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When one tries to take into account the non-trivial vacuum structure of Quantum Field Theory,
the standard functional-integral tools such as generating functionals or transitional amplitudes, are
often quite inadequate for such purposes. Here we propose a generalized generating functional
for Green’s functions which allows to easily distinguish among a continuous set of vacua that are
mutually connected via unitary canonical transformations. In order to keep our discussion as simple
as possible, we limit ourselves to Quantum Mechanics where the generating functional of Green’s
functions is constructed by means of phase-space path integrals. The quantum-mechanical setting
allows to accentuate the main logical steps involved without embarking on technical complications
such as renormalization or inequivalent representations that should otherwise be addressed in the
full-fledged Quantum Field Theory. We illustrate the inner workings of the generating functional
obtained by discussing Green’s functions among vacua that are mutually connected via translations
and dilatations. Salient issues, including connection with Quantum Field Theory, vacuum-to-vacuum
transition amplitudes and perturbation expansion in the vacuum parameter are also briefly discussed.

PACS numbers: 03.65.Db, 03.65.-w, 31.15.xk

I. INTRODUCTION

Canonical transformations play a fundamental rôle in
classical mechanics [1], however, their rôle in quantum
physics is typically less significant [2–4]. This status quo
can be in part ascribed to the Groenewold–van Hove
“no-go” theorem [5, 6] which states that there exists
a one-to-one correspondence between classical symplec-
tic transformations and unitary transformations of quan-
tum theory only when the generating function is at most
quadratic, i.e., in the case of linear canonical transforma-
tions. On the other hand, the linear canonical transfor-
mations disguised in the form of the Bogoliubov–Valatin
transformations [2, 3, 7, 8] are central both in quantum
mechanics (QM) and in quantum field theory (QFT).
From the modern particle-physics and condensed-matter
theory point of view, it is desirable to formulate the is-
sues related to canonical transformations in the language
of path integrals (PIs) as those often provide the easiest
route to the derivation of perturbative expansions and
serve as an excellent framework for (both numerical and
analytical) nonperturbative analysis [9–13]

Our particular focus here will be on systems where
the vacuum state is not invariant under canonical trans-
formations. This issue may be studied in its own right
(e.g., in connection with semiclassical QM or theory of
generalized coherent states) but our primary motivation
is dictated by prospective applications in QFT. There,
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the problem of the non-invariance of the vacuum state is
particularly pressing because ensuing vacuum states typ-
ically belong to different (unitarily inequivalent) Hilbert
spaces [2, 3, 11, 14]. This situation shows up, e.g., in
quantum systems with spontaneous symmetry breaking
(SSB) [14–16], in cases where renormalization issues are
relevant [3, 16–18] or in the study of flavor mixing both
in flat [3, 19] and curved backgrounds [20]. The lat-
ter point has lead recently to phenomenologically rele-
vant correction to the standard neutrino oscillation for-
mula [21]. Another pertinent context where the multiple-
vacuum structure plays an important rôle, is in study of
time-dependent backgrounds in the ADS/CFT duality.
There, the propagator among inequivalent vacua at dif-
ferent times predicts various non-trivial phenomenologi-
cal effects such as cosmological particle creation [22].

The PI (or better, its field-theoretic extension – func-
tional integral) treatment of QFT systems with a mul-
tiple vacuum structure was firstly studied in Ref. [23].
There it was shown that the multiple vacua can be taken
into account by using the so-called ε-term prescription
(not to be mistaken with the Feynman–Stuckelberg ε pre-
scription) for the generating functional of Green’s func-
tions. This allowed to fix a particular representation of
the canonical commutation relations (CCR) and discuss,
for instance, SSB in some systems. However, because
of technical difficulties related to the analytic continua-
tion of ε, the method is seldom used in practice. Fur-
ther considerations have been pursued in the literature
rather sparsely and in very specific contexts, see e.g.,
Refs. [16, 24–26].

The aim of the present paper is to investigate the rôle
of mixed-representation Green’s functions. To this end,
we ask ourselves the following question: Is it possible,
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in general, to construct a (generalized) generating func-
tional for Green’s functions which carries information
about different vacua? Here the issue of the generalized
generating functional (GGF) is addressed in the context
of QM, where we show that the aforestated question is
answered affirmatively. We choose to work within QM,
instead of QFT, for two basic reasons. First, QM deals
with systems with a finite number of degrees of free-
dom. In these cases, the Stone–von Neumann unique-
ness theorem [27] ensures that, for QM systems, the
CCR, which govern the algebraic structure of observ-
ables, admit only one irreducible Hilbert space repre-
sentation. This is not true in QFT, where an infinite
number of degrees of freedom must be considered [2, 3].
This simple looking fact has far-reaching consequences.
The point is that in QFT there exists a separation be-
tween Heisenberg fields, in terms of which the dynamical
equations are written and asymptotic (in- or out-) fields
which are directly related with the observed degrees of
freedom [2, 28–30]. At the same time, the Haag theo-
rem [18, 29] states that the Heisenberg fields and in- (or
out-) fields belong to unitarily inequivalent representa-
tions of CCR. This brings about technical complications
related to the renormalization [17]. Since renormaliza-
tion unnecessary obscures logical reasoning involved in
the our construction of the generalized generating func-
tional, we prefer, for clarity’s sake, to stick to QM set-
ting. Second, on the QM level there is a number of exact
results for mixed-representation Green’s functions that
can be obtained via conventional canonical quantization.
These will serve as a gauge to which our conclusions (and
hence internal consistency of the GGF obtained) can be
compared.

The structure of the paper is as follows: In Section II
we introduce the phase-space PIs and show how they
imprint a choice of the Weyl–Heisenberg (WH) repre-
sentation. In order to keep track of various represen-
tations involved we derive a generalized generating func-
tional for the mixed-representation Green’s functions. To
put some flesh on the aforesaid generating functional, we
discuss, in Section III, an example of Green’s functions
with different vacua connected through spatial transla-
tions. Despite its simplicity, this example represents
proof-of-concept that the mixed-representation correla-
tors can be systematically treated in practical situations
including prospective QFT applications. To bolster our
exposition, we apply in Section IV the generalized gen-
erating functional to a more challenging case, namely
to the case of dilatations (scale and phase transforma-
tions). At the level of annihilation and creation opera-
tors, the latter correspond to Bogoliubov–Valatin trans-
formations [3, 7, 14]. Our discussion of dilatations traces
a number of subtle issues related to the operator-ordering
and provides resolution that coincides (for selected ex-
amples) with canonical-quantization results. For generic
Hamiltonians we show how perturbative analysis in terms
of the WH-vacuum parameter can be systematically car-
ried out. Finally, Section V summarizes our results and

discusses possible extensions of the present work. For
the reader’s convenience, the paper is supplemented with
two appendices which clarify some finer technical details
needed in the main text.

