bohr quantization
condition. (e) Crossing of the scaled quasienergies g*) corre-
sponding to the tunnel-split lowest intrawell states in (d) and
calculated mod (hwr/3); the lowest (green), middle (blue)
and top (red) curves in the range 3 < f < 3.1 are the higher-
field continuations of the middle, lowest, and top curves in
(b) for f < 0.4. A superposition of the states with crossing
g™ is a period-3 state. The dotted curves are the analytical
results (19).

a linear combination of the states a directly observable
coherent period-K state of the oscillator.

In a way, for a parametric oscillator (K = 2) the oc-
currence of a coherent period-2 state could be inferred
from the results [21] where vanishing of the tunnel split-
ting was found. However, this state was not identified
there and the time symmetry breaking was not addressed.
Sets of states separated by =~ hwp /K were found numer-
ically for K > 1 for a special model of an oscillator in
the interesting paper [22]; the considered states did not
break time symmetry. Tunnel splitting in phase space
was carefully studied for modulated cold atom systems,
cf. [23, 24] and references therein. Recently it was also
found numerically for such systems for states with pe-



riod mwp [25]; in contrast to the work [3-10], the results
[25] do not describe quantum-coherent breaking of time
translation symmetry.

A. The rotating wave approximation and the
rotation operators in phase space

We study a most commonly used model of a nonlinear
oscillator, the Duffing model, which describes a broad
range of the systems mentioned in the Introduction [14,
15, 26]. Its Hamiltonian reads

1 1 1
Hy = -p* + zwod® + =vq*, (1)

H=Hy+ Hp, 5 5 1

where ¢ and p are the oscillator coordinate and mo-
mentum. The term Hrp = Hp(t) describes the driv-
ing. In the analysis of parametric resonance, one chooses
Hr = —%q2F coswrt with wr ~ 2wy. Here we consider

Hp = —%q3Fcostt, W ~ 3wg.

Our results apply also for additive driving Hp =
—qF' coswpt, if one replaces F' — 3yF’/8w3; this re-
lation may be useful for an experimental implementation
of period tripling.

If the driving is not too strong, so that the expecta-
tion values of Hp, v¢*, and wp (wp — Kwo)q2 are small
compared to the expectation value of w2q?, the oscilla-
tor dynamics can be described in the rotating wave ap-
proximation (RWA) [27]. For an oscillator driven close
to the Kth overtone of its eigenfrequency, one makes
a canonical transformation U(t) = exp(—ialawpt/K),
where a and a' are the ladder operators, [a,a’] = 1. The
RWA Hamiltonian Hgrwa is obtained by time-averaging
the transformed Hamiltonian H(t) = UT(t)H(t)U(t) —
iUt (U (1),

Ktp
Hrwa = (KtF)—l/o dtH (t). (2)

Clearly, Hrwa is independent of time.

1. Relating quasienergies to the eigenvalues of Hrwa

If ¢(t) is an eigenfunction of Hrwa, i-e., Hrwa¢ = E¢,
then the corresponding wave function in the lab frame is

P(t) = U(t)o(t), and

Typtp(t) = e /MU (L 4 tp)(t) = e Fr /M Ngap(t).
(3)

We call E the RWA energy. The operator N introduced
in Eq. (3) is

Nk = exp(—2miata/K), [Nk, Hrwa] = 0. (4)

The relation [Ny, Hrwa| = 0 follows from the expression
H(t 4 tp) = N;(ﬁ(t)NK for the transformed (but not
period-averaged) Hamiltonian combined with Eq. (2). It
was obtained in Ref. 22 using the specific form of Hrwa -

Operators N¥ with k = 0,1,..., K — 1 form a cyclic
group. Then the eigenfunctions ¢(*) of N are

Ngo® = exp(—2mik/K)p®), 0<k<K—-1. (5)
Functions ¢*) are also eigenfunctions of Hrwa. From
Egs. (3) and (5), a wave function ¢(*) with RWA energy
E®) corresponds to a Floquet state with quasienergy

e® = (E® 4 hwpk/K)mod(hwr). (6)

As we will see, for sufficiently strong drive the eigen-
states of Hrwa form multiplets with close eigenvalues
E®) . The quasienergies of different states in the multi-
plets differ by ~ hwp /K.

Equation (5) allows one to write the functions ¢(*) in
terms of the Fock states of the oscillator |n). These states
are eigenstates of the operator afa, a'aln) = n|n). From
Eq. ((E)), only one out of each K Fock states contributes
to o',

o) =3 "CH|Kn + k).

