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In the lore of quantum metrology, one often hears (or reads) the following no-go theorem: If you
put vacuum into one input port of a balanced Mach-Zehnder Interferometer, then no matter what
you put into the other input port, and no matter what your detection scheme, the sensitivity can
never be better than the shotnoise limit (SNL). Often the proof of this theorem is cited to be in Ref.
[C. Caves, Phys. Rev. D 23, 1693 (1981)], but upon further inspection, no such claim is made there.
Quantum-Fisher-information-based arguments suggestive of this no-go theorem appear elsewhere
in the literature, but it is not stated in its full generality. Here we thoroughly explore this no-go
theorem and give a rigorous statement: the no-go theorem holds whenever the unknown phase shift
is split between both of the arms of the interferometer, but remarkably does not hold when only
one arm has the unknown phase shift. In the latter scenario, we provide an explicit measurement
strategy that beats the SNL. We also point out that these two scenarios are physically different and
correspond to different types of sensing applications.

I. INTRODUCTION

In the field of quantum metrology [1–4], a Mach-
Zehnder interferometer (MZI) is a tried-and-true
workhorses which has the additional advantage that any
result obtained for it also applies to a Michelson inter-
ferometer (MI) and hence has a potential application to
gravitational wave detection. In most current implemen-
tations of gravitational wave detectors, the MI is fed with
a strong coherent state of light in one input port and vac-
uum in the other (Fig. 1). It was in this context that
Caves in 1981 [5] showed that such a design would al-
ways only ever achieve the shotnoise limit (SNL). Then
he showed if you put squeezed vacuum into the unused
port, you could beat the SNL. Several implementations of
this squeezed vacuum scheme have already been demon-
strated in the GEO 600 gravitational detector, and plans
are underway to utilize this approach in the LIGO and
VIRGO detectors in the future [6, 7].

It then appeared, that in the lore of quantum metrol-
ogy, this result was extended — without proof — to the
following no-go theorem: If you put quantum vacuum
into one input port of a balanced MZI, then no matter
what quantum state of light you put into the other in-
put port, and no matter what your detection scheme, the
sensitivity can never be better than the SNL. Often the
proof of this theorem is cited to be the original 1981 paper
by Caves [5], but upon further inspection, no such gen-
eral claim is made there. A quantum-Fisher-information-
based proof of this no-go theorem appeared in Pezzé and
Smerzi [8], Lang and Caves [9], and later in Liu et al.,
[10], but is not explored in full generality.

In this paper, we give the general statement on this
issue. The statement proved here is the following: If the
unknown-phase-shifts are in both the arms of the MZI,
then the no-go theorem holds no matter whether the MZI

is balanced or not. However, if the unknown phase shift is
in only one of the two arms, then the no-go theorem does
not hold. The two models for the unknown phase shift
unitary operation in the MZI are known to yield different
values for the QFI in estimating the phase difference be-
tween the two arms [11, 12]. This discrepancy has been
thought of as a flaw in the interpretation of the QFI [11],
or being related to assumptions made about the input
states and the measurements [12]. In contrast, here we
point out that the two phase shift unitaries correspond to
physically different types of sensors, and that their choice
should depend on the concrete application scenario. The
model where the unknown phase shift is in both the arms
corresponds intrinsically to a two-parameter estimation
problem. In this case, we prove that the no-go theorem
holds, independently of whether the MZI is balanced or
not, by carefully considering the phase-sum parameter
(often regarded as the “global phase”) along with the
phase difference. On the other hand, in the case where
the unknown phase shift is in only one arm, we prove
that the no-go theorem does not hold by constructing an
explicit scheme with a probe and detection that can beat
the SNL corresponding to the combined total number of
photons used at the input and the detection.

We also point out the pitfalls of using only the quan-
tum Fisher information (QFI), or the closely related
quantum Cramér-Rao (QCRB) bound [13], to make
claims of a quantum metrological advantage, without ex-
plicitly providing a detection scheme that would actually
achieve that advantage [11]. The issue is that the optimal
positive operator-valued measure (POVM) that achieves
the QFI may be difficult to implement or contain hidden
resources, such as a strong local oscillator, that are not
fairly counted as far as a quantum advantage is concerned
[11].
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FIG. 1. (a) Mach-Zehnder interferometer phase estimation,
and the two different phase shift models: phase shift(s) are
applied in (b) two arms, or (c) one arm of the interferometer.