II. CANONICAL TRANSFORMATIONS AND
GREEN’S FUNCTIONS IN QM

Our starting point will be the phase-space PI represen-
tation of the evolution kernel 〈qf , tf |qi, ti〉 which reads as

〈qf , tf |qi, ti〉 =

∫ q(tf )=qf

q(ti)=qi

DqDp eiS[p,q] . (1)

Here

S[p, q] =

∫ tf

ti

dt [p(t) q̇(t) − H(p(t), q(t))] , (2)

is the phase-space action integral. For a future conve-
nience we assume that ~ = 1. We also introduce the
evolution kernel with source terms as

〈qf , tf |qi, ti〉Jq,Jp =

∫ q(tf )=qf

q(ti)=qi

DqDp eiS[p,q; Jq,Jp] , (3)

where the new action integral has the form

S[p, q; Jq, Jp] =

∫ tf

ti

dt [ p(t)q̇(t) − H(p(t), q(t))

− Jq(t)q(t) − Jp(t)p(t) ] . (4)

Here Jq and Jp are two auxiliary (Schwinger-type) cur-
rents with compact supports.

Algebraically, operators q̂(t) and p̂(t) form an irre-
ducible representation of the Weyl–Heisenberg algebra
W1

[q̂(t), p̂(t)] = i1̂I , [q̂(t), 1̂I] = [p̂(t), 1̂I] = 0 . (5)

Corresponding generalization from one to N degrees of
freedom constitutes the WH algebra WN . The problem
of classifying the representations of WN is addressed by
the Stone–von Neumann theorem [3, 8] which states that
all irreducible unitary representations of the WH algebra
WN for any finite N are unitarily equivalent. This means
that all irreducible representations of CCRs constitute
an equivalent description of a given QM system. The
passage among such representations is mediated by an
unitary operator

Ĝα(t) = exp [iαK (p̂(t), q̂(t))] , α ∈ R , (6)

where K is by Stone’s theorem some self-adjoint operator
constructed from q̂ and p̂ operators. With this, the co-
ordinates and canonically conjugate momenta are trans-
formed through an unitary mapping

q̂(t;α) ≡ Ĝ†α(t) q̂(t) Ĝα(t) , (7)

p̂(t;α) ≡ Ĝ†α(t) p̂(t) Ĝα(t) , (8)
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where representation with α = 0 is considered as a refer-
ential or fiducial representation. In spite of a mathemat-
ical equivalence, the freedom in the choice of α can be
conveniently used (and often is) to simplify various com-
putational steps in QM — most notably in the eigenvalue
problem. On the other hand, the choice of the repre-
sentation in QFT is much more than just a convenient
mathematical trick. In fact, since the Stone–von Neu-
mann theorem does not apply in QFT, different choices
of a representation correspond to different physical real-
izations of the quantum system and further elaboration
is needed [2, 3, 11, 17].

To proceed let us first observe that, in general, Ĝα does
not leave the vacuum |0〉 of the fiducial representation
invariant. To see this, we define the vacuum state in the
new representation as |0(α, t)〉 ≡ Ĝ†α(t)|0〉. The overlap
between the two vacua (vacuum persistence amplitude)
is described by the transition amplitude

〈0|0(α, t)〉 = 〈0|Ĝ†α(t)|0〉 . (9)

The latter plays a particularly important rôle in QFT,
because there it provides a simple handle on the unitary
(in)equivalence of the representations considered [31]. In
order to compute (9) within the PI framework it is per-
haps the simplest to start with a kernel in a generic rep-
resentation labeled by the index α ∈ R, i.e.

〈qf (α), tf |qi(α), ti〉

=

∫ q(tf ;α)=qf (α)

q(ti;α)=qi(α)

Dq(α)Dp(α) eiS[p,q;α] , (10)

where

S[p, q;α] =

∫ tf

ti

dt [p(t;α)q̇(t;α)−H(p(t;α), q(t;α))] .

(11)
With the help of (10) one can also write down the
Feynman–Matthews–Salam formula [9, 10, 32]

〈qf (α), tf |T [q̂(tn;α) . . . q̂(t1;α)]|qi(α), ti〉 =

∫ q(tf ;α)=qf (α)

q(ti;α)=qi(α)

Dq(α)Dp(α) q(tn;α) . . . q(t1;α) eiS[p,q;α] , (12)

(T [. . .] denotes the time-ordering symbol). Eq. (12) holds
because the usual proof of the Feynman–Matthews–
Salam formula does not invoke the choice of the repre-
sentation at any stage.

We now introduce the q–ordering as

Oq
[
eiK(p̂(t;α),q̂(t;α))

]
≡

∞∑
k,l=0

Kkl q̂
k(t;α)p̂l(t;α) . (13)

The latter orders the operator in such a way that all
q̂(t;α)’s are on the left and p̂(t;α)’s are on the right.
It should be stressed that the q-ordered operator Oq is
equal to the original operator, but it is written in such
a way that q̂’s and p̂’s appear q-ordered. Note that any
extra correction due to non-commutativity of p̂(t;α) and
q̂(t;α) are included in the coefficients Kkl. Along the
same lines we can define the “classical” q–ordering as

Oqcl
[
eiK(p̂(t;α),q̂(t;α))

]
=
〈q(α), t|Oq

[
eiK(p̂(t;α),q̂(t;α))

]
|p(α), t〉

〈q(α), t|p(α), t〉
, (14)

which proves to be important in the following considera-
tions. Having different vacua, we can now define different
sets of correlation functions. In particular, one can con-
sider

iG0(t′ − t) ≡ iG00(t′ − t) = 〈0|T [q̂(t′)q̂(t)] |0〉 , (15)

iG0α(t′ − t) = 〈0|T [q̂(t′;α)q̂(t;α)] |0〉 , (16)

iGβ0(t′ − t) = 〈0(β, t)|T [q̂(t′)q̂(t)] |0(β, t)〉 , (17)

iGββ(t′ − t) = 〈0(β, t)|T [q̂(t′;β)q̂(t;β)] |0(β, t)〉 . (18)

Although (15) can easily be recognized as a (causal)
Green’s function, in Appendix A we prove that also the
correlation functions (16)-(18) are Green’s functions.