This relation significantly simplifies numerical diagonal-
ization of Hrwa, as the coefficients C’ék) with different %
are uncoupled. Most importantly, it shows that the RWA
energy levels of states with different £ can cross when the
parameters of the system vary. This crossing is seen in
Fig. 1. In contrast, the RWA energies of states with the
same k avoid crossing.

2. The RWA Hamiltonian for period tripling

We now consider the explicit form of Hrwa for our
system. The oscillator motion in the rotating frame is
conveniently described by the coordinate ) and momen-
tum P, which are related to g and p as

U (8)]q + i(K fwr)plU(t) = C(Q + iP)er/K. (1)

The parameter C' is the scaling factor that makes @ and
P dimensionless,

. K _Q+iP
[QvP] _Z)\7 >\_ wFCQa - \/ﬁ . (8)

The dimensionless Planck constant A and the parameter
C for K = 2 are given in [28]. For period tripling (K =
3), C = (8wpdw/9v)'/?, where dw = %wp — wp is the
frequency detuning from the resonance, |dw| < wp. This
scaling is convenient for vy dw > 0; the opposite case will
be considered elsewhere. In what follows, for convenience

we assume dw,y > 0.



It is immediately seen from Eqs. (4) and (8) that Ng
are rotation operators in the (Q, P) plane:

NLQNg = Qcos(21/K) + Psin(2r/K),
N} PNg = —Qsin(2r/K) + Pcos(2r/K)  (9)

For the chosen scaling, the Hamiltonian Hgwa has the
form Hrwa = [8wZ(6w)?/277)]§(Q, —iAdg) with

9(Q.P) = {(Q*+ P*—1)* = 1 /(@* ~3PQP), (10)

where f = F/(8wpydw)'/? is the scaled amplitude of
the driving. Function g(Q, P) is shown in Fig. 1(c). This
function is the dimensionless Hamiltonian function in the

rotating frame. It has three minima, three saddle points,
and a local maximum at @ = P = 0.

III. MULTI-WELL TUNNELING IN PHASE
SPACE

Period tripling provides a platform for studying generic
features of tunneling between degenerate states centered
at points located in phase space. As seen from Fig. 1(c),
function g(@, P) has a three-fold rotational symmetry in
the (@, P)-plane. This symmetry follows from Egs. (4)
and (9), since N3 is an operator of rotation by the angle
—27/3 in phase plane.

The minima of g(Q, P) lie at the vertices (Qum, Pm) of
an equilateral triangle; we count m = 0, 1, 2 counterclock-
wise and set m = 0 for the vertex with P() = 0; the enu-
meration implies that the states m = —1 and m = 2 are
the same. The values of Q,,, P, are given in Appendix
A. For not too weak driving, the three lowest eigenstates
of the operator § = g(Q, —iAJdg) are tunnel-split super-
positions of the three lowest degenerate intrawell states
in Fig. 1(d). We denote these intrawell states by ¥,,
(m=0,1,2).

One can think of a function ¥,, as an eigenfunction
of the operator §,,, which approximates operator ¢ for
Q@ close to @Q,, and P close to P,,. In particular, in its
central part ¥, is an eigenfunction of the operator § ex-
panded to the second order in Q — Q,,, P — P,,. Then
Jm ¥ = go¥,,; the eigenvalue gq is the same for all wells
by symmetry, cf. Eq. (13). In the explicit form gq is given
by Eq. (A3). From Eq. (9), Ni§mN3s = Gmi1. This is
because rotation of @, P by the angle —27/3 in Eq. (9)
is equivalent to rotation of Q,,, P, by the angle 27/3.
Then §m—1N3Wp = Na(Nigm-1N3) ¥ = Ngpm ¥y, =
goN3V,,,, and thus N3V, is the eigenfunction of the op-
erator §,,_1, which shows that NsV,, = W¥,, 1.

If our system is in a state ¥,,, and the tunneling can be
disregarded, the time symmetry is broken. Indeed, from
Egs. (3), (7), and (9), time translation by ¢p transforms

v, — N3V, =V, (11)

From Eq. (11), to come back to state ¥,,, one has to in-
crement time by 3tp. The relation U, 41 = N:;r v, gives
the phase shift between functions ¥,,41 and ¥,,. Since
N3 is a rotation operator, this phase shift is geometric in
nature, see below.

