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We develop a class of supercell photonic crystals supporting complete photonic bandgaps based on
breaking spatial symmetries of the underlying primitive photonic crystal. One member of this class
based on a two-dimensional honeycomb structure supports a complete bandgap for an index-contrast
ratio as low as nhigh/nlow = 2.1, the lowest index constrast known to support a complete bandgap
for a 2D photonic crystal. This same design principle is used to develop the first photonic crystal
slab that supports a bandgap for dual-polarization visible light. The complete bandgaps found in
such supercell photonic crystals do not necessarily monotonically increase as the index-contrast in
the system is increased.

Since their discovery, photonic crystals have become
an indispensable technology across the entire field of op-
tical physics due to their ability to confine and control
light of an arbitrary wavelength [1–4]. This critical fea-
ture is achieved by designing the crystal lattice to possess
a complete photonic bandgap, a range of frequencies for
which no light can propagate regardless of its momen-
tum or polarization. Unlike their electronic counterparts
in conventional crystals, whose band structure is limited
to the crystal lattices available in atomic and molecular
structures, the dielectric structure comprising a photonic
crystal can be specified with nearly complete arbitrari-
ness, yielding a vast design space for optimizing photonic
crystals for specific applications that is limited only by
the index of refraction of available materials at the oper-
ational wavelength. For example, photonic crystals have
been developed to enable complete absorption in mono-
layer materials [5, 6], or for use in achieving high-power
solid-state lasers [7–9]. Moreover, this design freedom
in dielectric structures has been leveraged in numerous
studies to optimize the complete bandgaps in high-index
materials [10–33]. Similar efforts to realize new crys-
tal structures or improve upon existing ones to achieve
complete bandgaps in low-index materials have yielded
only minor improvements upon traditional simple crys-
tal structures with high symmetry [34, 35], i.e. the inverse
triangular lattice in two dimensions (2D) [4] and the net-
work diamond lattice in three dimensions (3D) [36], or
have been obtained directly through numerical simula-
tion [30, 33].

However, the ability to realize complete bandgaps for
low-index materials is critically important to the de-
velopment of many photonics technologies operating in
the visible wavelength range, such as augmented and
virtual reality systems, where the highest-index lossless
materials have n ≈ 2.3-2.5 [37–39]. Currently, there
are no known photonic crystal slabs which realize dual-
polarization in-plane complete bandgaps using these ma-
terials. Although a few 3D photonic crystals do display
a complete bandgap in this range, 3D photonic crystals
are difficult to fabricate [40–44].

Here, we demonstrate a new class of complete pho-
tonic bandgaps which are achieved by judiciously break-

ing symmetry, rather than promoting it. By starting
with a photonic crystal possessing a large bandgap for
one polarization, we show that by expanding the primi-
tive cell of the photonic crystal to form a supercell and
then slightly adjusting the dielectric structure within this
supercell to break part of the translational symmetry
with respect to the original primitive cell, a bandgap
in the other polarization can be opened, thus produc-
ing a complete bandgap. This method yields a two-
dimensional photonic crystal based on a honeycomb lat-
tice with a complete bandgap that persists down to
an index-contrast ratio of nhigh/nlow = 2.1, the low-
est known index-contrast ratio in 2D photonic crystals.
Such low index contrast bandgaps can also be translated
into photonic crystal slabs. In contrast to the complete
photonic bandgaps found in traditional photonic crys-
tals, complete bandgaps in supercell photonic crystals do
not necessarily monotonically increase as a function of
the index-contrast ratio, disproving a generally held in-
tuition in the photonic crystal literature [4].

To illuminate how symmetry breaking can help to re-
alize complete photonic bandgaps, we first consider the
2D photonic crystal comprised of a network structure on
a honeycomb lattice depicted in Fig. 1(a). The primi-
tive cell of this system contains a pair of vertices in this
network lattice, and the system can be parameterized
solely in terms of the thickness, t, of the lines forming
the network structure. Although in a low-index network
structure, nhigh/nlow = 2.4, a wide range of t yields a
large transverse electric (TE) bandgap as shown in Fig.
1(b), no complete photonic bandgap exists for any choice
of t for this choice of nhigh/nlow.