Correlators (15) and (16) can be evaluated in a stan-
dard way. By starting from the matrix element (12), we
may write

〈qf (α), tf |T [q̂(tn;α) . . . q̂(t1;α)]|qi(α), ti〉 =
∑
n,m

〈qf (α), tf |n〉〈n|T [q̂(tn;α) . . . q̂(t1;α)]|m〉〈m|qi(α), ti〉 , (19)

where on the right-hand-side we have inserted the reso- lution of unity in terms of the energy eigenstates |n〉. We
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now want to take the limits ti → −∞ and tf →∞. Due
to the oscillatory nature of the time evolution operator

e−iĤt the limit does not make sense. In this connection
we should, however, recall that by the spectral theorem,

e−iĤz with z ∈ C is strongly continuous for Imz ≤ 0 and,
in the present case, we are interested in the continuous
boundary value of an analytic function. To stay on the
safe ground, we let ti → −∞ and tf → ∞ in the com-
plex plane, along a line with a small negative slope rather
than real axis [43]. Then, in the outlined limits, only the
ground state contribute to (19), which becomes

〈qf (α), tf |T [q̂(tn;α) . . . q̂(t1;α)]|qi(α), ti〉

= lim
tf→+∞
ti→−∞

eiE0(ti−tf )〈qf (α)|0〉

× 〈0|T [q̂(tn;α) . . . q̂(t1;α)]|0〉〈0|qi(α)〉 . (20)

This allows to identify the n-point correlation function
with

〈0|T [q̂(tn;α) . . . q̂(t1;α)]|0〉

= lim
tf→+∞
ti→−∞

〈qf (α), tf |T [q̂(tn;α) . . . q̂(t1;α)]|qi(α), ti〉
〈qf (α)|qi(α)〉

,

(21)

where we have used the identities

lim
t→−∞

|q(α), t〉 = eiE0t|0〉〈0|q(α)〉 , (22)

lim
t→+∞

〈q(α), t| = e−iE0t〈q(α)|0〉〈0| . (23)

By applying Eq. (12) we arrive at

〈0|T [q̂(tn;α) . . . q̂(t1;α)]|0〉 = lim
tf→+∞
ti→−∞

∫ q(tf ;α)=qf (α)
q(ti;α)=qi(α)

Dq(α)Dp(α) q(tn;α) . . . q(t1;α) eiS[p,q;α]∫ q(tf ;α)=qf (α)
q(ti;α)=qi(α)

Dq(α)Dp(α) eiS[p,q;α]
. (24)

In (23) we made an implicit choice of the fiducial vacuum
state so that

Ĥ|0〉 = E0|0〉 . (25)

On the other hand, it is evident that |0(α, t)〉 is not, in

general, an eigenstate of Ĥ. Indeed, from

Ĥ|0(α, t)〉 = ĤĜ†α(t)|0〉 . (26)

we see that |0(α, t)〉 is an eigenstate only if[
Ĥ, Ĝα

]
= 0 , (27)

i.e., only when the transformation Ĝα(t) is a symmetry
of the problem. In this case, by using Eqs. (7)-(9), it
is easy to verify that Eqs. (15) and (16) coincide with
Eqs. (18) and (17), respectively, so our problem is com-
pletely solved. This is the reason of the success of the
approach presented in Ref. [23] in dealing with SSB.

Eq. (24) can be recast into more compact form when
the generating functional

Z0α[Jq] = lim
tf→+∞
ti→−∞

∫ q(tf ;α)=qf (α)
q(ti;α)=qi(α)

Dq(α)Dp(α) eiS[p,q;α]+i
∫+∞
−∞ Jq(t;α)q(t;α)∫ q(tf ;α)=qf (α)

q(ti;α)=qi(α)
Dq(α)Dp(α) eiS[p,q;α]

, (28)

is employed. Here the label α in J(t;α) reminds that the
current is coupled to q(t;α). With this we can equiva-
lently rewrite (28) in a succinct form as

〈0|T (q(tn;α) . . . q(t1;α))|0〉

=

{
(−i)n δn

δJq(tn;α) . . . δJq(t1;α)
Z0α[Jq]

}
Jq=0

. (29)

When we set n = 2 and α = 0 we get (15), for α 6= 0 we
obtain (16).

To compute Green’s functions (17) and (18) for gen-

eral time-dependent Ĝα(t), we must employ a different
strategy than before. In this case, we start with the ex-
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FIG. 1: The complex time contour C in the Schwinger CTP
formalism. Dots on the forward and the backward branches
of the contour denote discrete time points.

pression

〈0(β, t+)|T [q̂(tn;α) . . . q̂(t1;α)]|0(β, t−)〉

= 〈0|Ĝβ(t+)T [q̂(tn;α) . . . q̂(t1;α)]Ĝ†β(t−)|0〉 , (30)

and assume that t+ is bigger and t− smaller than all
time arguments involved in T [. . .]. Following the same
passages that brought us to Eq. (21), we obtain

〈0(β, t+)|T [q̂(tn;α) . . . q̂(t1;α)]|0(β, t−)〉 = lim
tf→+∞
ti→−∞

〈qf (α), tf |T [Ĝβ(t+)q̂(tn;α) . . . q̂(t1;α)Ĝ†β(t−)]|qi(α), ti〉
〈qf (α), tf |qi(α), ti〉

. (31)

However, when deriving Eq. (31) all the operators p̂ and

q̂ entering Ĝβ have to be phrased in the α-representation.
Moreover, we suppose that the generator is q-ordered [see

Eq. (13)]. In this case we can readily rewrite (31) in the
PI representation thanks to a simple generalization of
Eq. (12), namely

〈0(β, t+)|T [q̂(tn;α) . . . q̂(t1;α)]|0(β, t−)〉 = 〈0|T [Ĝβ(t+)q̂(tn;α) . . . q̂(t1;α)Ĝ†β(t−)]|0〉

= lim
tf→+∞
ti→−∞

∫ q(tf ;α)=qf (α)
q(ti;α)=qi(α)

Dq(α)Dp(α)Oqcl [Gβ(t+)] Oqcl [G−β(t−)] q(tn;α) . . . q(t1;α) eiS(p,q;α)∫ q(tf ;α)=qf (α)
q(ti;α)=qi(α)

Dq(α)Dp(α) eiS(p,q;α)
. (32)

Note, in particular, the appearance of the q-ordered form Oqcl[. . .] of the generators Ĝβ(t+) and Ĝ−β(t−) which is a

direct consequence of formulas (22)-(23). We have also used the simple fact that Ĝ†β(t) = Ĝ−β(t).
We are thus naturally led to the following generalized generating functional :

Z+−
β α [Jq] = exp

[
if(β)K

(
δ

δJp(t+;α)
,

δ

δJq(t+;α)

)]
exp

[
if(−β)K

(
δ

δJp(t−;α)
,

δ

δJq(t−;α)

)]
Z0α[Jq, Jp]

∣∣∣∣
Jp=0

, (33)

where

Z0α[Jq, Jp] = lim
tf→+∞
ti→−∞

∫ q(tf ;α)=qf (α)
q(ti;α)=qi(α)

