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We examined coherent population trapping in a circuit-QED system consisting of an Al/AlOx/Al
transmon qubit embedded in an Al 3D cavity. By engineering the dissipation rate of the cavity to
be much larger than that of the qubit and continuously pumping a two-photon process to an excited
state of the cavity-qubit system, we were able to invert the population into the qubit excited-state
with a fidelity of 94%. Applying a second continuous drive tone at the dressed cavity frequency
forms an effective Λ-system and enabled us to coherently trap the system into a dark state formed
from a superposition of the excited and ground states of the qubit. By performing quantum state to-
mography we demonstrated that the position of the dark state on the Bloch sphere can be controlled
by changing the relative amplitudes and phases of the two drives.

I. INTRODUCTION

Quantum dark states were first observed in naturally
occurring physical systems that can become trapped in a
state with a forbidden optical transition, preventing the
absorption or emission of photons [1]. Because of their
long lifetimes, dark states are potential candidates for
quantum memory elements [2, 3]. Dark states can also be
generated in systems with three or more levels by simul-
taneously driving multiple levels in the system, creating
a coherent superposition state with a vanishing optical
transition matrix element [4–6]. For example, pumping
a three-level Λ-system (levels denoted by |0〉, |1〉 and |2〉)
with one oscillatory drive field on the |0〉 ↔ |1〉 transi-
tion and a second drive field on the |1〉 ↔ |2〉 transition,
results in the system being driven into the dark state

|D〉 = cosΘ|0〉+ eiφ sinΘ|2〉. (1)

Here, the mixing angle Θ is controlled by the ratio be-
tween the two drive strengths [6], and φ is controlled by
the phase difference between the drives [7].
Recently, Novikov et al. [8] described a Λ-system

formed from a transmon-cavity system within a circuit-
QED (cQED) architecture [9, 10]. The |0〉 ↔ |1〉 arm
of the Λ-system was driven by pumping the system from
the ground state |g0〉 to state |e1〉, corresponding to both
the qubit and cavity being excited. The |1〉 ↔ |2〉 arm of
the Λ-system was driven using the cavity-like transition
|e0〉 ↔ |e1〉, with the qubit in the excited state. Simulta-
neously driving the two arms of the Λ-system drives the
composite system into a dark state |D〉 and signatures
of both coherent population trapping [1, 4] and EIT [11]
were demonstrated [8].
In this cQED Λ-system, the maximum fidelity for the

dark state was set by the ratio of decay rates between
the cavity and the qubit. This ratio was engineered to
be large, to achieve high dark state fidelity. Dissipation
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engineering [12, 13] has been used elsewhere with quan-
tum superconducting devices for stabilizing single qubit
states [14, 15] and entangled two qubit states [16]. Geer-
lings et al. [17] also used the large dissipation of a cavity
in conjunction with a double drive to rapidly reset a qubit
to a known fiduciary state. Similar techniques have been
used in nanomechanics to cool mechanical oscillators to
their ground state [18, 19].

In this article, we use quantum state tomography [20]
to examine dark states in a Λ-system similar to the one
described by Novikov et al. [8]. In section II we describe
our cQED Λ-system in detail. Section III discusses the
spectroscopy of our driven Λ-system and how we deter-
mined key system parameters. Tomographic measure-
ments of the dark state are presented in section IV. Over
a broad range of values for Θ and φ, we find that the to-
mographic data is in good agreement with theory, demon-
strating that the states are being generated as predicted.
We conclude in section V with a discussion of the degree
of state control we were able to achieve.
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FIG. 1. (Color online) Cavity-qubit system. (a) Jaynes-
Cummings ladders showing combined cavity-qubit energy lev-
els. The number within a ket indicates the number of photons
in the cavity while |g〉 and |e〉 represent the qubit ground and
excited states, respectively. (b) Model of the cavity-qubit sys-
tem as a three-level system undergoing CPT. (c) Photograph
of transmon chip placed in aluminum 3D cavity.
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II. cQED SYSTEM

Our cQED system consisted of a transmon [21] em-
bedded in a three-dimensional superconducting Al mi-
crowave cavity [22] that was cooled on a Leiden CF-450
dilution refrigerator with a base temperature of 20 mK.
The transmon had a single Al/AlOx/Al Josephson junc-
tion and two large Al pads which capacitively shunted the
junction. The transition frequency between the ground
and first excited state was ωq/2π = 6.33121 GHz. The
energy relaxation time was T1 = 6.7 µs and the spin echo
coherence time was T2 = 11.7 µs. The TE101 fundamen-
tal mode of the cavity had a dressed resonance frequency
ωr/2π = 7.94593 GHz and was coupled to the qubit with
a strength g/2π = 83 MHz. In the limit g ≪ ∆ = ωr−ωq,
the undriven system can be described by the dispersive
Jaynes-Cummings Hamiltonian [23],