Smce (i) the minima of the effective Hamiltonian g are
located in phase space, not in the coordinate space, and
(ii) there are three equal-depth minima, resonant tun-
neling between the states WU, differs from the familiar
tunneling in a symmetric double-well potential [17]. To
find the tunnel splitting of the lowest eigenvalues of § , we
write the wave functions V,,, in the coordinate represen-
tation, ¥,, = ¥,,(Q). The three normalized eigenstates
#*) of § with th.e smallest eigenvalues ¢*) (k = 0,1,2)
have the standard form of the tight-binding theory

(k) v,, —27‘r11€7ri/37 12
where §(®) = 2Re[(Vo|¥;)exp(—27ik/3)] < 1. We

choose ¥(Q) to be real and normalized. Since ¥, 11 =
N:I\IJm, we have U5(Q) = ¥1(Q). Due to the symmetry,
the functions ¢*) can be shown to be orthogonal.

The wave functions W¥,, are Gaussian near the cor-
responding extrema of ¢(Q, P) in phase space, see Ap-
pendix A and Eqs. (A4) and (A15) below. However, to
find the tunnel splitting it is necessary to find the tails of
U,,, in the classically inaccessible regions. In solving this
problem one has to take into account that the effective
Hamiltonian § is not quadratic in the momentum P.

We calculate the eigenvalues ¢(*) using the relation

Q«
| aa[s2 @) - awo(@)
~o(Q)(g — 9" (@] =0, (13)

with go being the value of § in the lowest intrawell state in
the neglect of tunneling, cf Fig. 1(d), go ~ min g(Q, P) +
Awmin /2, where wpin is the eigenfrequency of vibrations
about a minimum of ¢(Q, P), which is determined by
the curvature of g(Q, P) near the minimum; the explicit
values of go, Qm, Pm, and wpi, are given by Egs. (Al)
and (A2). The difference g*) — gy is exponentially small
for a small dimensionless Planck constant \.

An important distinction from the standard analysis of
resonant tunneling [17] is that the upper limit @, of the
integral (13) is not known in advance. This is because
the Hamiltonian g does not have the symmetry @ — —Q
of the standard symmertic double-well potential [17]. To
choose Q.. we note that the functions V¥,,(Q) fall off expo-
nentially away from their respective maxima @Q,,. Thus
Wy and V¥, 5 fall off in the opposite directions in the clas-
sically forbidden region between @)y and @;. We choose
Q. within this region in such a way that ¥ 1 2(Q.) are
all of the same order of magnitude. The integral (13)
should be independent of Q..

The WKB expressions for the wave functions ¥g 1 (Q)
in the region between Q1 and Q) are given in Appendix



A,
U,.(Q) = C’m(wpg)_l/QeiSm(Q)/)‘ (m=0,1),
aQSm = (_1)mP(Q>7 g(Q7P) = go- (14)

Here, S,,,(Q) is the classical action and P(Q) is the clas-
sical momentum given by equation ¢(Q,P) = go; we
choose the branch Im P < 0 with the smallest [Tm P|. Tt
is critical that, because the Hamiltonian function ¢(Q, P)
is quartic in P, P(Q) has a branch point Qp given by
Eq. (A8), which lies deep in the interval (@1, Qo) where
ImP # 0. For Q; < Q < Qs, P(Q) has both imaginary
and real parts. The positions of the minima and Qg are
shown in Appendix in Fig. 3.

The real part of the action S,,(Q) in the classically
inaccessible region leads to oscillations of the wave func-
tions in this region. These oscillations lie behind the
crossing of the levels g*) calculated with the account
taken of the interwell tunneling.

IV. THE GEOMETRIC PHASE

The normalization constants C,,, in Eq. (14) are deter-
mined by the wave functions inside the wells, where the
functions are large. If we choose ¥ real, the parame-
ter Cy is fixed. The rotation symmetry (11) shows that
U, = N?T\I'O, and therefore the parameters Cy and C4
are not independent. The relation between them is de-
termined by a phase ;. This phase can be found using
the explicit Gaussian form of the intrawell wave functions
obtained in Appendix A. To make the reading easier, we
give them here, too, and include the explicit expression
for the prefactor of ¥y,

Uo(Q) = (V7lg) P exp[—(Q — Qo)?/212),  (15)

(I; = Pwmin/(Q3 + 1)]'/?), and

U1 (Q) = C1 intra exp[(tP1(Q — Q1) — %%1(62 - Q1)%)/ N,
CY intra = [Re%l/ﬁ)\]l/4 exp(iby). (16)

We note that the Gaussian-width parameter in Wq is
complex-valued, s = [2wmin +1V3(fQo — 1)]/3Q2. The
prefactor C' intra contains the geometric phase ;. This
parameter is written in the form, which is consistent with
the form of the Gaussian distribution (A15), except for
the unknown at this time phase 6;. The “intrawell” nor-
malization factor C intra differs from the coefficient C4
that determines the behavior of the function ¥; on its
tail in the classically inaccessible region.

