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Quantum entanglement and nonlocality are inequivalent notions: there exist entangled states that
nevertheless admit local-realistic interpretations. This paper studies a special class of local hidden
variable theories, in which the linear structure of quantum measurement operators is preserved. It
has been proven that a quantum state has such linear hidden variable representations if, and only
if, it is not entangled. Separable states are known to admit nonclassical correlations as well, which
are captured by quantum discord and related measures. In the unified framework presented in this
paper, zero discordant states are characterized as the only states that admit fully consistent clas-
sical probability representations. Possible generalization of this framework to the quasi-probability
representation of multipartite quantum states is also discussed.

Composite quantum systems can exhibit correlations
between subsystems that have no classical counterpart.
Characterizing nonclassical correlations is of both funda-
mental and practical importance.

Among various types of quantum correlations, entan-
glement is the most prominent. In the formalism of quan-
tum mechanics, entangled states are formally defined as
the states which can not be decomposed into a convex
combination of product forms. This definition has a
clear operational motivation: entanglement can not be
created by local operations and classical communication
(LOCC) [1, 2]. Another peculiarly nonclassical feature of
compound quantum systems is nonlocality [3], e.g., there
exist correlations between outcomes of separated mea-
surements that can not be explained classically, in terms
of local realistic theories. Such correlations are usually
witnessed by violations of certain Bell inequalities [4] sat-
isfied by any local hidden variable (LHV) theories. A fun-
damental question which is natural to ask is whether en-
tanglement is merely a manifestation of nonlocality. In-
deed, entangled states may lead to violations of suitable
Bell inequalities. However, it has been known for some
time that the notions of entanglement and nonlocality
do not coincide: there exist entangled states that nev-
ertheless admit LHV interpretations [5–8]. Such states
can not directly violate any Bell inequalities. Albeit it
is known that these states do present some nonlocal fea-
tures, termed hidden nonlocality [9–12], if processed by
certain operations prior to the Bell experiments, we are
still far away from a complete understanding of the gap
between entanglement and non-locality.

On the other hand, the situation becomes more sub-
tle in the realm of separable states. Though unentan-
gled, separable states can exhibit nonclassical behav-
iors as well. These correlations are captured by quan-
tum discord [13, 14] and related measures [15]. It has
been known that quantum discord also provides advan-
tages in various quantum-information-processing tasks,
e.g., quantum deterministic quantum computation with
one quantum bit (DQC1) [16, 17], where quantum dis-
cord is created via the consumption of coherence of the
subsystems[18]. Quantum discord is originally defined as
the misalignment of two classically equivalent expressions

for mutual information. Since the date it was discovered,
there has been significant progress towards understand-
ing the nature of quantum discord. However, an alge-
braic characterization in terms of classical LHV theories
similar to the case of quantum entanglement is still miss-
ing. Such a characterization would substantially help to
clarify the fundamental aspects of quantum discord that
contribute to its non-trivial quantum-informational re-
sources.

In this paper, we introduce a special class of LHV rep-
resentations that serves as a unified framework to charac-
terize both entanglement and discord. In such represen-
tations, the linear structure of quantum measurement op-
erators is preserved. It is first identified that LHV mod-
els for entangled states, when extant, must be non-linear.
By examining the algebraic structure of the underlying
axiomatic probability theory, it is proven that only sepa-
rable states with zero quantum discord admit fully con-
sistent classical interpretations. The physical significance
of linearity, as well as possible generalization of this lin-
ear framework to the quasi-probability representation of
multipartite quantum states are also discussed. (For sim-
plicity, results in this paper are presented for bipartite
systems only. It is straightforward to generalize to multi-
partite systems.)