HJC =
1

2
~ωqσ̂z + ~(ωr − χσ̂z)N̂ (2)

where the Pauli z-operator σ̂z acts on the qubit, N̂ is the
cavity photon number operator and χ/2π = 4.3 MHz is
the dispersive shift due to the cavity-qubit interaction.
The Jaynes-Cummings Hamiltonian leads to energy

levels of the combined system that can be represented by
two ladders (Fig. 1(a)), one for the qubit in the ground
state |g〉 and the other for the qubit in the excited state
|e〉. The separations of the rungs for the |g〉 and |e〉 lad-
ders are ωr +χ and ωr −χ respectively. The three states
used for coherent population trapping are |g0〉, |e0〉, and
|e1〉 with the dark state being a superposition of |g0〉
and |e0〉 [8]. The |g0〉 ↔ |e1〉 transition forms one arm of
our Λ-system and the corresponding drive is denoted as
the coupler, with amplitude Ωc and frequency ωc. The
|e0〉 ↔ |e1〉 transition is the second arm of the Λ-system
and the corresponding drive is denoted as the probe, with
amplitude Ωp and frequency ωp (Fig. 1(b)).
Coherent population trapping in this Λ-system re-

quires the |e0〉 → |g0〉 transition to have a longer life-
time than the |e1〉 → |e0〉 transition. This was ac-
complished by adjusting the lengths of the launcher-pins
which couple the cavity to the input and output mi-
crowave lines. Setting the external coupling of the cavity
at room temperature to QE = 3000 gave a cavity lifetime
of κ−1 = 50 ns at low temperatures.

III. SPECTROSCOPY

A. Population inversion via two photon transition

In addition to requiring κ ≫ Γ1, coherent population
trapping also requires sufficiently fast Rabi pumping of
the system. In particular for a continuous drive, to cre-
ate significant population inversion into |e0〉, the system
must be driven faster than the rate of spontaneous emis-
sion from |e0〉. For our cQED system, the |g0〉 ↔ |e1〉
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FIG. 2. (Color online) Two-photon spectroscopy. (a)
False color plot of measured excited-state probability Pe ver-
sus coupler frequency ωc and coupler drive power Pc. (inset)
Simulated false color plot from solving the master equation.
(b) Measured Stark shift δStark versus Pc (black stars) com-
pared with the results from master equation simulations (solid
blue) and analytical Eq. 4 (dashed red). (c) Maximum mea-
sured excited state probability (black stars) versus effective
coupler drive strength Ωc calculated using Eq. 3. Solid blue
curve shows results from master equation simulations and the
dashed red curve shows plot from Eq. 6.

transition is a second order process involving the absorp-
tion of two coupler photons and this gives a relatively
small pump rate unless a relatively high power is used
[24, 25]. Kindel et al. [26] demonstrated that a similarly
engineered system utilizing this two-photon process could
be used as a source of itinerant photons.
Figure 2(a) shows a false color plot of the qubit excited

state population Pe versus the coupler drive power Pc

and coupler frequency near (ωq + ωr −χ)/4π. The qubit
state was interrogated using a Jaynes-Cummings high-
power readout at the cavity bare frequency of 7.92241
GHz [27]. Above a drive power of −100 dBm, we observe
a dramatic increase in the occupancy of the qubit excited
state. The two-photon peak also shows a Stark shift of
up to 35 MHz and a power dependent increase in the
spectroscopic width of the resonance.
To model this behavior, a master equation simula-

tion involving three transmon levels and 50 cavity lev-
els was employed. The model is quite sensitive to the
coupler power which is incorporated through both cav-
ity and qubit drive Rabi frequencies (Ωr and Ωq). Since
these parameters are not well-known at the frequency
(ωq+ωr−χ)/2, we allow them to be free parameters in our
master equation simulations. For this device Ωr/Ωq = 6.3
yields good agreement between simulations and experi-
ments (Fig. 2). This ratio also agrees well with the pre-
dicted value based on our values for g, ωr and ωc [28].
The effective two-photon Rabi rate Ωc, the ac-Stark

shift, and the amount of population inversion all depend
on the coupler drive power Pc. Obtaining the effective
Rabi rate is non-trivial because the coupler drive between
|g0〉 and |e1〉 can induce two-photon transitions between
the levels via two paths: one via the intermediary state
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|e0〉 and the other via |g1〉. If the levels were harmonic,
these two paths would cancel out making the net transi-
tion rate zero [29]. Instead, the effective Rabi pumping
rate [30] from |g0〉 to |e1〉 is given to lowest order by [31]

Ωc ≃
4ΩqΩrχ

∆2
. (3)

To achieve coherent population trapping in our experi-
ment, the coupler drive power was set so that Ωc/2π =
874 kHz.
Figure 2(b) shows a plot of the measured Stark shifted

two-photon |g0〉 ↔ |e1〉 resonance frequency versus Ω2
q.