Dq(α)Dp(α) eiS(p,q;α)+i
∫ tf
ti

dt[Jq(t)q(t;α)+Jq(t)p(t;α)]∫ q(tf ;α)=qf (α)
q(ti;α)=qi(α)

Dq(α)Dp(α) eiS(p,q;α)
. (34)

Instead of having simply β, the ordering issue forces us,
in general, to consider a c-number function f(β):

Oqcl
[
Ĝβ(t)

]
= Oqcl

[
eiβK(p̂(t),q̂(t))

]
= eif(β)K(p(t),q(t)) .(35)

This form results from the linear nature of considered
canonical transformations (recall the Groenewold–van
Hove no-go theorem). Some explicit examples of f(β)
will be derived in Sections III and IV. With this in mind,
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we can write

〈0(β, t+)|T (q̂(tn;α) . . . q̂(t1;α))|0(β, t−)〉

=

{
(−i)n δn

δJq(tn;α) . . . δJq(t1;α)
Z+−
βα [Jq]

}
Jq=0

. (36)

Note that, in order to obtain Eqs. (17),(18), we have to
set t+ = t− = t at the end. This, however, does not
comply with the time ordering as defined in Eq. (31).
Of course, the implicit assumption in Eq. (31) is that

all times involved belong to R. By extending the time
arguments to C so that t+ 7→ t+ − iε (ε is set to zero
at the very end) we are naturally led to the Schwinger
closed-time-path (CTP) formalism [32, 33] with the com-
plex time-integration contour C shown in Fig. 1. In this
respect, the limit t+ = t− = t should be understood so
that calculations are done with non-zero ε and only at
the very end the sequence of limits limt+→t−=t limε→0

should be taken. Within this framework we can write

〈0(β, t)|T [q̂(tn;α) . . . q̂(t1;α)]|0(β, t)〉 = 〈0|TC [Ĝβ(t+)q̂(tn;α) . . . q̂(t1;α)Ĝ†β(t−)]|0〉
∣∣∣
t+→t−=t

= lim
tf→+∞
ti→−∞

∫ q(tf ;α)=qf (α)
C q(ti;α)=qi(α)Dq(α)Dp(α)Oqcl [Gβ(t+)]Oqcl [G−β(t−)] q(tn;α) . . . q(t1;α) eiS(p,q;α)

∣∣∣
t+→t−=t∫ q(tf ;α)=qf (α)

q(ti;α)=qi(α)
Dq(α)Dp(α) eiS(p,q;α)

. (37)

Green’s functions (17),(18) can be thus obtained as

iGβ0(t′ − t)

= lim
t+→t−=t

{
(−i)2 δ2

δJq(t′)δJq(t)
Z+−
β0 [Jq]

}
Jq=0

, (38)

iGββ(t′ − t)

= lim
t+→t−=t

{
(−i)2 δ2

δJq(t′;β)δJq(t;β)
Z+−
ββ [Jq]

}
Jq=0

. (39)

We should emphasize that the limit cannot be, in gen-
eral, exchanged with the functional derivatives, otherwise
we could obtain erroneous results due to the fact that
we implicitly work within the CTP formalism. For in-
stance, Eqs. (17) and (18) would be equal to Eqs. (16)
and (15), respectively. On the other hand, as we have

already pointed out, this can happen only when Ĝα(t) is
a symmetry of the problem.

Note that, if β is small and f(β) = o(β), we can write
a perturbative expansion in β of Eq. (33), where the
leading-order in β reads

Z+−
βα [Jq] ≈ Z0α[Jq]

+ iβ

[
K

(
δ

δJp(t+;α)
,

δ

δJq(t+;α)

)

− K

(
δ

δJp(t−;α)
,

δ

δJq(t−;α)

)]
Z0α[Jq, Jp]

∣∣∣∣
Jp=0

. (40)

Here the 0-order contribution Z0α[Jq] denotes the gener-
ating functional (28).

We now generalize our previous reasoning a bit and

introduce yet another generating functional

Z+−
γβα[Jq] = e

if(γ)K
(

δ
δJp(t+;α)

, δ
δJq(t+;α)

)

× e
if(−β)K

(
δ

δJp(t−;α)
, δ
δJq(t−;α)

)
Z0α[Jq, Jp]

∣∣∣∣
Jp=0

. (41)

From this, we find that the vacuum-to-vacuum transition
amplitude (9) is simply

〈0|0(β, t)〉 = lim
t−→t

Z+−
0β0[0] . (42)

Let us stress, once more, that in the QFT setting this
transition amplitude would typically be zero due to non-
existence of the operator K (the domain of K tends to
zero in the long-wave limit). See, for instance, Refs. [2,
3, 11, 14, 16] for detailed discussions of this issue.

III. TRANSLATIONS

We will now see how the GGF actually work, by calcu-
lating the 1- and 2-point correlation functions in mixed-
representation for two simple cases. In our first example
we consider translations defined through the prescription

q̂(t;α) = q̂(t) + α , p̂(t;α) = p̂(t) . (43)

The generator of this transformation is

Ĝα(t) = exp[−iαp̂(t)] . (44)

We now consider the Hamiltonian

Ĥ(p̂(t;α), q̂(t;α))

=
p̂2(t;α)

2
+

q̂2(t;α)

2
+ P (q̂(t;α)) , (45)
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where the potential has the form

P (q̂(t;α)) = − α q̂(t;α) +
α2

2
. (46)

In the QFT context the Hamiltonian (45) would corre-
spond to the so-called van-Hove model [34], describing
an infinite chain of linear harmonic oscillators (LHOs)
subject to an external force.

Transformation (43) brings Eq. (45) in the LHO form

Ĥ(p̂(t), q̂(t)) =
p̂2(t)

2
+

q̂2(t)

2
, (47)

where m = ω = 1.
Our starting point here is the evolution kernel

〈qf (α), tf |qi(α), ti〉Jq Jp

=

∫ q(tf ;α)=qf (α)

q(ti;α)=qi(α)

Dq(α)Dp(α) ei
∫ tf
ti

dt p(t;α)q̇(t;α)

× e−i
∫ tf
ti

dt[H(p(t;α),q(t;α)) − Jp(t;α)p(t;α) − Jq(t;α)q(t;α)] .