However, starting from the crystal structure as shown
in Fig. 1(a), we can find a complete bandgap in a closely
related supercell photonic crystal. First, we increase the
size of the primitive cell to contain six vertices which
form the supercell, as depicted in Fig. 1(c). In doing so,
each of the bands in the primitive Brillouin zone fold up
into three bands in the supercell Brillouin zone, shown
in Fig. 1(d). Along the edge of the supercell Brillouin
zone (M ′ → K ′), pairs of the folded supercell bands
can form lines of degeneracies, i.e. degenerate contours
[46], and one such degenerate contour is formed per trio
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FIG. 1. (a),(c),(e) Schematics of 2D photonic crystals formed
of a network of a high dielectric material with n = 2.4 (black
region) in a background of air, nair = 1. The unit cell for
the corresponding band structure in (b),(d),(f) is shown as
a green diamond or hexagon. Parameters which character-
ize these crystals are indicated in purple. The structures in
(a) and (c) are completely specified by the line thickness, t,
while the structure in (e) is completely specified by three pa-
rameters, the thick line thickness, t1, the thin line thickness,
t2, and the shortest distance from a thick line to the cen-
ter of its corresponding thick-bordered hexagon, r. l denotes
the distance between two vertices in the primitive honeycomb
lattice. (b),(d),(f) Band structures around the border of the
irreducible Brillouin Zone for the photonic crystals shown in
(a),(c),(e), respectively, in which the TE bands are shown in
red and the TM bands are shown in blue. In (b), the 2nd TM
band is shown as cyan (light gray), while the corresponding
folded bands in the supercell Brillouin zone in (d) and (f)
are also shown in the same color. In (b),(d), t/l = 0.3636,
while in (f), t1/l = 0.4149, t2/l = 0.0816, and r/l = 0.8145,
and a complete bandgap is found with width ∆ω/ω̄ = 8.6%
between the 8th and 9th bands (yellow rectangle). Band struc-
tures were calculated using MIT Photonic Bands (MPB)
[45].

of folded bands originating from the same band in the
primitive Brillouin zone. From the perspective of the
supercell photonic crystal, the degeneracies comprising
each of the degenerate contours are accidental, and are
only the result of the supercell obeying an extra set of
spatial symmetries as it is a three-fold copy of the original
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FIG. 2. Plot of the optimized complete bandgap width as
a function of the index contrast, nhigh/nlow for six different
2D photonic crystals, the supercell network honeycomb lat-
tice discussed in Fig. 1 (red squares), the decorated square
lattice designed in Ref. [30] (green diamonds), the traditional
inverse triangular lattice (magenta downward-pointing trian-
gles), the decorated network honeycomb lattice designed in
Ref. [34] (blue circles), the traditional network square lattice
(dark green upward-pointing triangles), and the supercell net-
work square lattice discussed in Fig. 4 (yellow right-pointing
triangles). In the schematics, the black regions correspond
to the high index material, nhigh, while the white regions
correspond to low index material, nlow. Optimized complete
bandgaps were calculated using MPB [45].

primitive cell. Thus by breaking these symmetries, the
degeneracies forming the degenerate contours are lifted,
and a gap can begin to open between the two transverse
magnetic (TM) bands. The supercell is now character-
ized in terms of three parameters, the thickness of the
center lines, t1, the thickness of the connecting lines, t2,
and the size of the thick-lined hexagons, r, shown in Fig.
1(e). When the symmetry breaking becomes sufficiently
strong, a complete photonic bandgap opens between the
8th and 9th bands of the system, whose maximum gap
width at nhigh/nlow = 2.4 can be found numerically to
be ∆ω/ω̄ = 8.6%. Here, ∆ω is the difference between the
minimum of the 9th band and the maximum of the 8th
band, while ω̄ is the central frequency of the gap. Rig-
orously, after the symmetry of this system is broken, the
supercell containing six vertices becomes the primitive
cell of the system. However, for semantic convenience,
we will continue to refer to this larger primitive cell as
the ‘supercell’ and reserve ‘primitive cell’ for the smaller
system whose symmetry is intact.