To calculate 61, we introduce an auxiliary coherent
state |a) and consider the overlap integral of this state
with the wave functions ¥( ;. By construction ala) =
ala), and thus N3|a) = |aexp(—27i/3)) [we recall that
N3 = exp(—2miata/3)]. Using that ¥y = N3¥;, we ob-
tain a formal relation (a|¥g) = (@ exp(27i/3)| V). If we

now choose the state |a) in such a way that it strongly
overlaps with ¥, whereas |aexp(27i/3)) strongly over-
laps with Wy, this relation will allow us to find 6; by
calculating the corresponding overlap integrals using the
explicit expressions (A4) and (A15). Writing |«) in the
coordinate representation as

1 L2 2 [@ — (2)0)!/2a]?
|04>=(7T)\)1/4€XP{—2(|04| - )—2/\}

and setting o = Qp/Vv/2\, we obtain

1
01 = 5 arg(%l + 1) + P1Q1/2)\ (17)
The geometric phase 6; has a large term o A~!. It also
contains a term independent of A, which must be kept,
as it determines the phase of the oscillations of the wave
function in the classically forbidden region.

V. LEVEL SPLITTING

The explicit expressions for the wave functions ¥, (Q)
allow us to calculate the level splitting using Eq. (13).
For Q. well inside the interval (Q1,Q0) , we have

fg U2(Q)dQ = —1. Taking into account that overlap-
ping of the functions ¥q »(Q) with ¥ (Q) is exponentially
small, we rewrite Eq. (13) as

Qx Q.
g® — go ~ l dQ U1 (Q)g¥o — / dQ Uog¥1(Q)
x exp(—2kmi/3) + c.c. (18)

It is important that the product ¥o(Q)¥1(Q) has two
terms. Omne of them is o exp{i[So(Q@) + S1(Q)]}. It
smoothly depends on @, because Sy(Q) + S1(Q) = const
for Q1 < Q < Qo, cf. Eq. (14). The other term is
ox exp{—i[SF(Q) — S1(Q)]}, it is a fast oscillating func-
tion of ). The contribution of this term to the integrals
(18) is exponentially small and exponentially sensitive to
the change of Q). on the scale o« A\. Therefore this term
should be disregarded.

Calculating the integrals in Eq. (18) by parts, care-
fully accounting for the branching of P(Q), and using
Eq. (14) we find that Q. indeed drops out from the ex-
pression for the level splitting. The result is Eq. (B1).
It gives the splitting in terms of the complex classi-
cal momentum P(Q) calculated for the scaled energy
9(Q,P) = ming + Awnin/2. It is convenient to express
the splitting in terms of the momentum that does not
contain the effective Planck constant A\. The correspond-
ing transformation is discussed in Appendix B. The result
reads

") — go = Crame™ 3/ cos( A1 By — 27k /3). (19)

In contrast to the tunnel splitting in a symmetric double-
well potential [17], the splitting (19) has not only an ex-
ponential, but also an oscillating factor. The tunneling



exponent Siy, and the tunneling phase @y, are given by
the expression

Q1
(I)tun + iStun = / dQIPcl(Q/) + )\Ktun + )\01 (20)
0

Here, P, is the momentum on the instanton trajectory
that goes from the m = 0 to the m = 2 - minimum of
9(Q, P); 9(Q, Py) =ming, Re Py < 0, and Im P, < 0.

Parameter Ki,, gives terms of order O()\) in the argu-
ments of the exponent and the cosine in Eq. (19). The
calculation in Appendix B shows that

QB Q1
Koun = / dQ Q. Qo) + /Q dQKQ, Q) (21)

where k(Q, Qm) = [Wuin(9p9)7" — i1Q — Q| /2 [the
subscript “cl” indicates that the derivative is calculated
for P = Pg; the explicit expression for k(Q, Q) is given
in Eq. (B2)]. Equation (21) is free from divergences. We
note that Im K, can be considered as a part of the pref-
actor, but Re Ky, gives a shift of the phase of the level
splitting and therefore is very important for determining
the parameter values where the quasienergies of different
states differ exactly by fuwr /3, see below.