(48)

By performing the change of variables

q(t;α) = q(t) + α , p(t;α) = p(t) , (49)

Eq. (48) reduces to

〈qf (α), tf |qi(α), ti〉Jq Jp

=

∫ q(tf )=qf≡qf (α)−α

q(ti;α)=qi≡qi(α)−α
DqDp ei

∫ tf
ti

dt[p(t)q̇(t)−H(p(t),q(t))]

× ei
∫ tf
ti

dt [Jp(t;α)p(t)+Jq(t;α)q(t)]ei
∫ tf
ti

dtJq(t;α)α . (50)

Apart from the last exponential factor, the other pieces
are now standard and we can now easily write down the
GGF of Green’s functions (28) in the explicit form (cf.

e.g., Ref. [3])

Z0α[Jq, Jp] = e−
i
2

∫+∞
−∞ dτ

∫+∞
−∞ dτ ′Jq(τ ;α)G(τ−τ ′)Jq(τ ′;α)

× e−i
∫+∞
−∞ dτ

∫+∞
−∞ dτ ′Jq(τ ;α)∂τ′G(τ−τ

′)Jp(τ
′;α)

× e−
i
2

∫+∞
−∞ dτ

∫+∞
−∞ dτ ′Jp(τ ;α)G(τ−τ ′)Jp(τ ′;α)

× eiα
∫+∞
−∞ dτJq(τ ;α) . (51)

Here G(t− t′) represents the ordinary LHO Green’s func-
tion, i.e. (

−∂2t − 1
)
G(t− t′) = δ(t− t′) , (52)(

−∂2t′ − 1
)
G(t− t′) = δ(t− t′) . (53)

Eqs. (52) and (53) leave G(t − t′) undefined up to
an homogeneous solution. A typical choice is to take
G(t − t′) = G0(t − t′), where G0(t − t′) is defined by
Eq. (15) which coincides with the Feynman–Stückelberg
causal propagator

G0(t′ − t) =

∫
dk

2π

e−ik(t−t
′)

k2 − 1 + iε

= − i
2

[
θ(t′ − t)e−i(t

′−t) + θ(t− t′)ei(t
′−t)
]
. (54)

Because we have no ordering problem here (the gener-
ator (44), involves only p̂), the function f(α), introduced
in Eq. (34) reduces to f(β) = iβ. Hence the GGF (33)
reduces to

Z+−
βα [Jq] = e

−β δ
δJp(t+;α) e

β δ
δJp(t−;α)Z0α[Jq, Jp]

∣∣∣
Jp=0

. (55)

By employing the simple identity

exp (ρ∂x) f(x) = f(x+ ρ) , (56)

where ∂x ≡ ∂
∂x , we find that

Z+−
βα [Jq] = e−

i
2

∫+∞
−∞ dτ

∫+∞
−∞ dτ ′Jq(τ ;α)G0(τ−τ ′)Jq(τ ′;α) + iα

∫+∞
−∞ dτJq(τ ;α)

×
[
e
−β δ

δJp(t+;α) e−i
∫+∞
−∞ dτ

∫+∞
−∞ dτ ′Jq(τ ;α)∂τ′G0(τ−τ

′)Jp(τ
′;α)

× e−
i
2

∫+∞
−∞ dτ

∫+∞
−∞ dτ ′Jp(τ,α)G0(τ−τ ′)Jp(τ ′;α)e−

β2

4 −iβ
∫+∞
−∞ dτ G0(τ−t−)Jp(τ ;α)−iβ

∫+∞
−∞ dτ Jq(τ ;α)∂t−G0(τ−t−)

]
Jp=0

. (57)

If we take the functional derivative and set Jp = 0, the GGF may be written in the form

Z+−
βα [Jq] = e−

i
2

∫+∞
−∞ dτ

∫+∞
−∞ dτ ′Jq(τ ;α)G0(τ−τ ′)Jq(τ ′;α)

× ei
∫+∞
−∞ dτJq(τ ;α)[α−β∂t−G0(τ−t−)+β∂t+G0(τ−t+)]

× e−
β2

4 −iβ
2G0(t+−t−) . (58)
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In the same way we find that

Z+−
0β0[Jq] = e−

i
2

∫+∞
−∞ dτ

∫+∞
−∞ dτ ′Jq(τ)G0(τ−τ ′)Jq(τ ′)

× eiβ
∫+∞
−∞ dτJq(τ)− β

2

4 −iβ
∫+∞
−∞ dτJq(τ)∂t−G0(τ−t−) , (59)

so, we can evaluate the vacuum-vacuum transition am-
plitude (9) to be

〈0|0(β, t)〉 = lim
t−→t

Z+−
0β0[0] = exp

[
−β

2

4

]
. (60)

In principle, we can now derive any n-point correlation
function from the GGF (58). However, for simplicity’s
sake we limit ourselves to 1-point and 2-point correlation
functions. In particular, our aim is to compute Green’s
functions (16)-(18). By taking a functional derivative of
the GGF (58) with respect to Jq(t1, α), we find

i
δZ+−

βα [Jq]

δJq(t1, α)

=

[∫ +∞

−∞
dτJq(τ ;α)G0(τ − t1)− α+ β∂t−G0(t1 − t−)

− β∂t+G0(t1 − t+)
]
Z+−
βα [Jq] . (61)

Setting Jq = 0 and t1 = t we get

〈0(β, t+)|q̂(t;α)|0(β; t−)〉 =
[
α− β∂t−G0(t− t−)

+ β∂t+G0(t− t+)
]
Z+−
βα [0] , (62)

where

Z+−
βα [0] = exp

[
−β

2

4
− iβ2G0(t+ − t−)

]
. (63)

In the case when β = α = 0 we recover the expected
result 〈0|q̂(t)|0〉 = 0. When β = 0 but α 6= 0 we obtain

〈0|q̂(t;α)|0〉 = α . (64)

If α = 0 but β 6= 0 we find

〈0(β, t+)|q̂(t)|0(β; t−)〉

=
[
β∂t+G0(t− t+) − β∂t−G0(t− t−)

]
Z+−
βα [0] . (65)

To explicitly evaluate expression (65), we employ the fact
[see Eq. (54)] that

G0(t− t−) = − i
2
e−i(t−t−) , (66)

G0(t− t+) = − i
2
ei(t−t+) . (67)

Thanks to Eqs. (66) and (67), we can write

〈0(β, t+)|q̂(t)|0(β; t−)〉

= −β
2

(
e−i(t−t−) + ei(t−t+)

)
Z+−
βα [0] . (68)

At this stage we can safely set t+ = t− = t′ and observe
that

〈0(β, t′)|q̂(t)|0(β; t′)〉 = −β cos(t− t′) . (69)

In the same way we find

〈0(β, t′)|q̂(t;β)|0(β; t′)〉 = β [1 − cos(t− t′)] . (70)

Let us now consider the 2-point correlation functions.
These can be written as

〈0(β, t+)|T [q̂(t2;α)q̂(t1;α)] |0(β, t−)〉 = (−i)2
δ2Z+−

βα [Jq]

δJq(t2;α)δJq(t1;α)

∣∣∣∣∣
Jq=0

=
{
iG0(t2 − t1) + [ α− β∂t−G0(t1 − t−) + β∂t+G0(t1 − t+) ]

[
α− β∂t−G0(t2 − t−) + β∂t+G0(t2 − t+)

]}
Z+−
βα [0] .