In order to give a more formal discussion of the LHV
representations, it is worthwhile to introduce some basics
of the axiomatic framework of classical probability theo-
ries. We adopt here the measure-theoretic formulation as
laid out in the fundamental work of Kolmogorov [19, 20].
In this framework, classical probabilities are underlain by
a measure space (Ω,F , µ), where Ω is a non-empty set
which is called the event space; F is a set of the subsets
of Ω; and µ is a non-negative set function defined on F .
An element A ∈ F represents a physically measurable
event, whose probability is given by the probability mea-
sure µ(A). The test space F must contain the empty set
and be closed under complementary and unions. If these
conditions are fulfilled, F is called a σ-algebra [21]. The
σ-algebra structure, which has been largely overlooked
in the study of LHV theories, is an intrinsic property
that any classical probability theories must satisfy. As
will be shown in the following, it has significant physical
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consequences.
Since an event A ∈ F is a subset of the event space Ω,

one may define a corresponding Boolean-valued function
χA
ξ , the indicator function, to indicate which elements

it contains; namely, χA
ξ = 1 if ξ ∈ A, and χA

ξ = 0 if
ξ 6∈ A. In this manner, the probability of event A can be
re-expressed as an integral:

µ(A) =

∫
Ω

dµξχ
A
ξ . (1)

Each indicator function represents a deterministic
(sharp) measurement of an event. However, in practice
there exist indeterministic measurements, i.e., one can
measure a combination of different events {Ai} with un-
certainty specified by the conditional probabilities {pi},
where pi > 0 and

∑
i pi 6 1. In this case, the probability

of this indeterministic measurement is given by

∑
i

piµ(Ai) =
∑
i

pi

∫
Ω

dµξχ
Ai

ξ ≡

∫
Ω

dµξfξ, (2)

where fξ =
∑

i piχ
Ai

ξ is the corresponding response func-

tion or measurable function [22]; it has the property that
fξ ∈ [0, 1], ∀ξ ∈ Ω. The class of all response functions on
Ω is denoted as T (Ω).
For composite bipartite systems, an LHV description

requires that each local subsystem has its own under-
lying event space and σ-algebra. The composed event
space is given by Cartesian product Ωa × Ωb ≡ {(ξ, η) :
ξ ∈ Ωa, η ∈ Ωb}, where a and b are the labels for the two
subsystems. The joint probability distribution is then
represented by a joint probability measure. In quantum
mechanics, a single measurement event is represented by
an effect, which is a positive Hermitian operator that
appears in the range of a positive operator valued mea-
surement (POVM) [23]. Denote E(H) the set of all effects
on the Hilbert space H. We say that a bipartite quantum
state ρ on Ha ⊗Hb admits an LHV model if there exists
a probability measure µ defined on a bipartite product
measurable space (Ωa × Ωb,Fa × Fb), such that for any
quantum measurement Ma ∈ E(Ha) and M b ∈ E(Hb)
on subsystems a and b, respectively, there exist corre-
sponding measurable functions fa(Ma) ∈ T (Ωa) and
f b(M b) ∈ T (Ωb), which reproduce the probability of the
joint quantum measurement:

tr(ρMa ⊗M b) =

∫
Ωa×Ωb

dµξ,ηf
a
ξ (M

a)f b
η(M

b). (3)

The mappings f i : E(Hi) 7→ T (Ωi), i ∈ {a, b} are usually
not required to be convex-linear [24]. In fact, all known
LHV models for entangled states break the linear struc-
ture. When both of the mappings are convex-linear, we
call the corresponding classical probability representation
a linear LHV representation. The physical significance
of linearity will be discussed by the end of the present
paper. The following result first establishes a connec-
tion between quantum entanglement and such linear rep-
resentations, which has a non-trivial implication to the

framework of quasi-probability representation as will be
outlined in this paper. This result can be viewed as a
generalized version of the multipartite extension[25, 26]
of the celebrated Gleason’s theorem[27].
Lemma 1. A quantum state of a bipartite system has

a linear LHV representation if, and only if, it is separable.
Proof. The “if” part is trivial. Suppose the state

ρ has a separate form ρ =
∑

piρ
a
i ⊗ ρbi ; one immedi-

ately sees that tr(ρMa⊗M b) =
∑

pi tr(ρ
a
iM

a) tr(ρbiM
b)