II. MODEL AND PREVIOUS WORK

A schematic of the Mach-Zehnder (MZ) interferometer
based sensing setup we consider is illustrated in Fig. 1
(a). Two input modes A and B are interfered via a
beam splitter with transmittance T , and then put into
the phase shift unitary operation Ûφ followed by some
measurement. In addition to this standard setting, we
restrict one of the input states to always be the quan-
tum vacuum state, whereas the other input can be an
arbitrary quantum state (possibly mixed).

A similar setup was considered by Lang and Caves [9]
(see also [8, 10]), with inputs in a tensor product of an
arbitrary pure state |χ〉 and a coherent state |α〉, and a
beam splitter of transmittance T = 1/2. They considered

the phase shift unitary operator Ûφ = eiĝsφseiĝdφd as
shown in Fig. 1 (b), where φs and φd are the phase
sum and difference of the two modes, respectively, ĝs =

(â†â+ b̂†b̂)/2, ĝd = (â†â− b̂†b̂)/2. These two phase shift
parameters reflect the unknown phase shifts in the two
arms of the MZI, φ1 and φ2, as φs = φ1 + φ2, φd =

φ1−φ2 (see Fig. 1(b)). â† (b̂†) and â (b̂) are creation and
annihilation operators in mode A (B), respectively.

Then the authors showed that for a coherent state in-
put with α = 0, i.e. for the vacuum input, the quantum
Fisher information (QFI) for the phase difference turns
out to be the average photon number of the input:

FQ(|χ〉, ĝd) = 〈χ|n̂|χ〉 = n̄χ, (1)

where n̂ = â†â. This result suggests that the precision of
the phase sensing is shotnoise limited when one of the in-
put ports contains only vacuum (and the other mode con-
tains any pure state), since the QCRB is ∆2φ ≥ 1/FQ.

The above result still leaves open questions such as,
“Does the no-go theorem hold when the interferometer is
not balanced?”, and “Does it also hold when the phase
shift unitary operator is chosen differently?”

No-go theorem extended: Preliminary analysis

Firstly, for the phase shift unitary operator ĝd, when T
deviates from 1/2, the QCRB already appears to beat the
SNL. Keeping T as a free parameter, and using the fact
that the QFI of a pure state in estimating a phase shift
generated by a generator ĝ is given by 4

(
〈ĝ2〉 − 〈ĝ〉2

)
, we

arrive at

FQ(|χ〉, ĝd, T ) = {1− (1− 2T )2}n̄χ + (1− 2T )2Vχ. (2)

(See Appendix A for the derivation.) This beats the SNL
for any non-50/50 beam splitter quite spectacularly. For
example, with T → 0, the QCRB approaches ∆2φ =
1/Vx < 1/n̄χ for some inputs such as squeezed vacuum
[14].

Secondly, as pointed out and rigorously discussed in
Ref. [11], a different choice of the phase shift unitary can
give a different value for the QFI. For example, in lieu
of the phase shift operator ĝd, one can instead choose
Ûφ = eiĝ1φA , where ĝ1 = â†â, such that phase shift is
generated only in one arm. The QFI for the phase shift
unitary operator ĝ1 is found to be

FQ(|χ〉, ĝ1) = n̄χ + Vχ, (3)

where Vχ = 〈χ|n̂2|χ〉 − 〈χ|n̂|χ〉2 is the photon number
variance of |χ〉 (see Appendix A for the derivation). This
is obviously different from Eq. (1), and again implies a
sub-SNL result, since Vχ > n̄χ is possible for some inputs,
as mentioned above.

These results, extrapolated from Ref. [9], are thus per-
plexing [15], since seemingly both Eqs. (2) and (3) sug-
gest the possibility of sub-SNL precision phase sensing
even with vacuum input into one of the input ports.

III. PHASE SHIFT IN BOTH ARMS VS. IN
ONE ARM OF THE MZI

We point out that the two phase-shift unitary opera-
tors (Figs. 1(b) and (c)) have different physical meanings
and their choice should depend on what type of applica-
tion scenario one has in mind. For the gravitational wave
detection application, ĝd and ĝs should be chosen since
the two arms of the MZI both have unknown phase shifts
induced by the gravitational waves (Fig. 1(b)). Also some
commonly used sensing devices, such as a differential in-
terference contrast microscope [16], should be modeled
in the same way (see also its quantum version [17]).

On the other hand, the most primitive use of the Mach-
Zehnder interferometer is to put a sample in one of the
two arms to measure the corresponding phase shift. This
configuration is also widely used as a simple and low-cost
technology to measure the sample’s density distribution,
pressure, temperature, etc. This type of sensor should
be modeled by ĝ1 (Fig. 1(c)). Since these two models are
physically different, they may lead to different outcomes
in our problem; the MZI with vacuum in one input port.
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That is, they could have different fundamental precision
limits with vacuum in one input port. We now rigorously
analyze each model in the context of the no-go theorem.