Previously, the lowest index-contrast ratio known to
support a complete bandgap in a 2D photonic crystal
was a decorated square lattice, shown as the green curve
in Fig. 2, which has a complete bandgap between the
5th and 6th bands for index-contrast ratios as low as
nhigh/nlow = 2.3 [30]. In contrast, the supercell hon-
eycomb lattice possesses a complete bandgap for index-
contrast ratios as low as nhigh/nlow = 2.1, and as such is
the first 2D photonic crystal design that can realize a sig-
nificant complete bandgap for visible wavelengths in thin
film Titanium Dioxide, n = 2.3− 2.4 [47]. Furthermore,
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FIG. 3. (a) Schematics of a 3D photonic crystal slab con-
sisting of Titanium Dioxide hexagonal rods with n = 2.57
at λ = 650nm mounted on a periodic substrate of silica,
n = 1.45, with air above, n = 1. Each Titanium Dioxide
hexagonal rod also contains a hexagonal air hole in its center,
while the substrate rods are solid. This system can be com-
pletely parameterized using exactly the same choice of t1, t2,
and r from the 2D photonic crystal shown in Fig. 1(e), as well
as the height of each rod, h, and the width of the substrate
rods, w. For the structure in (a) t2 = 0. (b) Band diagram
for the photonic crystal slab shown in (a). The grey regions of
the band diagram indicate the continuum of radiation modes
which lies above the light line. As can be seen, a complete
bandgap with width ∆ω/ω̄ = 5.6% (yellow rectangle) opens
between the 7th and 8th bands for t1/l = 0.7482, t2/l = 0,
r/l = 0.7405, h/l = 3.750, and w/l = 1.0392, where l is again
the distance between two vertices in the underlying primitive
honeycomb lattice. For λ̄ = 650nm tuned to the center of
the bandgap, the bandgap would extend over the range 633–
667nm, with t1 = 78.9nm, r = 78.0nm, h = 394.9nm, and
w = 109.4nm. Likewise, for λ̄ = 1.55µm, the bandgap ex-
tends over 1.509–1.591µm, with t1 = 188nm, r = 186nm,
h = 941nm, and w = 261nm. Band structures were calcu-
lated using MPB [45].

this supercell honeycomb structure could also be used in
conjunction with high-index materials available in other
frequency ranges so that the low-index material used in
the structure need not be air. For example, optical fibers
with silicon cores in silica cladding [48], as well as silicon
photonic crystal fibers in air [49] have been recently fab-
ricated. Thus, the photonic crystal design presented here
could realize complete bandgaps at the on-axis wavevec-
tor k‖ = 0 in completely solid photonic crystal fibers
operating in the communications band, where the high
index regions are silicon, nhigh = 3.48, and the low-index
regions are filled with fused silica, nlow = 1.45, such that
nhigh/nlow = 2.4 for λ = 1.55µm. This is in contrast
to traditional silica-air based photonic crystal fibers [50–
53], which support a complete bandgap only at a large
on-axis wavevector, k‖ 6= 0. Photonic crystal fibers op-
erating near k‖ = 0 can be used to enhance nonlinear
interactions, such as phase sensitivity [54], Raman scat-
tering [55, 56], and fiber sensors [57–60].

The same design principle can also be used to de-
velop new photonic crystal slabs so as to provide con-
finement in three dimensions. In Fig. 3, we show a su-
percell honeycomb slab with a complete below-light-line

dual-polarization bandgap of ∆ω/ω̄ = 5.6% for Titanium
Dioxide on a periodic silica substrate. Note that in pho-
tonic crystal slabs, to define a bandgap one only considers
the phase space regions below the light line, as above the
light line the radiations modes form a continuum with
no gaps. This system with the center of the bandgap
tuned to λ̄ = 650nm possesses a complete bandgap be-
tween 633nm and 667nm, and has a minimum feature
size of 78nm, which is well above the resolution limits of
modern lithography techniques [61, 62]. This represents
the first realistic design of a photonic crystal slab system
with a complete polarization-independent bandgap in the
visible wavelength range. This design can also be real-
ized using diamond as the high-index material [63–65].
Moreover, as the bandgap in this slab system is for both
polarizations, it persists even when the substrate is intro-
duced. In contrast, single-polarization bandgaps in slab
systems disappear with the introduction of a substrate,
as it breaks the mirror symmetry in z and couples the two
polarizations together [66]. Finally, this design could also
be used to realize entirely solid photonic crystal slabs for
communications frequencies where higher index dielectric
materials are available.