Because of the branching of the momentum on the in-
stanton trajectory, the prefactor in Eq. (19) has a more
complicated form than for tunneling in a double-well
potential [29]. However, it is also oc h'/2; explicitly,
Ctun = *2>\3/4wmin[(QB - Ql) (QO - QB) \% Re 1 /ﬂ-lq]l/2~

The explicit expression (19) is in an extremely good
agreement with the numerical results obtained by solv-
ing the Shrédinger equation g(Q, —iAdg)p™) = g (k).
This can be seen from Fig. 1(e). Both the numerical
values of the amplitude of the splitting and the phase
agree with the analytical results; see Fig. 2. Equation
(19) simplifies in the limit of comparatively strong drive,
f > 1. The leading order terms in Si,, and in Py, are
quadratic in f. Numerically, the asymptotic regime is
reached for comparatively large f, where the tunneling
amplitude becomes very small.
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FIG. 2. Left panel: the amplitude of the tunnel splitting

of the scaled RWA energy levels, which is given by Eq. (19)
without the oscillating factor. Right panel: the phase of the
tunnel splitting. Black solid lines: the results of the numer-
ical solution of the eigenvalue problem for the Hamiltonian
g(Q, —iAdqQ); red dotted lines: Eq. (19). The results refer to
A=0.3.

VI. PERIOD TRIPLING

Equation (19) is the central result of this paper. Tt
shows that the splitting of the eigenvalues of Hgrwa 0s-
cillates as the system parameters vary. Two eigenvalues
cross each time A™1®q,,, = (n+n’/3)7 with integer n,n’
(In’'| > 1). Such crossings are seen in Fig. 1(b) and (e).
Given that the RWA energy E®*) « ¢ it follows from
Egs. (3) and (5) that an oscillator in a superposition of
the states with equal ¢(®) displays period tripling. Sim-
ilarly, when in the case of a parametric oscillator the
quasienergy difference is exactly hwr/2 [21, 30], a su-
perposition of the corresponding states is a period-two
state.

From the explicit expression (19), period tripling oc-
curs in a broad range of the field amplitudes and fre-
quencies. Importantly, the level crossing is robust with
respect to the terms disregarded in the RWA. Such terms
can only lead to a small shift of the crossing points.

Where the eigenvalues ¢(*) do not cross, they stay ex-
ponentially close to each other. Respectively, the quasies-
nergy difference is exponentially close to fiwg/3 on the
scale hdw or hFQ/wF \/m Similar triples of states result
from the tunnel splitting of the excited intrawell states
in Fig. 1(d).

For the oscillator in a superposition of states ¢(*) and
d)(k/) with ¢(®) £ g(k/), the expectation values of the
variables still have period 3tr, if measured over time
smaller than the exponentially long time |Qz/|~!, where
Qe = A Hg® — gD6w, | Qi /dw| < 1. The Fourier
spectra of the expectation values have components at fre-
quencies |(k—k")wp /34 Qx| If the driven oscillator has
charge, it can radiate; the radiation spectrum displays a
peak shifted from wp/3 by |Qpir|-

As seen from Fig. 1(b), a superposition of states ¢*)
and qb(k/) with close ¢®) and g(k/) can be prepared by
ramping up the driving field, if initially the oscillator
is in a superposition of Fock states |n) and |n) with
|n — n/|(mod 3) # 0. There is no threshold in the field
amplitude F' for preparing a multiple-period state: by
varying the frequency detuning of the field dw one can
obtain such state for an arbitrarily small F'. Moreover,
starting from a judiciously prepared linear combination
of the three lowest Fock states of the oscillator, one can
prepare the system in any of the lowest intrawell states.
Similarly, it actually follows from the results of Ref. [30]
that there should be no threshold for preparing period-
two states of an oscillator parametrically driven close to
twice its eigenfrequency.