A. Complete proof of no-go theorem for phase
shift in both arms

The MZI sensing with the ĝs-ĝd model in its full gener-
ality is a two-parameter estimation problem since there
are two unknown parameters, φs and φd, in the system.
Although only the phase difference φd is of interest, this
two-parameter model allows us to explicitly include the
fact that one does not know φs in prior. This generally
limits the precision limit of sensing φd especially when φd
and φs are correlated. Therefore, a two-by-two quantum
Fisher information matrix (QFIM) is considered. The
problem in Eq. (2) is in fact due to the ignorance of the
phase sum φs [18]. In multi-parameter estimation, the
QCRB is given by Σ ≥ F−1Q , where Σ is the covariance
matrix of the estimator including both φs and φd and FQ
is the two-by-two QFIM:

FQ =

[
Fdd Fsd
Fds Fss

]
, (4)

where s and d correspond to φs and φd. The first diagonal
element of F−1Q corresponds to the estimation limit of φd,
which is explicitly given by

Fss
FssFdd − FsdFds

. (5)

For an arbitrary mixed quantum state, the QFIM is in
general not easy to calculate. However, the optimal input
state that maximizes FQ is always given by a pure-state
input. This is the consequence of the convexity of the
QFIM: for ρ̂φ = pσ̂φ + (1− p)τ̂φ,

FQ(ρ̂φ) ≤ pFQ(σ̂φ) + (1− p)FQ(τ̂φ), (6)

holds. This can be proved by using the monotonicity of
the QFIM under the completely positive trace preserv-
ing (CPTP) map [19, 20] and extending the proof of the
convexity for the QFI [21] (for completeness, we provide
the proof in Appendix B). The statement basically says
that a statistical mixture of the input states will never in-
crease the QFIM and thus implies that the QFIM is max-
imized with a pure state input. The optimal pure state
for the QFIM is also optimal for the multi-parameter
QCRB since the QFIM is a positive matrix and for pos-
itive matrices A and B, B−1 ≥ A−1 holds if and only if
A ≥ B.

Therefore, by considering a pure input state |χ〉, the
elements of the QFIM are given by

Fij = 4 (〈ĝiĝj〉 − 〈ĝi〉〈ĝj〉) , (7)

where i, j takes s and d. We can calculate Fdd, Fss, Fds,
and Fsd explicitly (see Appendix A for the derivation.

Note that Fdd corresponds to Eq. (2)) and then inserting
these into (5), we get

∆2φd ≥
1

4T (1− T )n̄χ
, (8)

where the minimum of the right hand side is obtained
with T = 1/2 as 1/n̄χ, which is the SNL, as it should be.
That is, no matter how highly nonclassical the input state
ρ̂in is, and no matter what POVM you deploy, the SNL
cannot be surpassed for ĝd so long as the other input to
the interferometer is the vacuum state. Thus, this result
establishes the no-go theorem in its most general form,
which includes the beam splitter transmissivity as a free
parameter.

B. Phase shift in one arm (ĝ1)

The ĝ1 model is a single-parameter estimation prob-
lem. Thus, (3) is directly applied to the QCRB, which
suggests sub-SNL sensitivity with input states of high
Vχ, i.e., states with high photon number fluctuation,
e.g., squeezed vacuum. Then, as mentioned in Sec. II,
the QFI-only approach may have the pitfall that the op-
timal POVM attaining the QCRB might contain huge
amount of hidden resources as pointed out by Jarzyna
and Demkowicz-Dobrzański [11]. In other words, one
might fool oneself into thinking, via the QFI-only ap-
proach, that there is some quantum metrological advan-
tage, where none actually exists.

There are two remedies. The first is to rule out any
external resource that might give some phase information
to the measurement device in implementing the optimal
POVM. Such a “rule-out” protocol was introduced by
Jarzyna and Demkowicz-Dobrzański [11] where the issue
is resolved by introducing the phase-averaging of the two-
mode input state via a common phase shift. The QFI of
the phase-averaged input gives the proper phase-sensing
limit without any external phase reference.