[5]. To prove the “only if” part, assume that there ex-
ists a joint probability measure µξ,η on a product space
(Ωa ×Ωb,Fa ×Fb), such that any product measurement
on the quantum state ρ can be represented as a joint clas-
sical (indeterministic) measurement given by Eq. (3). By
definition, fa

ξ ∈ [0, 1] is a convex-linear functional. Us-

ing the same technique described in Ref. [28], it can be
uniquely extended to a linear map on the space of all
bounded Hermitian operators. As a consequence of the
Riesz representation theorem, there is a unique positive
Hermitian operator valued functional F a

ξ on the Hilbert
space of subsystem a, such that

fa
ξ (M

a) = 〈F a
ξ ,M

a〉, (4)

where 〈A,B〉 = tr(A†B) is the Hilbert-Schmidt inner
product. The same procedure also applies to f b

η , which
is then represented by a unique operator valued func-
tional F b

η on system b. For identity operators Ia and

Ib,
∫

dµξ,η fa
ξ (I

a)f b
η(I

b) = tr(ρIa ⊗ Ib) = 1, therefore

fa
ξ (I

a) = f b
η(I

b) = 1. Consequently, F a
ξ and F b

η are both
unit-trace operators, which are legitimate as quantum
states. Eq. (3) can be expressed as

tr(ρMa ⊗M b) =

∫
dµξ,η〈F

a
ξ ,M

a〉〈F b
η ,M

b〉

=tr

∫
dµξ,ηF

a
ξ ⊗ F b

ηM
a ⊗M b.

The above equation is valid for any effect, which implies
that

ρ =

∫
Ωa×Ωb

dµξ,ηF
a
ξ ⊗ F b

η . (5)

The separability of ρ can be seen from the fact that it is
non-negative for any entanglement witness. �

The above result shows that all separable states ad-
mit LHV interpretations with every local quantum mea-
surement being represented by a corresponding response
function. However, the σ-algebra, which supports these
response functions, has not been examined yet. Given
a LHV representation, it is possible that there are fun-
damental measurements, i.e., measurements that corre-
spond to indicator functions, which do not have counter-
parts in the quantum description. This is not acceptable
in a consistent classical probability theory, where the test
space represents fundamentally measurable events. The
fact that classical mechanical systems are described by
variables that are “not hidden, but in principle measur-
able” has been noticed and pointed out by Bennett et
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al. [29]. We call an LHV representation tight when each
measurable subset in its σ-algebra is physically testable,
i.e., for each indicator function there exists a correspond-
ing quantum measurement that corresponds to it. To
phrase this mathematically, for tight representations, the
mapping E(H) 7→ T (Ω) covers the set of all indicator
functions. Intriguingly, not all separable states admit
such fully consistent classical descriptions in the sense of
tight representations. The following theorem establishes
a connection between tight LHV representations and zero
quantum discord.
Theorem 2. A quantum state of a bipartite system

has a tight linear LHV representation if, and only if, it
has a null quantum discord.
Before presenting the proof, it is worthwhile to briefly

discuss the notion of quantum discord [13, 14]. Correla-
tions between two quantum systems are captured by the
mutual information

I(a : b) ≡ S(ρa) + S(ρb)− S(ρab), (6)

where S(ρ) = − tr(ρ log ρ) is the Von Neumann entropy.
Another way to qualify the mutual information is to first
perform a POVM on one system, e.g., {Ma

i } on system
a, which collapses system b to a set of conditional states
{ρbi} with the corresponding probabilities {pi}. This in-
duces the second measure of mutual information

J(b|{Ma
i }) ≡ S(ρb)−

∑
i

piS(ρ
b
i ), (7)

the last term of which is the conditional entropy. The
classical counterparts of the above two expressions are
equivalent. However, as was identified in Ref. [13, 14],
they are generally not equal in the quantum case. The
second expression is measurement-dependent and no
greater than the former one. Their minimum difference
with respect to all POVMs is defined as the quantum
discord:

D(b|a) ≡ I(a : b)− max
{Ma

i
}
J(b|{Ma

i }), (8)

which is asymmetric under the exchange a ↔ b. We say
a state ρ has a null quantum discord when both D(b|a)
and D(a|b) are zero. It has been proven [30, 31] that a
necessary and sufficient condition for D(b|a) = 0 is the
existence of decomposition