A. From coherent to dissipative period tripling.

Even weak dissipation of the oscillator can qualita-
tively change its dynamics. It breaks the coherence of
the intrawell states ¥,,. If the dissipation rate I exceeds
the exponentially small frequencies |Qx|, instead of co-



herent resonant tunneling between the wells of g(Q, P),
the oscillator performs incoherent interwell hopping, the
process analogous to the well-known quantum diffusion.
Phenomenologically, by symmetry arguments, the hop-
ping is described by the balance equation for the state
populations p.,m,

Pmm = W Z Pmrms — 2W pm.

m'#m

Since the intrawell states are the broken-symmetry states
of period-three vibrations that differ only in phase, hop-
ping corresponds to a slip of the vibration phase by 27 /3.
On times small compared to the reciprocal hopping rate
W~ the oscillator stays in an intrawell state. This is the
exact analog of the classical behavior where, as is well-
known for a parametric oscillator, the multiple-period
state is seen on times short compared to the reciprocal
rate of interstate switching. We emphasize that, for a
longer observation time, all coexisting states are seen and
there is no time-symmetry breaking.

The rate W is exponentially sensitive to the system
parameters. In the standard quantum diffusion theory
Pmm is the diagonal matrix element of the density matrix
p on functions ¥,, and W Qik,/ I', where one should
use the maximum value of |Qg |; clearly, W < |Qpi | <
I' [31, 32]. However, the actual situation for a driven
oscillator is more complicated.

The full analysis of interwell hopping should take into
account dissipation-induced transitions to the excited in-
trawell states, which occur even for T' = 0 [15]. The rate
of interwell transitions in highly excited states is high.
However, their population is exponentially small. As a
result, the condition W < T holds. The balance equa-
tion in this case describes the evolution of the well pop-
ulations rather than the populations of the lowest states
in the wells. The analysis of this process is beyond the
scope of this paper.

For a small decay rate I', a quantum oscillator initially
in the ground state can be brought into the intrawell
states by adiabatically ramping up the field to reach small
|| < T and then waiting for a time longer than I'~1.
The intrawell states will be equally populated. How-
ever, repeated measurements separated by 6t < W1
will show the oscillator in the same state, a signature
of the broken time symmetry. In contrast, and this is
an important feature of period tripling, a classical oscil-
lator would stay in the zero-amplitude state when the
field is ramped up, because the classical driving force is
x ¢>F; the zero-amplitude state does not merge with
broken-symmetry states for K > 2, in contrast to the
parametric oscillator.

VII. CONCLUDING REMARKS

A promising type of oscillators for observing period
tripling are modes of microwave cavities coupled to
Josephson junctions. Recently there have been studied

systems where inelastic Cooper pair tunneling leads to
an effective driving of a cavity mode that nonlinearly
depends on the mode coordinate and has a tunable fre-
quency 2eV/h determined by the voltage V across the
Josephson junction [33-35]. There are also other pos-
sibilities to resonantly excite multiple-period modes in
microwave cavities [36].

In conclusion, we studied a quantum oscillator driven
close to an overtone of its eigenfrequency and showed
that such a small quantum system can display coherent
multiple-period dynamics. Relaxation with the rate ex-
ceeding the exponentially small tunnel splitting breaks
the coherence. The system can be then observed in one
of the broken-symmetry states, which are localized in
phase space and have a lifetime exponentially longer than
the relaxation time. Studying the previously unexplored
case of period tripling allowed us to develop a general
approach to finding the tunnel splitting for systems with
multiple degenerate states and to revealing and evalu-
ating the geometric phase between multiple degenerate
states in phase space. It also demonstrated the qualita-
tive difference between the transitions to multiple-period
states in the coherent and dissipative regimes. The re-
sults fill in the gap between the topologically protected
broken-symmetry Floquet states in extended systems and
multiple-period states in dissipative systems.
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Appendix A: The Intrawell Wave Functions of the
RWA Hamiltonian

The scaled Hamiltonian function g(@, P) of the driven
oscillator in the rotating wave approximation (RWA) is
given by Eq. (10) and is plotted in Fig. 1(c). It has three
symmetrically located minima at points (Qy,, P,) with
m =0,1,2, see Fig. 3,

Q=5 [/ +(FP+ 9], Q=Q:=-u/2
Po=0,  Pr=-P=v3Q/2, (A1)

From the explicit form of the function g(Q, P) we find the
minimal value of this function gni, and the dimension-
less frequency of classical vibrations about a minimum

1/2
Wmin — (det [a%iajjg(xh .’L'Q)])

culated at a minimum of g),

(the derivatives are cal-

Goin = 15 FQu(QR+3),  min = [3fQul@3 + 1],
(A2)