The second remedy, the one we recommend, is that if
one wishes to claim a quantum metrological advantage
from a QFI-only calculation, then a detection scheme
that actually hits the related QCRB must be provided,
so that all resources hidden in the associated POVM may
be laid bare for all to see. This allows one to fairly count
all the resources used in the interferometer. (For example
in Ref. [14], the QFI calculation is backed up by provid-
ing a detection scheme, the parity operator, hitting the
QCRB).

Here we apply these two remedies separately. First,
we employ the phase-averaging approach [11] to elimi-
nate any hidden resource in the POVM. We briefly sketch
the calculation in the following and describes the de-
tails in Supplementary Material 3. Consider the input
state of ρ̂in ⊗ |0〉〈0| where ρ̂in =

∑∞
n,m cnm|n〉〈m| is an

arbitrary state and |n〉 is the n-photon number basis.
The phase-averaging operation drops off its non-diagonal
terms. After the phase-averaging, the first beamsplitter
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FIG. 2. Mach-Zehnder interferometer sensing with the input-
phase sensitive measurement. Ŝ(r) is the squeezing operator

with squeezing parameter r and B̂T is the beam-splitting op-
erator with transmissivity T .

and the φ phase shifting, the input is transformed to
Ψφ

avg =
∑∞
n=0 pn|ψn(φ)〉〈ψn(φ)|AB , where |ψn(φ)〉 and

|ψn′(φ)〉 are orthogonal for n 6= n′.
By using the convexity of the QFI and the

above orthogonality, we have F
(1)
Q

(
Ψφ

avg

)
=∑∞

n=0 pnF
(1)
Q (|ψn(φ)〉), and after some calculations,

we see F
(1)
Q (|ψn(φ)〉) = 4nT (1− T ), which is maximized

at T = 1/2, and is equal to n, as it should be (see
Appendix C). Consequently, the QFI for Ψφ

ave is given as

FQ
(
Ψφ

avg

)
=

∞∑
n=0

npn = n̄, (9)

where n̄ is the average photon number of ρ̂in, and thus
we find that the phase sensitivity is lower bounded as
∆2φA ≥ 1/n̄. That is, if the optimal POVM is not al-
lowed to have external phase information, the estimation
precision is limited by the shotnoise limit.

Secondly, we ask the question,“if one is allowed to
use some additional resource at the measurement, is it
possible to surpass the SNL with respect to the total
number of resources used at the input and the detec-
tion?”. We prove that the answer is affirmative by show-
ing an example of the concrete measurement scheme
(Fig. 2). The input state is a single-mode squeezed
vacuum, which is generated from vacuum by applying
the squeezing operation Ŝ(r), where r is the squeezing
parameter. The measurement is a time-reversed pro-
cess, that is, it consists of the complex-conjugate beam

splitter B̂†T , anti-squeezing operation Ŝ†(r), and photon
detectors that discriminate zero and non-zero photons,
{|0〉〈0| ⊗ |0〉〈0|, I − |0〉〈0| ⊗ |0〉〈0|}. A similar mirror-
image-like strategy has been considered in the state dis-
crimination scenarios [22, 23] and the phase estimation
with coherent state [24]. Since we need the phase infor-
mation of the input state at the anti-squeezing process,
this is a phase-sensitive measurement, and so the POVM
has access to the input phase information. The input av-
erage photon number is given by n̄ = sinh2 r. Since the
measurement device also uses the same amount of squeez-
ing, the average photon number of the all resources are
counted as n̄tot = 2n̄.

The attainable precision limit (in the asymptotic limit,

m→∞) is specified by calculating its CFI [13, 25]:

F (φA) = E

[
− d2

dφ2A
log pφA

]
, (10)

where pφA
= P (x|φA) is the conditional probability of

obtaining the measurement outcome x for given φA and
x = 0, 1 represent the photon detection outcome |0〉〈0| ⊗
|0〉〈0| and I − |0〉〈0| ⊗ |0〉〈0|, respectively.
F (φA) is calculated by the characteristic function ap-

proach (e.g. see Refs. [26, 29]), and the derived analyti-
cal expression of F (φA) is complicated (see Appendix D).
Taking the limit of φA → 0, we get

F (φA) = 2n̄totT (1 + T + n̄totT ), (11)

where we remind the reader that n̄tot = 2n̄ is the total
resource used for the input state and the detection pro-
cess. Thus we get the (classical) CRB around φA = 0
as

∆2φA ≥
1

2n̄totT (1 + T + n̄totT )
, (12)

which surpasses the SNL of the total resources for any
T 6= 0. This example shows how a QFI-only calculation
could contain hidden resources in the unknown optimal
POVM, that are unfairly not counted. Here, by taking all
resources into account, we conclude that it is possible to
beat the SNL for the ĝ1 estimation if one uses additional
energy and phase resources at the detection.