The procedure used above is not restricted to the hon-
eycomb lattice. To illustrate this point, we use the same
method to produce a complete bandgap in a 2D supercell
square network lattice, as shown in Fig. 4. Unlike in the
primitive honeycomb crystal, the TE bandgap in the un-
derlying primitive square lattice is spanned by two TM
bands. Thus, a complete bandgap is only realized for
sufficiently strong symmetry breaking so that not only
does a gap open in each degenerate contour of the folded
supercell TM bands, but that a gap opens between these
two folded bands. This limits the overall width of the
complete bandgap, and the lowest index-contrast ratio
for which this structure possesses a complete bandgap is
nhigh/nlow ∼ 3.1, as shown as the yellow line in Fig. 2.

Complete bandgaps in supercell photonic crystal pos-
sess two features which distinguish them from complete
bandgaps found in traditional photonic crystals. First,
as noted above, these structures have been designed by
specifically breaking symmetry within the system. This
is entirely distinct from what is observed for bandgaps
found in traditionally designed structures, which consider
the high-symmetry triangular lattice in 2D and diamond
lattice in 3D to be near optimal. Second, as can be seen in
Fig. 2, complete bandgaps in supercell structures do not
necessarily monotonically increase in size as a function of
the index-contrast. This example disproves the generally
held intuition that the bandgap (between the same two
bands) of an optimized structure increases or stays con-
stant as the index contrast increases. However, related
structures featuring additional degrees of freedom beyond
the three shown in Fig. 1(e) possess complete bandgaps
which are constant as the index-contrast is increased, see
Appendix A.

Designing two-dimensional supercell photonic crystals
to possess complete bandgaps has three steps. First, a
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FIG. 4. (a),(c),(e) Schematics of 2D photonic crystals formed
of a network of a high dielectric material with n = 3.2 (black
region) in a background of air, nair = 1. The unit cell for
the corresponding band structure in (b),(d),(f) is shown as
a green square. Parameters which characterize these crystals
are indicated in purple. The structures in (a) and (c) are com-
pletely specified by the line thickness, t, while the structure
in (e) is completely specified by three parameters, the thick-
line thickness, t1, the thin-line thickness, t2, and the shortest
distance from a thick line to the center of its corresponding
thick-line bordered square, r. l denotes the distance between
two vertices in the primitive cell. (b),(d),(f) Band structures
around the border of the irreducible Brillouin Zone for the
photonic crystals shown in (a),(c),(e), respectively, in which
the TE bands are shown in red and the TM bands are shown
in blue. In (b), the 2nd and 3rd TM bands are shown as
light blue (medium gray) and cyan (light gray), respectively,
while the corresponding folded bands in the supercell Bril-
louin zone in (d) and (f) are also shown in the same colors.
In (b),(d), t/l = 0.32, while in (f), t1/l = 0.34, t2/l = 0.16,
and r/l = 0.605, and a complete bandgap is found with width
∆ω/ω̄ = 4.6% between the 12th and 13th bands (yellow rect-
angle). Band structures were calculated using MPB [45].

candidate primitive photonic crystal must be constructed
which possesses a large bandgap for one polarization, and
which is spanned by at most one or two bands in the other
polarization. Second, a supercell must be generated from
this primitive cell such that the degenerate contours of
the folded band spanning the single-polarization bandgap
lie entirely within the single-polarization bandgap. Fi-

nally, the supercell perturbation which breaks the under-
lying primitive cell symmetries must be designed, such
that a bandgap in the degenerate contour opens before
the single-polarization bandgap in the original primitive
system closes.
We expect these same design principles to hold for