(71)

If we set β = α = 0 we recover the usual Feynman–
Stückelberg causal propagator (15). On the other hand,
if we set β = 0, α 6= 0 and put t2 = t′ , t1 = t, we obtain
the Green’s function (16) in the explicit form

iG0α(t′ − t) = iG0(t′ − t) + α2 . (72)

If α = 0 and β 6= 0 we get
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〈0(β, t+)|T [q̂(t2)q̂(t1)] |0(β, t−)〉 =
{
iG0(t2 − t1) +

[
β∂t+G0(t1 − t+) − β∂t−G0(t1 − t−)

]
×
[
β∂t+G0(t2 − t+) − β∂t−G0(t2 − t−)

]}
Z+−
βα [0] . (73)

With the help of Eqs. (66),(67) this can be rewritten as

〈0(β, t+)|T [q̂(t2)q̂(t1)] |0(β, t−)〉

=

{
iG0(t2 − t1) +

β2

4

[
e−i(t1−t−) + ei(t1−t+)

]
×
[
e−i(t2−t−) + ei(t2−t+)

]}
Z+−
βα [0] . (74)

Setting t2 = t′ and t− = t+ = t1 = t we get Green’s
function (17) in the explicit form

iGβ 0(t′ − t) = iG0(t′ − t) + β2 cos(t− t′) . (75)

It is easy to see that the difference iGβ 0(t′−t)−iG0(t′−t)
represents an homogeneous solution of Eq. (106). This
implies that both Green’s functions differ only by the
choice of boundary conditions (cf. Appendix A).

If in Eq. (71) we set β = α we get the Green’s func-
tion (18)

iGβ β(t′ − t) = iG0(t′ − t) . (76)

Note, that the difference iGβ β(t′ − t) − iG0 β(t′ − t) is a
solution of Eqs. (110),(111) for t 6= t′, i.e., an homogenous
solution, as again shown in Appendix A.

IV. DILATATIONS

The second example which we discuss here is that of
dilatations:

q̂(t;α) = Ĝ−1α (t) q̂(t) Ĝα(t) = eα q̂(t) , (77)

p̂(t;α) = Ĝ−1α (t) p̂(t) Ĝα(t) = e−α p̂(t) . (78)

In this case the generator Ĝα(t) has the form

Ĝα(t) = exp

{
−iα

[
q̂(t) p̂(t)− i

2

]}
. (79)

We will consider the Hamiltonian

Ĥ(p̂(t;α), q̂(t;α)) =
p̂2(t;α)2e2α

2
+

q̂2(t;α)2e−2α

2
.

(80)
As in Section III, this reduces to the LHO form (47) af-
ter the transformation (77),(78) is employed. This fact
would be important in the QFT perturbation approach,
where the LHO-like part of the action defines the free
asymptotic field and ensuing perturbation Green’s func-
tion.

Proceeding as in Section III one can derive the gener-
ating functional Z0α[Jq, Jp]:

Z0α[Jq, Jp] = e−
i
2

∫+∞
−∞ dτdτ ′e2αJq(τ ;α)G0(τ−τ ′)Jq(τ ′;α)

× e−i
∫+∞
−∞ dτdτ ′Jq(τ ;α)∂τ′G0(τ−τ

′)Jp(τ
′;α)

× e−
i
2

∫+∞
−∞ dτdτ ′e−2αJp(τ ;α)G0(τ−τ ′)Jp(τ ′;α) . (81)

The corresponding GGF (33) reads now as

Z+−
βα [Jq] = exp

[
if(β)

δ

δJp(τ+;α)

δ

δJq(τ+;α)

]
exp

[
if(−β)

δ

δJp(τ−;α)

δ

δJq(τ−;α)

]
Z0α[Jq, Jp]

∣∣∣∣
Jp=0

. (82)

First of all, we notice that the c-number factor present
in Eq. (79) disappears in the definition (82). It remains
to determine the function f(β). To this end we use the

relation [35]

(q̂(t)p̂(t))
n

=

n∑
k=1

(−i)n−kS(k)
n q̂k(t)p̂k(t) , (83)

where S
(k)
n are Stirling numbers of the second kind, de-
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fined by the recurrence relation [35, 36]

S
(k)
n+1 = kS(k)

n + S(k−1)
n . (84)

Thanks to the identity

∞∑
n=1

n∑
k=1

=

∞∑
k=1

∞∑
n=k

, (85)

and to the generating relation

1

k!

(
eβ − 1

)k
=

∞∑
n=k

S(k)
n

βk

k!
, (86)

we find that

Oq
[
e−iβq̂(t) p̂(t)

]
=

∞∑
k=0

ikq̂k(t)p̂k(t)

(
e−β − 1

)k
k!

. (87)

With this we can also easily check that

Oqcl
[
e−iβq̂(t) p̂(t)

]
= exp

[
i(e−β − 1) q(t)p(t)

]
, (88)

and thus identify f(β) = 1− e−β .
Before we embark on the computation of Eq. (82),

we derive first the vacuum-to-vacuum transition ampli-
tude (9) by using the formula (136) from Appendix B. In
the present case we obtain

Γ = 1 + 4f2(−β)
(
ab − c2

)
− 4if(−β)c , (89)

where Γ is defined in Eq. (135).
The coefficients in Γ can be determined by inspecting

Eq. (81). This gives

a =
i

2
G0(0) e−2β =

1

4
e−2β , (90)

b =
i

2
G0(0)e2β =

1

4
e2β , (91)

c = − i
2
∂tG0(0) = − i

4
. (92)

The derivative term in Eq. (92) should be understood as

∂tG0(0) = lim
t′−t→0+

〈0|q̂(t′)p̂(t)|0〉 (93)

= ∂t lim
t′−t→0+

〈0|q̂(t′)q̂(t)|0〉 , (94)

because of the q-ordering prescription employed. Thanks
to Eq. (90) and (92) we can write

Γ =
e2β + 1

2
= eβ coshβ . (95)

Consequently, we obtain the vacuum-to-vacuum transi-
tion amplitude in the final form

〈0|0(β, t)〉 = lim
t−→t

Z+−
0β0[0] =

1√
coshβ

. (96)

Let us now come back to Eq. (82). An exact evaluation
would be rather long and not very illuminating. However,
it is instructive to use the example of dilatations to illus-
trate how perturbation considerations work in practice.
For small β the GGF (40) acquires the explicit form