IV. CONCLUSION

In this paper, we revisited the ultimate limit of the
MZI sensing precision when an input into one port is
vacuum. We showed a full statement of the problem with
a rigorous proof: the statement depends on the choice of
the phase shift unitary operator, i.e. the physical setup
of the sensing application.

First, if both arms of the MZI have different unknown
phase shifts in the application and the input to one of
the two ports is vacuum, then no matter what the in-
put in the other port is, and no matter the detection
scheme, one can never better the SNL in phase sensitiv-
ity. This statement holds even if the first beamsplitter
of the MZI is non-50:50. The proof is based on the fact
that it is intrinsically a two-parameter estimation prob-
lem. That is we cannot ignore the phase sum φs in the
analysis though it is often treated as a “global phase”
and ignored in real experiments. This type of sensing
includes gravitational wave detection [6, 7], long-baseline
interferometry [27], and differential interference contrast
microscopy [16, 17], for example. In these applications, if
one input is vacuum, our result rules out the possibility
of doing something “quantum” at the detector (such as
putting in a squeezer or doing photon addition or sub-
traction) to beat the SNL.
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Second, if only one of the MZI arms has an unknown
phase shift in the application, then the ultimate precision
limit depends on the detector restriction. If one does not
allow the detector to use any external phase reference
and power resource, then the precision is limited by the
SNL. However, if the detector is allowed to use such re-
sources, then one can beat the SNL in terms of the total
resource used at the input and detector. The explicit
sensing scheme which uses squeezers for both input and
detector is given. This type of sensing includes simple
MZI devices measuring sample’s density, pressure, tem-
perature, etc, and also LIDAR-type sensing [28]. In these
applications, only if nonclassical light is introduced into
at least one input port, is there a hope to beat the SNL
by doing something quantum at the detector, even if the
other port is vacuum.
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Appendix A: Quantum Fisher information for the
Mach-Zehnder interferometer phase sensing with a

vacuum input

Here we derive Eqs. (3) and (2) in the main text. Con-
sider |χ〉 ⊗ |0〉 as an input to the MZ interferometer. For
the calculation, it is useful to expand |χ〉 in a coherent

state basis:

|χ〉 =

∫
d2α f(α)|α〉, (A1)

where |α〉 is a coherent state with complex quadrature
amplitude α. Then the average photon number and the
variance of the state are given by

n̄χ = 〈χ|n̂|χ〉

=

∫
d2α

∫
d2β f∗(α)f(β)〈α|n̂|β〉

=

∫
d2α

∫
d2β f∗(α)f(β)α∗β〈α|β〉

=

∫
d2α

∫
d2β f∗(α)f(β)α∗β

× exp

[
−1

2

(
|α|2 + |β|2 − 2α∗β

)]
, (A2)

and

Vχ = 〈χ|n̂2|χ〉 − n̄2χ

=

∫
d2α

∫
d2β f∗(α)f(β)

{
(α∗β)2 + α∗β

}
× exp

[
−1

2

(
|α|2 + |β|2 − 2α∗β

)]
− n̄2χ, (A3)

where we use the fact that n̂2 = â† 2â2 + â†â.
The state after the beam splitter with transmittance

T is given by

|Φ〉AB =

∫
d2α f(α)

∣∣∣√Tα〉
A

∣∣∣√Rα〉
B
, (A4)

where R = 1− T .

QFI with ĝ1 [Eqs. (3)]

The quantum Fisher information (QFI) is calculated
from

FQ(|χ〉, ĝ1, T ) = 4(〈Φ|ĝ21 |Φ〉 − 〈Φ|ĝ1|Φ〉2). (A5)

We have

〈Φ|ĝ21 |Φ〉 =

∫
d2α

∫
d2β f∗(α)f(β)

〈√
Tα
∣∣∣
A

〈√
Rα
∣∣∣
B

(
â† 2â2 + â†â

) ∣∣∣√Tβ〉
A

∣∣∣√Rβ〉
B

=

∫
d2α

∫
d2β f∗(α)f(β)

{
(Tα∗β)2 + Tα∗β

}〈√
Tα
∣∣∣ √Tβ〉〈√Rα∣∣∣ √Rβ〉

= T 2〈χ|n̂2|χ〉+ T (1− T )〈χ|n̂|χ〉, (A6)

and

〈Φ|ĝ1|Φ〉2 =

(∫
d2α

∫
d2β f∗(α)f(β)

〈√
Tα
∣∣∣
A

〈√
Rα
∣∣∣
B

(
â†â
) ∣∣∣√Tβ〉

A

∣∣∣√Rβ〉
B

)2

= T 2〈χ|n̂|χ〉2. (A7)
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In total, we have

FQ(|χ〉, ĝ1, T ) = 4(〈Φ|ĝ21 |Φ〉 − 〈Φ|ĝ1|Φ〉2) = 4
{
T 2Vχ + T (1− T )n̄χ

}
. (A8)

For T = 1/2, it is Vχ + n̄χ and thus we get Eq. (3).