finding complete bandgaps in three-dimensional super-
cell photonic crystals, but in practice we have been un-
able to find such a structure. Although the second and
third steps in the above procedure are relatively straight-
forward, finding good candidate primitive cell structures
is much more challenging in 3D, as finding what would
be a large bandgap spanned by only a single other band
is rare. For comparison, this is relatively easy in 2D,
structures with isolated dielectric elements typically pos-
sess large TM bandgaps, but not TE bandgaps, while
network structures typically possess large TE bandgaps,
but no TM bandgaps.
Given the extensive literature on numerical optimiza-

tion of photonic crystal bandgaps [24, 29, 30, 33–35], it
is perhaps surprising that the supercell crystal structures
reported here have eluded discovery. As many previous
studies have noted, the problem of bandgap maximiza-
tion is non-convex and so optimization schemes can only
yield local optima. Moreover, the search landscape of this
problem appears to have sharp features, and thus requires
a dense set of choices of initial parameters to ensure that
an actual bandgap is found. Initializing the optimization
algorithm for the supercell honeycomb lattice away from
the optimized parameters, or random initializations of a
pixelized unit cell obeying C6v symmetry, fail to find a
complete bandgap, see Appendix B.
In conclusion, we have developed a new class of pho-

tonic crystals which support complete bandgaps which
stem from breaking spatial symmetries, which exhibit
complete bandgaps for much lower index-contrast ratios
than was previously known.

Appendix A: Pixel-by-pixel nonlinear bandgap

optimization

In this appendix, we attempt to add additional de-
grees of freedom to the supercell honeycomb photonic
crystal to see whether the bandgap of these new struc-
tures increases monotonically. To test this, we discretized
our system using a set of rhomboid pixels so as to pre-
serve C6v symmetry, as shown in Fig. 5(a), and those
pixels contained in, or on the boundary of, a single irre-
ducible zone of the real-space crystal were allowed to have
their dielectric values modified independently. We then
used the gradient-free nonlinear optimization algorithm
COBYLA [67], as implemented in NLopt [68], to opti-
mize the dielectric values of each pixel, within the range
[1, εhigh]. This process revealed three different types of
structures, examples of which are shown in Figs. 5(d-
f). At low index-contrast values, the optimized pixel
structure reproduced the supercell honeycomb structure,
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FIG. 5. (a) Schematic showing a coarse pixelized version of
the supercell honeycomb photonic crystal. The unit cell is
depicted in green hexagon, the irreducible spatial region is
the blue triangle, and those pixels which are independent de-
grees of freedom are shown as cyan diamonds. (b) Initial
dielectric pattern chosen for the non-linear optimization al-
gorithm. There are 110 independent degrees of freedom in
this structure. (c) Optimized bandgap as a function of in-
dex contrast for the pixelized structures. The optimization
process produced three different types of structures, exam-
ples of which are shown in (d)-(f), with (d) being the struc-
ture for nhigh/nlow = 2.2, (e) nhigh/nlow = 2.5, and (f)
nhigh/nlow = 3.3.

shown in Fig. 5(d), while at higher index-contrasts, addi-
tional structural features were found, which either resem-
bled spikes, sticking out from the flat edges of the thick
hexagons, Fig. 5(e), or the thick hexagon being changed
to a circle, with additional holes removed from the inte-
rior, Fig. 5(f).
From these pixelized structures, we formulated four ad-

ditional ‘simplified’ photonic crystal structures. Two of
these structures had 5 independent parameters, shown
in Figs. 6(b) and (c), and correspond to the optimized
pixel structures observed in Figs. 5(d) and (e) respec-
tively. Additionally, we also constructed two designs with
7 independent parameters, shown in Figs. 6(d) and (e),
which correspond to adding the cutout holes in Fig. 5(c)
to the design in (b), and adding the spikes in Fig. 5(b) to
the design in (c), respectively. The numerically optimized
complete bandgaps of these four simplified structures are
then compared against the original 3-parameter supercell
honeycomb crystal in Fig. 6(a). As can be seen, these
structures with additional degrees of freedom do realize
slightly larger complete bandgaps relative to the original
supercell honeycomb photonic crystal design. None of
these structures demonstrate a steady increase in their

bandgap as the index contrast continues to increase, al-
though at least one of them appears to plateau.