Z+−
βα [Jq] ≈ Z0α[Jq]− iβ

[
δ

δJp(t−;α)

δ

δJq(t−;α)

− δ

δJp(t+;α)

δ

δJq(t+;α)

]
Z0α[Jq, Jp]

∣∣∣∣
Jp=0

, (97)

which reduces to

Z+−
βα [Jq] ≈ exp

[
− i e

2α

2

∫ +∞

−∞
dτ

∫ +∞

−∞
dτ ′Jq(τ ;α)G0(τ − τ ′)Jq(τ ′;α)

]

×
[
1− i β e2α

∫ +∞

−∞
dτ

∫ +∞

−∞
dτ ′Jq(τ ;α)

[
∂t+G0(τ − t+)G0(τ ′ − t+)− ∂t−G0(τ − t−)G0(τ ′ − t−)

]
Jq(τ

′;α)

]
. (98)

To the leading order in β this can be rewritten in the simple compact form as

Z+−
βα [Jq] = exp

[
− i e

2α

2

∫ +∞

−∞
dτdτ ′Jq(τ ;α)F+−

β (τ − τ ′)Jq(τ ′;α)

]
, (99)
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where

F+−
β (t− t′) = G0(τ − τ ′) + 2β [ ∂t+G0(τ − t+)G0(τ ′ − t+) + ∂t−G0(τ − t−)G0(τ ′ − t−) ]

= G0(τ − τ ′) +
iβ

2

[
e−i(t+−τ)e−i(t+−τ

′) + ei(t−−τ)ei(t−−τ
′)
]
. (100)

Thanks to GGF (99), we can now evaluate the leading-
order correlation functions. One can check that all one-
point correlation functions are identically zero. It is also
clear that, to the leading-order, we have

lim
t+→t−=t

F+−
β (t− t′) = Gβ0(t− t′) , (101)

and so, thanks to Eq. (100), we get

iGβ α(t′ − t) = e2α [iG0(t′ − t) − β cos(t′ − t)] . (102)

If β = α = 0 we recover the standard Green’s func-
tion (15). If β = 0 we get the Green’s function (16):

iG0α(t′ − t′) = e2αiG0(t′ − t) . (103)

If α = 0 we get the Green’s function (17)

iGβ 0(t′ − t) = iG0(t′ − t) − β cos(t′ − t) . (104)

Finally, if α = β we get the Green’s function (18)

iGβ β(t′ − t) = e2β [iG0(t′ − t) − β cos(t′ − t)] . (105)

Let us note, that in the leading-order approximation the
aforementioned Green’s functions differ from each other
only in boundary terms (homogenous solutions).

V. CONCLUSIONS

In the present article we have derived a generalized
generating functional for mixed-representation Green’s
functions in the phase-space PI representation. Al-
though, at a mathematical level, the origin of the mixed-
representation correlation functions is quite clear, being
related to a certain class of canonical transformations, at
the QM level they are not often considered. Exceptions
are provided by semiclassical QM and theory of gener-
alized (Perelomov-type) coherent states. A context in
which they turn out to be truly relevant is QFT, where
the existence of unitarily inequivalent Fock spaces [2, 3]
allows for different vacuum states. As a consequence, in
QFT the choice of a vacuum state and ensuing corre-
lation functions has non-trivial phenomenological impli-
cations. Relevant examples of this are, e.g., flavor mix-
ing [19], renormalization [3, 37, 38], continuous phase
transitions [13, 15, 38] and Thermo Field Dynamics [2].

An important upshot of our analysis is the finding
that the respective members of such class of correla-
tion functions differ among themselves only by bound-
ary terms (homogeneous solutions). Indeed, the fact

that the Green’s functions studied in the present work,
differ from the conventional ones in the specification of
boundary conditions, implies the necessity at a physical
level of careful definition of asymptotic states and ensu-
ing perturbative expansion. This is indeed the case of
mixing, in which two distinct sets of asymptotic states
exist [19]. Other important cases include QFT on curved
backgrounds [39] or unstable particles.

We have shown that such boundary conditions can be
included in an elegant and unified way in the general-
ized generating functional of Green’s functions. There
the boundary terms are reflected in the parametriza-
tion of the interacting term epitomized by the generating
function K. It is interesting to notice that during our
analysis we were naturally led to the so-called Schwinger
closed-time-path formulation of Green’s functions which
typically appears when discussing out-of-equilibrium in-
teracting many-body systems. We have illustrated the
power of the generalized generating functional obtained
on two explicit examples, namely translations (van-Hove
model) and dilatations.

An obvious direction for a future extension of the
present work would be in realm of QFT functional in-
tegrals (FIs). There one requires a covariant formulation
in terms of Lagrange functions instead of Hamiltonians.
One of the important advantages of the FI formalism is
its manifestly Lorentz covariance which is lost when us-
ing Hamiltonian FIs (as treated here in the context of
PIs) and closer connection with some of the most press-
ing issues of modern high-energy particle physics.

As it stands, our paper is based on the premise
that considered quantum systems are in thermal (zero-
temperature) equilibrium state. However, the appear-
ance of Schwingers CTP contour is very indicative of
a (potentially) seamless extension to the thermal QFT
in the so-called Keldysh formalism [3, 40]. Ensuing ex-
tension to non-trivial initial states of the time evolution
would represent an important step toward more system-
atic treatment of non-equilibrium QFT systems [41].

Another interesting route to follow would be to find
out the connection with the generalized coherent-state
(à la Perelomov) PIs and the present phase-space-type of
GGF.
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Appendix A

In this Appendix we present some general considera-
tions about the Green’s functions (16)-(18) used in the
main body of the text.

Let us first verify that Gβ 0(t, t′) is a Green’s function,

i.e. it satisfies

L(∂t)Gβ 0(t, t′) = L(∂t′)Gβ 0(t, t′) = δ(t− t′) . (106)

Here L(∂t) represents the differential operator such that
L(∂t)q̂(t) = 0 is the equation of motion for q̂(t) in
Heisenberg’s picture. To do so, we need to show that
Gβ 0(t, t′) = Gβ 0(t− t′). This follows easily from the fol-
lowing chain of reasonings

Gβ 0(t, t′) = θ(t− t′)〈0|eiĤt/~Ĝβ(0)e−iĤt/~ q̂(t′) q̂(t) eiĤt/~ Ĝ−1β (0) e−iĤt/~|0〉

+ θ(t′ − t)〈0|eiĤt/~ Ĝβ(0) e−iĤt/~ q̂(t) q̂(t′) eiĤt/~ Ĝ−1β (0) e−iĤt/~|0〉

= θ(t− t′)〈0|Ĝβ(0) q̂(t′ − t) q̂(0) Ĝ−1β (0)|0〉 + θ(t′ − t)〈0|Ĝβ(0)q̂(0)q̂(t′ − t) Ĝ−1β (0)|0〉

= Gβ 0(t− t′) . (107)

Since the considered equations of motion are quadratic
and linear in time, see Eqs. (52),(53), we have

L(∂t)Gβ 0(t− t′) = L(∂t′)Gβ 0(t− t′) , (108)

as it should be according to Eq. (106). Note that the
δ-function on the right-hand-side of (106) comes from
the derivative of θ(t − t′) in the definition of the two-
point function. It should be stressed that Gβ 0(t − t′)
differs from the usual propagator G0(t− t′), which obeys
the same equation of motion, in the choice of boundary
conditions.