QFIM for ĝd and ĝs [Eqs. (2)]

For pure states, the elements of the QFIM are given by

Fij = 4 (〈ĝiĝj〉 − 〈ĝi〉〈ĝj〉) , (A9)

where i, j takes s and d.

Recall that ĝd = (â†â− b̂†b̂)/2 and ĝs = (â†â+ b̂†b̂)/2. Then we have

4〈Φ|ĝ2d|Φ〉 =

∫
d2α

∫
d2β f∗(α)f(β)

×
〈√

Tα
∣∣∣
A

〈√
Rα
∣∣∣
B

(
â† 2â2 + â†â+ b̂† 2b̂2 + b̂†b̂− 2â†âb̂†b̂

) ∣∣∣√Tβ〉
A

∣∣∣√Rβ〉
B

=

∫
d2α

∫
d2β f∗(α)f(β)

×
{

(Tα∗β)2 + Tα∗β + (Rα∗β)2 +Rα∗β − 2RT (α∗β)2
}〈√

Tα
∣∣∣ √Tβ〉〈√Rα∣∣∣ √Rβ〉

=

∫
d2α

∫
d2β f∗(α)f(β)

{
α∗β + (T −R)2(α∗β)2

}
exp

[
−1

2

(
|α|2 + |β|2 − 2α∗β

)]
= 〈χ|n̂|χ〉+ (1− 2T )2

(
〈χ|n̂2|χ〉 − 〈χ|n̂|χ〉

)
. (A10)

Similarly, we have

4〈Φ|ĝ2s |Φ〉 = 〈χ|n̂2|χ〉, (A11)

4〈Φ|ĝdĝs|Φ〉 = 4〈Φ|ĝsĝd|Φ〉 = −(1− 2T )〈χ|n̂2|χ〉. (A12)

Also

2〈Φ|ĝd|Φ〉 =

∫
d2α

∫
d2β f∗(α)f(β)

〈√
Tα
∣∣∣
A

〈√
Rα
∣∣∣
B

(
â†â− b̂†b̂

) ∣∣∣√Tβ〉
A

∣∣∣√Rβ〉
B

=

∫
d2α

∫
d2β f∗(α)f(β) (Tα∗β −Rα∗β)

〈√
Tα
∣∣∣ √Tβ〉〈√Rα∣∣∣ √Rβ〉

= (1− 2T )

∫
d2α

∫
d2β f∗(α)f(β)α∗β exp

[
−1

2

(
|α|2 + |β|2 − 2α∗β

)]
= (1− 2T )〈χ|n̂|χ〉, (A13)

and similarly,

2〈Φ|ĝs|Φ〉 = 〈χ|n̂|χ〉. (A14)

By using the above results, we have

Fdd = FQ(|χ〉, ĝd, T )

= 〈χ|n̂|χ〉+ (1− 2T )2
(
〈χ|n̂2|χ〉 − 〈χ|n̂|χ〉

)
−(1− 2T )2〈χ|n̂|χ〉2

=
{

1− (1− 2T )2
}
n̄χ + (1− 2T )2Vχ, (A15)

Fss = 〈χ|n̂2|χ〉 − 〈χ|n̂|χ〉2

= Vχ, (A16)

Fds = Fsd = −(1− 2T )〈χ|n̂2|χ〉 − (1− 2T )〈χ|n̂|χ〉2

= −(1− 2T )Vχ. (A17)

Appendix B: Convexity of quantum Fisher
information matrix

For completeness, here we give a proof of the convexity
of the quantum Fisher information matrix (QFIM):

FQ(ρ̂ϕ) ≤ pFQ(σ̂ϕ) + (1− p)FQ(τ̂ϕ), (B1)
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for ρ̂ϕ = pσ̂ϕ+(1−p)τ̂ϕ. Here ρ̂ϕ, σ̂ϕ, and τ̂ϕ are (maybe
mixed) quantum states where ϕ = {ϕ1, . . . , ϕM} is a set
of M unknown parameters.