Appendix B: Nonlinear optimization with random

initialization

In addition to the pixel-by-pixel nonlinear optimization
that was performed on structures initialized with the su-
percell honeycomb photonic crystal, we also performed
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FIG. 6. (a) Numerically optimized complete photonic
bandgaps as a function of index contrast for five different
simplified structures depicted in (b)-(e), and the structure
from Fig. 1(e). Parameters of the structures are indicated in
purple.

optimizations of structures with random initializations.
There were two different types of random initialization
used, a first in which the dielectric of every pixel was as-
signed a random value between [1, εhigh], and a second
in which the dielectric of every pixel was randomly as-
signed either 1 or εhigh, with a density of high-dielectric
pixels equal to that of the pixelized supercell honeycomb
structure. For both types of random initializations we
ran twenty independent simulations, and none of these
simulations were able to find a bandgap between the 8th
and 9th bands, much less a structure which displayed a
larger complete bandgap than the supercell honeycomb
design.

ACKNOWLEDGMENTS

This work was supported by an AFOSR MURI pro-
gram (Grant No. FA9550-12-1-0471), and an AFOSR
project (Grant No. FA9550-15-1-0335).

[1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[2] S. John, Phys. Rev. Lett. 58, 2486 (1987).
[3] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature

386, 143 (1997).
[4] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and

R. D. Meade, Photonic Crystals: Molding the Flow
of Light (Second Edition) (Princeton University Press,

2011).
[5] J. R. Piper and S. Fan, ACS Photonics 1, 347 (2014).
[6] J. R. Piper, V. Liu, and S. Fan, Appl. Phys. Lett. 104,

251110 (2014).
[7] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and

M. Mochizuki, Science 293, 1123 (2001).



6

[8] Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai,
W. Kunishi, D. Ohnishi, and S. Noda, Nat Photon 4,
447 (2010).

[9] K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe,
T. Sugiyama, and S. Noda, Nat Photon 8, 406 (2014).

[10] S. Fan, P. R. Villeneuve, R. D. Meade, and J. D.
Joannopoulos, Appl. Phys. Lett. 65, 1466 (1994).

[11] D. Dobson and S. Cox, SIAM J. Appl. Math. 59, 2108
(1999).

[12] M. Doosje, B. J. Hoenders, and J. Knoester, J. Opt. Soc.
Am. B 17, 600 (2000).

[13] S. J. Cox and D. C. Dobson, J. Comput. Phys. 158, 214
(2000).

[14] S. G. Johnson and J. D. Joannopoulos, Appl. Phys. Lett.
77, 3490 (2000).

[15] L. Shen, S. He, and S. Xiao, Phys. Rev. B 66, 165315
(2002).

[16] R. Biswas, M. Sigalas, K. Ho, and S. Lin, Phys. Rev. B
65, 205121 (2002).

[17] M. Maldovan, A. Urbas, N. Yufa, W. Carter, and
E. Thomas, Phys. Rev. B 65, 165123 (2002).

[18] M. Maldovan, C. K. Ullal, W. C. Carter, and E. L.
Thomas, Nat Mater 2, 664 (2003).

[19] K. Michielsen and J. S. Kole, Phys. Rev. B 68, 115107
(2003).

[20] O. Sigmund and J. S. Jensen, Philos. Trans. R. Soc. A
361, 1001 (2003).

[21] O. Toader, M. Berciu, and S. John, Phys. Rev. Lett. 90,
233901 (2003).

[22] J. S. Jensen and O. Sigmund, Appl. Phys. Lett. 84, 2022
(2004).

[23] M. B. Stanley, S. J. Osher, and E. Yablonovitch, IEICE
Trans. Electron. 87, 258 (2004).

[24] C. Y. Kao, S. Osher, and E. Yablonovitch, Appl. Phys.
B 81, 235 (2005).

[25] M. Maldovan and E. L. Thomas, J. Opt. Soc. Am. B 22,
466 (2005).

[26] S. Halkjær, O. Sigmund, and J. S. Jensen, Struct. Mul-
tidiscip. Optim. 32, 263 (2006).