However, it can be seen that G0α(t− t′) is not, in gen-
eral, a Green’s function in the same sense which we have
seen above, but rather it is in the sense typically un-
derstood in QFT (see, e.g., Ref. [37]), i.e. satisfying a
infinite set of coupled equations among different-order
correlation functions (so-called Schwinger–Dyson equa-
tions [11, 37, 38]). Let us consider, e.g., the simple ex-
ample discussed in Section III. Thanks to the Hamilto-
nian (45) we obtain the evolution equation

∂2t q̂(t;α) + q̂(t;α) = α . (109)

Using Eq. (109), it can be easily verified that

(∂2t′ + 1)G0α + 〈0|T [P ′[q̂(t′;α)]q̂(t;α)] |0〉

= δ(t′ − t) , (110)

(∂2t + 1)G0α + 〈0|T [q̂(t′;α)P ′[q̂(t;α)]] |0〉

= δ(t′ − t) , (111)

where P [q̂(t;α)] was introduced in Eq. (46) and, formally

P ′[q̂(τ ;α)] =
δP [q̂(τ ;α)]

δq̂(τ ;α)
. (112)

So, explicitly we have

(∂2t′ + 1)G0α − α〈0|q̂(t;α)|0〉 = δ(t′ − t) , (113)

(∂2t + 1)G0α − α〈0|q̂(t′;α)|0〉 = δ(t′ − t) , (114)

which relates 1-point functions with the propagator.
Following similar reasonings as above, one can show

that Gβ β(t− t′) is a Green’s function in the above men-
tioned QFT sense. In the same manner one can prove
that Gαα(t− t′) should differ from G0α(t− t′) only in the
choice of the boundary conditions. This point has impor-
tant implications, for instance, for setting up appropriate
perturbation expansion in QFT. We will illustrating this
issue more explicitly in our future work.

Appendix B

Here we show an instructive toy model calculation of
the GGF (82). In doing so, we calculate factor Γ and
other quantities that are used in Section IV.

Let us consider the expression:

eρ∂x∂ye−ax
2−by2+2cxy , (115)

Now we perform the substitution

ax2 − 2cxy + by2 = a
(
x− c

a
y
)2

+ y2
(
b− c2

a

)
= aξ2 + hγ2 , (116)

with ξ ≡ x − ca/y , γ ≡ y , h ≡ b− c2/a. With this

∂x∂y = − c

a
∂2ξ + ∂ξ∂γ , (117)
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and hence

eρ∂x∂ye−ax
2−by2+2cxy = e−

ρc
a ∂

2
ξ+ρ∂ξ∂γe−aξ

2−hγ2

. (118)

We start evaluating

eβ∂
2
ξ e−aξ

2

=

∞∑
n=0

βn

n!
∂2nξ e−aξ

2

. (119)

Using the Rodrigues formula for Hermite polynomi-
als [42], in the case of even degrees:

∂2nξ e−aξ
2

= anH2n (
√
aξ) e−aξ

2

, (120)

we get

eβ∂
2
ξ e−aξ

2

=

∞∑
n=0

βn

n!
anH2n(

√
aξ) e−aξ

2

. (121)

It is useful to rewrite Hermite polynomials in the integral
representation [42]:

Hm(x) =
2m√
π

∫ +∞

−∞
dt (x+ it)m e−t

2

, (122)

so that

eβ∂
2
ξ e−aξ

2

(123)

=
1√
π

∫ +∞

−∞
dt

∞∑
n=0

βn

n!
an(
√
aξ + it)2n22ne−t

2

e−aξ
2

.

Resumming the series, which now is a simple exponential
series, we get

eβ∂
2
ξ e−aξ

2

=
1√
π

∫ +∞

−∞
dt e−t

2+4aβ(
√
aξ+it)

2

e−aξ
2

.

(124)
Performing the integral we thus have

eβ∂
2
ξ e−aξ

2

=
e−

aξ2

1+4aβ

√
1 + 4aβ

, Re (aβ) > −1

4
. (125)

Putting β = −(ρc)/a we can rewrite Eq.(118) as

eρ∂x∂y e−ax
2−by2+2cxy =

√
g

a
eρ∂ξ∂γ e−hγ

2−gξ2 , (126)

where

g =
a

1− 4ρc
. (127)

Expanding the first exponential, we have

eρ∂ξ∂γ e−hγ
2−gξ2 =

∞∑
n=0

ρn

n!
∂nξ ∂

n
γ e
−hγ2−gξ2 . (128)

Firstly, we concentrate on

eρ∂ξ∂γ e−gξ
2

=

∞∑
n=0

ρn

n!
∂nξ e

−gξ2∂nγ . (129)

Applying once more Rodrigues’ formula

∂nξ e
−aξ2 = a

n
2 (−1)nHn(

√
aξ) e−aξ

2

, (130)

we get

eρ∂ξ∂γ e−gξ
2

= e−gξ
2
∞∑
n=0

(−ρ√g)n

n!
Hn(
√
gξ)∂nγ . (131)

Using the integral representation (122) we find

eρ∂ξ∂γ e−gξ
2

= e−gξ
2

e−2gρξ∂γ−ρ
2g∂2

γ . (132)

Our final results can be thus written as

eρ∂ξ∂γ e−hγ
2−gξ2 =

e
−gξ2−hγ

2−4gρhξγ+4hg2ρ2ξ2

1−4gρ2h√
1 − 4ρ2 (ab − c2)− 4ρc

. (133)

In the original variables x and y this reads as

exp (ρ∂x∂y) exp
(
−ax2 − by2 + 2cxy

)
=

1√
Γ

exp

[
−ax2 − by2 + 2cxy + 4xyρ(ab− c2)

Γ

]
, (134)

where

Γ = 1 − 4ρ2
(
ab − c2

)
− 4ρc . (135)

In analogy with (82) we should set x = y = 0. With this
we consequently obtain

eρ∂x∂ye−ax
2−by2+2cxy

∣∣∣
x,y=0

=
1√
Γ
. (136)
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