To begin with, we briefly review the definition and the
structure of the QFIM that we will use in the proof. De-
tailed review on the QFI and QFIM can be found for
example in Ref. [2, 13, 20]. The QFIM for ρ̂ϕ is given by
an M ×M matrix FQ(ρ̂ϕ) = [Fij(ρ̂ϕ)]ij (i, j = 1, . . . ,M)
where each entry is defined as

Fij(ρ̂ϕ) =
1

2
Tr
[
ρ̂ϕL̂iL̂j + ρ̂ϕL̂jL̂i

]
, (B2)

and L̂i, called the symmetrized logarithmic derivative, is
a Hermitian operator satisfying

∂

∂ϕi
ρ̂ϕ =

1

2

(
L̂iρ̂ϕ + ρ̂ϕL̂i

)
. (B3)

Let ρ̂ϕ =
∑
k λk|λk〉〈λk| be the spectral decomposition

of ρ̂ϕ. Then we can explicitly describe L̂i as

L̂i = 2
∑
k,l

〈λk|ρ̂(i)ϕ |λl〉
λk + λl

|λk〉〈λl|, (B4)

where ρ̂
(i)
ϕ = ∂ρ̂ϕ/∂ϕi. Combining it with Eq. (B2), the

QFIM is expressed as

Fij(ρ̂ϕ) = 2
∑
k,l

〈λk|ρ̂(i)ϕ |λl〉〈λl|ρ̂(j)ϕ |λk〉
λk + λl

. (B5)

We also use an important property of the QFIM:
monotonicity under completely positive trace preserving
(CPTP) map L [19, 20],

FQ(ρ̂ϕ) ≥ FQ(L(ρ̂ϕ)). (B6)

The proof of the convexity of the QFIM is basically
given by extending the proof for the QFI (i.e. single-
parameter case) in Ref. [21]. Consider the bipartite state
ρ̃ABϕ = p|e0〉〈e0|A⊗ σ̂Bϕ +(1−p)|e1〉〈e1|A⊗ τ̂Bϕ , where |ek〉
is an orthonormal basis in A. Note that TrA[ρ̃ABϕ ] = ρ̂Bϕ .
Then we have

FQ(ρ̃ABϕ ) = pFQ(σ̂Bϕ ) + (1− p)FQ(τ̂Bϕ ). (B7)

This is justified by the following observation. Since |ek〉
is independent of the unknown parameters ϕi, ρ̃

(i)
ϕ =

p|e0〉〈e0|⊗ σ̂(i)
ϕ + (1− p)|e1〉〈e1|⊗ τ̂ (i)ϕ , for any i. Also the

spectral decomposition of ρ̃ϕ is described as p|e0〉〈e0| ⊗∑
i λ

σ
i |λσi 〉〈λσi | + (1 − p)|e1〉〈e1| ⊗

∑
i λ

τ
i |λτi 〉〈λτi |, where∑

i λ
σ
i |λσi 〉〈λσi | and

∑
i λ

τ
i |λτi 〉〈λτi | are the spectral decom-

positions of σ̂ϕ and τ̂ϕ, respectively. Plugging them into
the expression of QFI in Eq. (B5), we get

Fij(ρ̃
AB
ϕ ) = pFij(σ̂

B
ϕ ) + (1− p)Fij(τ̂Bϕ ). (B8)

Since this holds for all i and j, we get Eq. (B7).

By using Eq. (B7), the monotonicity (B6), and the fact
that partial trace is a CPTP map, we have

FQ(ρ̂Bϕ ) ≤ FQ(ρ̂ABϕ )

= pFQ(σ̂Bϕ ) + (1− p)FQ(τ̂Bϕ ), (B9)

which completes the proof of the convexity of the QFIM.

Appendix C: Quantum Fisher information for ĝ1
with phase randomizing

Here we give a complete calculation of the QFI for
the generator ĝ1 = â†â with phase randomizing. The
two input states are a vacuum and an arbitrary quantum
state with the density matrix of

ρ̂in =
∞∑

n,m=0

cnm|n〉〈m|, (C1)

where |n〉 is the n-photon number state. Then the phase-
averaged input is given by