The frequency wpiy is the same for all minima. So is also
the lowest eigenvalue gy of the Hamiltonian §(Q, —iAdg)
in the neglect of tunneling. To the lowest order in the
dimensionless Planck constant A it corresponds to the
lowest eigenvalue of a harmonic oscillator with frequency

Wmin,

(A3)

90 = Gmin + %)\Wmin~

1. The wave function ¥y (Q)

Near the minimumr(Qo, Py) we have ¢(Q, P) &~ gmin +
H(Q3+1)(Q—Qo)*+2 fQoP?. The wave function ¥o(Q)
is Gaussian for |Q — Qo] < |@Q1 — Qo] and can be chosen
to be real,

Wo(Q) = (Valy) "2 exp[—(Q — Qu)* /213, (A4)
with I, = [Awmin/(Q2 + 1)]'/2 being the localization
length.

We are interested in the tail of ¥y for @ between the
minima of ¢g(@,P), ie., for Q1 < @ < Qo — Iy The
WKB form of ¥y(Q) is given by Eq. (14) of the main
text, which we here write explicitly,

Wo(Q) = Co(idpg) /% exp[iSe(Q) /],

Q ~
So(@) = /Q AQPQ).

(A5)

with P(Q) given by equation g(@, P) = gy and dpyg cal-
culated for P = P(Q).
For the branch of P that we are interested in

P(Q)?=AQ) +BY*Q), A =1-Q*-2fQ,
B(Q) = A*(Q) — 4[9(Q,0) — go], (A6)

with Im P < 0 for Q < Qq; we keep the correction oc A
to secure matching to Eq. (A4).

For @ close to Qp and Q < Qo — 4, we have A(Q) <
0, B(Q) > 0, and A(Q) + B'/?(Q) < 0. Therefore P(Q)
is purely imaginary and the same is true for the function

dpg = P(Q)B'*(Q) (A7)

with idpg > 0. Accordingly, ¥o(Q) exponentially decays
with increasing Qo — Q. The prefactor Cy is determined
by matching Eqgs. (A4) and (A5) for @ close to Qo but

Qo — Q> 1,
Co = (Wmin/2v/me) /2.

As @ decreases, first B(Q) becomes equal to zero at
point @ g, see Fig. [3. To the leading order in A < 1

R~ Qo— zf- (A8)

Q1,P1

Qo,Po
@B

Q2,P;

FIG. 3. Positions of the minima (Qm, Pm) (m = 0,1,2) of
the function ¢g(@, P) and of the branching point Q. The
wave function ¥o(Q) monotonically decays away from Qo in
the region Q > @B, whereas in the region Q1 < Q < @p the
decay is accompanied by oscillations.

For still smaller @), A(Q) changes sign to positive. This
happens for Qg > Q > Q1 = —Qo/2. Importantly,

A(Q1) = P2 >0, B(Q1)=2\wmin .

In the explicit form, the imaginary part of the momen-
tum in the classically forbidden region is

(A9)

mPQ) = - [-A@ - 8] (@s<a<q)

mPQ) = - [+ 1) - 4] " V2 (@< ).
(A10)

As discussed in the main text, the level splitting cru-
cially depends on the oscillations of the wave function
under the barrier. These oscillations start with the de-
creasing @ at @ = @Qp. Near Qp we have B(Q) =~
00B(QB)(Q—QB), whereas A(Qp) < 0. Therefore Py ~
—i|A(Qp)['/* + (i/2)|0B(Q5)/AQB)'*(Q — Qp)'/?
for small @ — @p > 0, ie., @p is a branching point of
P(Q). Going around this point in the complex plane [17],
we find that for Q < @Qp

Uy (Q) ~ 200‘8Pg|_1/2 exp[—Im Sp(Q)/A] cos Pp(Q),
Do(Q) = Pp(Q) + 25(Q). (A11)

Here, the phase ®((Q) comes from the real part of the
action,

Q N
B(Q) = A~ /Q Q' ReP(Q)'),

. 1/2
ReP(Q) =~ [(4% +|B])"/2+ 4] " v2, (A1)
whereas ®((Q) comes from the prefactor, with account
taken of going around @) in the complex plane,

1 . ~ ~ T

(@) = —5 arcsin [ReP(Q)/IP(Q)] — T

The choice of ReP and ImP in Eqs. (A10) and (A12)

corresponds to writing B'/? = i|B|'/2 in Eq. (A6) for P?
in the region where B(Q) < 0.