[27] Y. Watanabe, Y. Sugimoto, N. Ikeda, N. Ozaki, A. Mizu-
tani, Y. Takata, Y. Kitagawa, and K. Asakawa, Opt.
Express 14, 9502 (2006).

[28] O. Sigmund and K. Hougaard, Phys. Rev. Lett. 100,
153904 (2008).

[29] H. Men, N. C. Nguyen, R. M. Freund, P. A. Parrilo, and
J. Peraire, Journal of Computational Physics 229, 3706
(2010).

[30] A. F. Oskooi, Computation & design for nanophotonics,
Thesis, Massachusetts Institute of Technology (2010).

[31] L. Jia and E. L. Thomas, Phys. Rev. A 84, 033810 (2011).
[32] X. Liang and S. G. Johnson, Opt. Express 21, 30812

(2013).
[33] H. Men, R. M. Freund, N. C. Nguyen, J. Saa-Seoane,

and J. Peraire, Operations Research 62, 418 (2014).
[34] A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson,

Opt. Express 17, 10082 (2009).
[35] H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, and

S. G. Johnson, Opt. Express 22, 22632 (2014).
[36] M. Maldovan and E. L. Thomas, Nat Mater 3, 593

(2004).
[37] H. R. Phillip and E. A. Taft, Phys. Rev. 136, A1445

(1964).
[38] J. R. DeVore, J. Opt. Soc. Am. 41, 416 (1951).

[39] M. J. Weber, CRC Handbook of Laser Science and Tech-
nology Supplement 2: Optical Materials (CRC Press,
1994).

[40] E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).
[41] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K.

Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzy-
cki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).

[42] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan,
Science 289, 604 (2000).

[43] Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris,
Nature 414, 289 (2001).

[44] M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D.
Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429,
538 (2004).

[45] S. G. Johnson and J. D. Joannopoulos, Opt. Express 8,
173 (2001).

[46] A. Cerjan, A. Raman, and S. Fan, Phys. Rev. Lett. 116,
203902 (2016).

[47] T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Diet-
rich, D. Franta, I. Ohldal, A. Szeghalmi, E.-B. Kley,
and A. Tnnermann, Advanced Optical Materials 4, 1780
(2016).

[48] J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz,
M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw,
S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R.
Powers, Opt. Express 16, 18675 (2008).

[49] F. Yaman, H. Pang, X. Xie, P. LiKamWa, and G. Li, in
Conference on Lasers and Electro-Optics/International
Quantum Electronics Conference (2009), paper CTuDD7
(Optical Society of America, 2009) p. CTuDD7.

[50] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M.
Atkin, Opt. Lett. 21, 1547 (1996).

[51] J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell,
Science 282, 1476 (1998).

[52] S. E. Barkou, J. Broeng, and A. Bjarklev, Opt. Lett. 24,
46 (1999).

[53] P. Russell, Science 299, 358 (2003).
[54] M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen,

and J. D. Joannopoulos, J. Opt. Soc. Am. B 19, 2052
(2002).

[55] F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J.
Russell, Science 298, 399 (2002).

[56] J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood,
and C. W. Wong, Opt. Lett. 31, 1235 (2006).

[57] Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and
S. C. Ruan, Appl. Opt. 42, 3509 (2003).

[58] T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen,
T. Srensen, T. P. Hansen, and H. R. Simonsen, Opt.
Express 12, 4080 (2004).

[59] J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen,
T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noorde-
graaf, K. Nielsen, A. Carlsen, and A. Bjarklev, Opt.
Lett. 29, 1974 (2004).

[60] S. O. Konorov, A. M. Zheltikov, and M. Scalora, Opt.
Express 13, 3454 (2005).

[61] V. R. Manfrinato, L. Zhang, D. Su, H. Duan, R. G.
Hobbs, E. A. Stach, and K. K. Berggren, Nano Lett.
13, 1555 (2013).

[62] W. Park, J. Rhie, N. Y. Kim, S. Hong, and D.-S. Kim,
Sci. Rep. 6, 23823 (2016).

[63] I. Aharonovich, A. D. Greentree, and S. Prawer, Nat.
Photon. 5, 397 (2011).

[64] B. J. M. Hausmann, I. Bulu, V. Venkataraman,
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