Ψavg =

∫
dθ

2π
V̂ Aθ V̂

B
θ

(
ρ̂Ain ⊗ |0〉〈0|B

)
V̂ A †θ V̂ B †θ

=

∞∑
n,m=0

∫
dθ

2π
eiθ(n−m)cnm|n〉〈m|A ⊗ |0〉〈0|B

=

∞∑
n=0

pn|n〉〈n|A ⊗ |0〉〈0|B , (C2)

where V̂ Aθ = eiθâ
†â, V̂ Bθ = eiθb̂

†b̂, and pn = cnn is a real
positive number satisfying

∑
n pn = 1. The state after

the first beamsplitter of the MZI and the phase shifting
is given by

Ψφ
avg = Û

(1)AB
φ B̂ABT ΨavgB̂

†AB
T Û

(1)†AB
φ

=

∞∑
n=0

pn|ψn(φ)〉〈ψn(φ)|AB , (C3)

where

|ψn(φ)〉AB =

n∑
j=0

e−ijφ
(
n

j

)1/2

×T j/2(1− T )(n−j)/2|j〉A ⊗ |n− j〉B .
(C4)

By using the convexity of the QFI and noticing that
|ψn(φ)〉 and |ψn′(φ)〉 are orthogonal for n 6= n′, we have

F
(1)
Q

(
Ψφ

avg

)
=

∞∑
n=0

pnF
(1)
Q (|ψn(φ)〉) . (C5)
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Thus our remaining task is to calculate F
(1)
Q (|ψn(φ)〉)

explicitly. For |ψn(φ)〉, we find

〈â†â〉 =

n∑
j=0

j

(
n

j

)
T j (1− T )

n−j
= nT, (C6)

〈b̂†b̂〉 = n (1− T ) , (C7)

〈â†2â2〉 =

n∑
j=0

j (j − 1)

(
n

j

)
T j (1− T )

n−j

= n(n− 1)T 2, (C8)

and the QFI evaluated as 4
(
〈ĝ21〉 − 〈ĝ1〉2

)
is found to be

F
(1)
Q (|ψn(φ)〉) = 4

(
〈â†2â2〉+ 〈â†â〉 − 〈â†â〉2

)
= 4

{
n(n− 1)T 2 + nT − n2T 2

}
= 4nT (1− T ) . (C9)

Then averaging over n, we get

F
(1)
Q

(
Ψφ

avg

)
= 4n̄T (1− T ), (C10)

The maximum is attained at T = 1/2 and is equal to n̄.

Appendix D: Derivation of F (φA)

The calculation of Fisher information can be performed
by the characteristic function approach. For the details of
the characteristic function formalism in quantum optics,
see Ref. [29] for example. Here we follow the definition
and the methodology developed in Ref. [26]. Then the
covariance matrix of the two-mode vacuum is given by

γin = I(4), (D1)

where I(4) is the four-by-four identity matrix. The beam
splitter unitary transformation is represented by the sym-
plectic transformation:

SBS =


√
T 0

√
1− T 0

0
√
T 0

√
1− T

−
√

1− T 0
√
T 0

0 −
√

1− T 0
√
T

 (D2)

Similarly, the unknown phase shift is given by

SPS =

 cosφA sinφA 0 0
− sinφA cosφA 0 0

0 0 1 0
0 0 0 1

 , (D3)

and the squeezing in the first arm is given by

SSQ(r) =

 e
−r 0 0 0
0 er 0 0
0 0 1 0
0 0 0 1

 , (D4)

where e−r =
√
n̄+ 1 −

√
n̄ and er =

√
n̄+ 1 +

√
n̄ (re-

member n̄ = sinh2 r).
Then the covariance matrix of the state before the

photo detectors is calculated to be

γout = SSQ(−r)STBSSPSSBSSSQ(r)γin

×STSQ(r)STBSS
T
PSSBSS

T
SQ(−r) (D5)

where the superscript T denotes the matrix transpose.
The probability of having no-clicks at both detector

(i.e. the projection onto |0〉〈0| ⊗ |0〉〈0|) is given by [26],

P00 =
4√

det(γout + I(4))
. (D6)

Then the Fisher information for φA is calculated by

F (φ1) =
1

P00

(
dP00

dφA

)2

+
1

1− P00

(
d(1− P00)

dφA

)2

. (D7)

The calculation is performed by Mathematica. Since the
expression of F (φA) is quite complicated, we consider the
limit of small φA. Then we get

lim
φA→0

F = 4n̄T (1 + T + 2n̄T ). (D8)

Replacing n̄ with n̄tot = 2n̄, we get

lim
φA→0

F = 2n̄totT (1 + T + n̄totT ), (D9)

which implies that in the limit of small phase shifts, the
Fisher information of our protocol can surpass the SNL in
terms of the total resource for any T 6= 0, and particularly
for T = 1/2.
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