(A13)



The WKB approximation (A5) breaks down near @1,
as B(Q) becomes ~ A and |0pg| becomes small. However,
we do not need to calculate the wave function ¥4(Q) in
this region, as seen from Eq. (13).

2. The wave function ¥, (Q)

The minimum of g(Q, P) at (Q1, P1) corresponds to a
nonzero momentum P; > 0. Therefore the wave func-
tion W, centered at (1 is complex valued even near its
maximum. Calculating ¥, involves three steps: finding
it inside the well of ¢(Q, P) near Q1, P;; finding the ge-
ometric phase, that relates ¥; and ¥, given that ¥g is
chosen in the form (A4), and then finding the tail of ¥,
in the classically forbidden range.

a. The intra-well wave function

Using the explicit form (A1) of Qq, P;, to the second
order in 0QQ = Q — Q1,0P = P — P; we write the Hamil-
tonian near (@1, P1) as

0(Q.P) % g+ S(1+ FQOIP + (14 5£Q0)5@°

+ (V3/4)(fQo — 1)[6QSP + h.c.].
(A14)

The expression for ¥y for [§Q| < Qo — @1 then reads

W1(Q) = 1w 50 [(P10Q — 5016Q%) /],
s1 = [2wmin +1V3(fQo — 1)]/3Q5. (A15)

The Gaussian-width parameter 3¢ is now complex-
valued. So is also the prefactor C' intra, which has a
phase factor exp(if;). This phase is calculated in the
main text.

b. The wave function V1 in the classically forbidden region

In the case of the wave function ¥y, Eq. (14) for the
wave function in the classically forbidden region reads

U1(Q) = C1(idpg) /2 expliS1(Q) /A,

Q -
5(Q) = — / Q' Q).

Qi+l

(A16)

where P(Q) is given by Eqgs. (A10) and (A12), ly =
[A/Re 31]'/? . Equation (A16) corresponds to choosing
BY2(Q) = i|B(Q)|'/? for B(Q) < 0 and to dpg calcu-
lated for P(Q) = P(Q), i.e., dpg = PBY2. For Qp —

Q> Q — Q1> 1 we have —P(Q) = P +i»1(Q — Q1),
as expected from Eq. (A15). By matching Eqgs. (A15)
and (A16), we find

Ci = (wmin/Q\/ﬂe)l/z exp(if]),

01 =61 — A" [(1,%/2)Im e, — PiL . (A17)
Because we count the action Sy off from @ + l;, there
emerges an extra phase factor in C; due to the oscillations
of the wave function inside the “potential well” centered

at (Ql,Pl).

Appendix B: Tunnel splitting of the scaled RWA
energy levels

Using the explicit form of the operator g(Q, —iAdq) we
obtain from Eq. (18)

g®) — gy = —2XCy|C1 | exp(—Sx/A) cos ((I;}‘ — QI;W) ,
Qo—l4 B
si=- [ aQumP(@).
Q1+
Qs )
o) — / dQReP(Q) + N0}, (B1)

Q1+

This expression is somewhat inconvenient, as P is cal-
culated with account taken of the term oc A. It is easy
to see that P(Q) ~ Pu(Q) + %)\wmin/Gpg, where P, is
given by the value of the classical momentum calculated
for A = 0. This approximation breaks down near @y, Qg
and ()1 where Opg goes to zero. Similar to Ref. 29, for
Qo > Q > @Qp one can write

Q _ Q
/Q Q' PQ) = [ Q' [Pa(Q) + (@' Qu)

Qo
i lO—Qol ix i
AR R A 1] A A T
2 5T, TR TG
Wmin {
k(Q,Qm) = (B2)

2PA(Q)BY*(Q)  21Q—Qml’
Here, B.(Q) = (16£/3)(Q — Q1)*(Q — Qp) is the value

of B(Q) calculated for A\ = 0. A similar transformation
can be made for fgﬁ_l; dQ’JS(Q') in the region Q1 < @ <
Qp-

We now have to consider the vicinity of Q. Formally,
the quantum correction to P (Q) diverges at Q. How-
ever, the divergence is integrable. Therefore Eq. (B2)
applies all the way till Q@ = @Qp, and one can use the
value of Qp given by Eq. (AS).

The final result for the difference of the scaled RWA
energies is Eq. (19) of the main text.
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