ρ =
∑
i

piΠ
a
i ⊗ ρbi , (9)

where pi > 0, {Πa
i } is a complete set of rank-1 projec-

tion operators on system a, and ρbi are density operators
of system b. The equivalent condition for D(a|b) = 0
can be similarly induced by decomposing ρ with rank-1
projection operators on system b. State (9) is called the
classical-quantum state, which is a fundamental building
for measures of quantum correlations[32]. Its nonclassi-
cal nature can be viewed from various perspective[33–37].

The result of theorem 2 provides an algebraic characteri-
zation by directly comparing with the classical probabil-
ity theory.
Proof of theorem 2. We first prove the “only if” part.

Suppose a state admits a classical probability interpreta-
tion given by Eq. (3). Consider first the space (Ωa,Fa).
For any two elements ξ, ξ′ ∈ Ωa, if there exists a mea-
surable subset ∆ ∈ Fa such that it does not contain ξ
and ξ′ simultaneously (without losing generality we as-
sume ξ ∈ ∆ and ξ′ 6∈ ∆), one can find a corresponding
indicator function χ∆

ξ defined on Ωa such that χ∆

ξ = 1

and χ∆

ξ′ = 0. Since ∆ is physically measurable, accord-
ing to Lemma 1, there exists a corresponding effect Ma

∆

satisfying Eq. (4), which leads to the constraints

〈F a
ξ ,M

a
∆
〉 = χ∆

ξ = 1 and 〈F a
ξ′ ,M

a
∆
〉 = χ∆

ξ′ = 0.

The first of the above equations implies that the sup-
port of F a

ξ is contained in the 1-eigenspace of effect Ma
∆
,

while the second implies that the support of F a
ξ′ lies in

the kernel of Ma
∆
. Therefore, the supports of F a

ξ and F a
ξ′

are orthogonal subspaces of Ha. Conversely, if ξ and ξ′

always appear together in any measurable subset in Fa,
then any measurable function, as a linear combination of
indicator functions, would produce the same value on ξ
and ξ′. According to Eq. (4), 〈F a

ξ ,M
a〉 = 〈F a

ξ′ ,M
a〉 for

any effect Ma, thus F a
ξ = F a

ξ′ . Hence, any two operators

in {F a
ξ } are either equal or orthogonal. Since Ha is finite

dimensional, there is a finite number of distinct orthog-
onal states, which we label as {F a

i }. One can draw the
same conclusion and get a finite set of orthogonal states
{F b

j } for system b.

The tensor product operators {F a
i ⊗ F b

j } span a sub-

space ofH(Ha⊗Hb), whereH(H) denotes the real Hilbert
space of Hermitian operators on H, equipped with the
Hilbert-Schmidt inner product. Since ρ lies in this sub-
space, it can be expanded in terms of the orthogonal basis
{F a

i ⊗ F b
j } with corresponding expansion coefficients

pij = 〈ρ, F a
i ⊗ F b

j 〉 =

∫
Ωa×Ωb

dµξ,η〈F
a
ξ , F

a
i 〉〈F

b
η , F

b
j 〉 > 0,

where the Boolean-valued functions 〈F a
ξ , F

a
i 〉 and

〈F b
η , F

b
j 〉 are indicator functions. The composite state

(5) is then reduced to

ρ =
∑
i,j

pijF
a
i ⊗ F b

j . (10)

F a
i and F b

j can be further decomposed into rank-1 pro-
jection operators. According to the sufficient condition
introduced in Eq. (9), it is concluded that ρ has a null
quantum discord.
On the other hand, for a null quantum discordant state

with decomposition ρ =
∑

i,j pijΠ
a
i ⊗Πb

j , one can define

an event space Ωa ×Ωb ≡ {(ξai , ξ
b
j)} labeled by the same

index i and j as in the decomposition, together with a
joint probability measure pij . The σ-algebra Fa × Fb is
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defined as the power set, the set of all subsets, of the event
space. It is easy to see that every element (ξai , ξ

b
j ) has

a corresponding quantum mechanical counterpart Πa
i ⊗

Πb
j . Hence, every measurable subset in the test space

is physically realizable. This proves that the classical
representation is tight. �

The above theorem can be generalized to characterize
states with only one zero discord, say, D(b|a) = 0 and
D(a|b) 6= 0. It is not hard to show that such states have
LHV representations that are tight only on system a.