The resonant frequency was extracted at each value of
Ω2

q by fitting the data in Fig. 2(a) to a Lorentzian. For
comparison, the dashed red curve in Fig. 2(b) shows the
theoretically expected Stark shift which is proportional
to the anharmonicity in the system and is given to lowest
order by [31, 32],

∆ω|g0〉→|e1〉

2
≃ −

1

∆2

(

ECΩ
2
q

~
+ χΩ2

r

)

. (4)

Here, the first term is proportional to EC/h = 200 MHz,
which is the charging energy of the transmon and sets
its anharmonicity. The solid blue line in Fig. 2 shows
the results extracted from the master equation simula-
tion shown in the inset to Fig. 2(a). Excellent agreement
is obtained between the data, simulations and the theo-
retical model.
Fig. 2(c) shows a plot of the maximum excited state

population Pe = 1 − Pg versus effective coupler drive
strength Ωc. The data and simulations are in good agree-
ment except for coupler powers Pc > −91 dBm where
Pe ≈ 0.94 and Ωc/2π = 874 kHz. Above this power, the
simulations suggest that the population begins to enter
into the |f〉 state of the qubit. Furthermore, the fidelity
did not improve above this coupler power (see Sec. IV).

B. Coherent Population Trapping and System

Characterization

With the population inverted to Pe ≈ 0.94, using
the continuous coupler tone at Pc = −91 dBm and
Ωc/2π = 874 kHz, an arbitrary dark state |D〉 of our
Λ-system was generated by illuminating the device with
an additional tone at the transition frequency |e0〉 ↔ |e1〉
at ωp/2π = 7.94164 GHz. By changing the drive strength
Ωp, we were able to change Θ of the dark state (see Eq. 1).
Analysis of this behavior allowed us to determine some
key system parameters.
Figure 3(a) shows a false color plot of the measured

population Pe versus coupler detuning ∆c and probe
power Pp. With the probe power off, a Lorentzian-like
peak is observed with a width determined by κ and Ωc

(Fig. 3(b)). Above a probe power of −167 dBm a nar-
row spectroscopic dip is observed at ∆c ≃ 0 (Fig. 3(c)),
indicative of an interference effect. As the probe power
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FIG. 3. (Color online) Coherent population trapping

spectroscopy. (a) False color plot of Pe for the coupler tran-
sition (|g0〉 → |e1〉) detuning ∆c versus power Pp of the probe
drive (|e0〉 → |e1〉). Linecuts of spectroscopy data (black
dots) at probe powers (b) −179 dBm, (c) −164 dBm, and (d)
−154 dBm along with theoretical fits (solid red) and fit val-
ues for Ωp indicated. The probe-coupler detuning was set to
δ/2π = 26 kHz for all the curves. (e) Plot of extracted Ωp ver-
sus applied probe voltage Vp allowed calibration of the probe
strength. The linear fit (red line) gave Ωp/2π = Vp × 221.5
kHz/nV.

increases, both the depth and the width of the dip in-
creases (Fig. 3(d)).
The probe amplitude Ωp was extracted by fitting each

measured linecut of Pe vs. ∆c to a solution of the master
equation for a driven three level system. The Λ-system
was modeled with the Hamiltonian [8],

Htot = (∆p −∆c)|e0〉〈e0| −∆c|e1〉〈e1|

+
1

2
Ωc|e1〉〈g0|+

1

2
Ωpe

−iφ|e1〉〈e0|+ h.c. (5)

where ∆p and ∆c are detunings as defined in Fig. 1(b).
φ is the difference in initial phases of the coupler and
probe drives when generated using the arbitrary wave-
form generator. The master equation was then found
with decoherence effects included via Lindblad operators
[33],

dρ

dt
=

i

~
[ρ,Htot] + Γ1

(

LqρL
†
q −

1

2

{

L†
qLq, ρ

}

)

+ κ

(

LrρL
†
r −

1

2

{

L†
rLr, ρ

}

)

+
γ

2

(

LdphρL
†
dph −

1

2

{

L†
dphLdph, ρ

}

)