As an effective framework, the linear LHV representa-
tion developed above is powerful and of interest on its
own. We now argue that the requirement of linearity has
profound physical significance. Quantum measurements
are represented by effects which are linear operators. The
trace formula guarantees that probabilities are linear on
measurements as well. This means for effects with linear
decomposition, for instance, M = M1 + M2, the corre-
sponding probabilities satisfy p(M) = p(M1) + p(M2)
independent of the states they are acting on. This
is an intrinsic property of the quantum measurements
themselves. In a non-linear LHV model which maps
these effects to measurable functions such that f(M) 6=
f(M1)+f(M2), the linear condition for the corresponding
probabilities is no longer generally true. In other words,
the complete information of quantum measurements is
not fully encoded by a non-linear mapping.

One might argue that the objective is not to endeavor
to have a complete description of quantum measure-
ments. Instead, the measurable functions are only de-
signed to work for the probability measure µρ of the tar-
get state ρ itself, over which

∫
dµρf(M) =

∫
dµρf(M1)+∫

dµρf(M1). The inconsistency occurs for other proba-
bility measures that are irrelevant to the LHV model of
ρ. The mapping E(H) 7→ T (Ω) nevertheless produces all
the statistics of local quantum measurements on ρ. How-
ever, as was suggested by various protocols [9–12, 38] that
extract the hidden nonlocality, a quantum state usually
reveals its hidden features when jointly considered with
other states. Instead of studying the target quantum
state alone, one ought to examine its behavior among a
set of quantum states as a whole. This perspective leads
to a grand picture of representing both the set of all quan-
tum measurements and the set of all the quantum states
of the system. Needless to say, it is well known that quan-
tum mechanics has no classical representations. In order
to achieve this picture, the probability measures are al-

lowed to take negative values. Rigorously speaking, each
quantum state is mapped to a signed measure (quasi-
probability) on the event space Ω. This unified frame-
work, called quasi-probability representation, has been
shown [39, 40] to always exist. Wigner quasi-probability
distribution [41] is the most well known example and has
wide applications in various fields in physics. Here we em-
phasize that in such framework, linearity, instead of being
an additional physical assumption, is a direct mathemat-
ical consequence (see Lemma 2 in Ref. [39] for a proof).
However, as was pointed out [40], the quasi-probability
representation of single quantum systems does not in-
duce any characterization of quantum states at all: for
any quantum state ρ of a single system, one can always
find a suitable representation, in which ρ is mapped to
a positive probability measure (there must be, of course,
other states that are mapped to negative ones). Lemma
1 of the present work shows that the situation changes
dramatically when the local structures of compound sys-
tems are introduced: entangled states are those that can
not be mapped to positive probability measures in any
quasi-probability representations. We expect that the in-
troduction of quasi-probability measures in LHV theories
could inspire new insights in studies of the fine structures
of entanglement, such as the long-standing bound entan-
glement problem [42, 43].
To conclude, this paper developed a framework of lin-

ear LHV representations of quantum states of composite
systems, in terms of algebraic probability theory, which
allows us to have a unified characterization of both entan-
glement and quantum discord. Entangled states are char-
acterized as those states that do not admit linear LHV
representations. This provides new insights in under-
standing the relation between entanglement and nonlo-
cality. By examining the algebraic structure of the under-
lying probability theory, it is shown that fully consistent
classical interpretations are only accessible to zero dis-
cordant states. A new mechanism that might contribute
to the nonclassicality of quantum discord is thus iden-
tified. Potential generalization of this framework to the
quasi-probability representation of multipartite quantum
states and applications to the study of entanglement the-
ory were also discussed.
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