(6)

where Lq and Lr are the decay operators for the qubit
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and cavity respectively and Ldph corresponds to the de-
phasing operator for the qubit.
Setting dρ/dt = 0, the master equation (Eq. 6) was

solved analytically in the steady state. The steady state
population in |e0〉 was fit to the Pe versus ∆c dependence
in Fig. 3(a). We first fit the spectroscopy of the |g0〉 ↔
|e1〉 transition without the probe (Fig. 3(b)), with Ωc and
κ as free parameters. With Ωc and κ then fixed, the rest
of the spectroscopy data was fit with Ωp and detuning δ
as free parameters (Fig. 1(b)). The solid red curves in
Fig. 3(c-d) show the results of these fits, along with the
extracted probe amplitudes Ωp. Note that for Fig. 3(d),
Ωp ≈ Ωc which by Eq. 1 is the condition when |D〉 is
in a symmetric coherent superposition of |g0〉 and |e0〉.
Finally, Fig. 3(e) shows a plot of the extracted Ωp versus
the voltage amplitude of the drive, along with a fit to the
expected linear dependence. The deviation of the data
at high powers is likely due to the system being driven
into states outside the three states in the Λ-system.

IV. CPT STATE TOMOGRAPHY

We next used quantum state tomography [20] to ex-
amine how well the system’s dark state could be con-
trolled in Θ and φ. We fixed the coupler amplitude at
Ωc/2π = 874 kHz and set the frequency on resonance
with the Stark shifted |g0〉 ↔ |e1〉 transition such that
∆c = 0. The probe frequency was set to the |e0〉 ↔ |e1〉
transition and the amplitude Ωp was varied from 0 to 2
MHz, while the initial phase of the probe φp was varied
over 360◦ in 5◦ steps. The initial phase of the coupler
drive was held constant at 0.
The tomography data was acquired in the following

manner. Both the coupler and the probe were applied
continuously for a duration of 60 µs to allow the sys-
tem to reach a steady state. These two tones were then
turned off and state tomography was performed by ei-
ther applying the identity (I) or tomographic π/2 pulses
around the X or Y axis of the Bloch sphere of the qubit, at
ωq/2π = 6.33121 GHz. Each tomographic data point was
averaged over 1000 shots before computing the Stokes pa-
rameters [20],

rx = 2PY − 1 (7)

ry = 2PX − 1 (8)

rz = 1− 2PI. (9)

where PI, PX and PY are the measured outcome prob-
abilities after performing the corresponding I, X , or Y
tomographic pulses immediately followed by a qubit pop-
ulation measurement in the σz basis. Figure 4(a) shows
false color plots of the Stokes parameters when the to-
mography was performed at different probe powers Ωp

and different φp.
Figure 4(d) shows a plot of rz as a function of φp for

three different values of Ωp. As Ωp increases, we see
that rz increases from −0.87 up to +0.65. As expected,

the variation of rz with φp is small, with a maximum
deviation of 0.09. The azimuthal Stokes parameters, rx
and ry (Fig. 4(b-c)) show clear sinuosidal patterns that
are 90◦ out-of-phase with each other and the amplitude
of oscillations are largest when Ωp/2π = 947 kHz. The
point where Ωp = Ωc coincides with when rz ≃ 0. We
note that varying the phase φc of the coupler tone results
in doubling of the period for rx and ry which is a result
of the coupler being a two photon process [31].
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FIG. 4. (Color online) Quantum state tomography of

the trapped state vs. probe phase. (a) False-color plots
of rx, ry and rz versus Ωp and φp. (b) Linecut plots (along
dashed lines in (a)) of Stokes parameters rx, (c) ry and (d)
rz versus φp at probe powers 118 kHz (solid black), 946 kHz
(dashed red), and 1853 kHz (dotted blue).

For each Ωp, the rx and ry versus φp data were in-
dependently fit to a sinusoidal function with amplitude
r⊥. Since a small variation in the z-component was ob-
served versus φp, an average value for rz was calculated.
To quantify the accuracy of the phase control, we then
found the root-mean-square deviation between the fits
and data. If the entire deviation is attributed to the
phase, we obtain an error of 6◦ for phase control. Fig-
ure 5(a-b) shows the analysis for rz and r⊥ versus Ωp.
The rz component starts at rz = −0.87 at Ωp = 0 and
monotonically increases towards the north pole of the
Bloch sphere as Ωp increases. On the other hand, r⊥
shows a maximum value of rmax

⊥ = 0.92 where rz ≈ 0,
before decreasing as Ωp is increased. The red solid curves
are the theoretical predictions with no free parameters.

The theoretical model used to generate the solid red
curves in Fig. 5 only included the three levels |g0〉, |e0〉
and |e1〉. Furthermore, the coupler drive was modeled as
an effective single-photon drive. Due to the high pump
strengths used, some leakage to levels outside the Λ-
system is inevitable. Although these factors will limit
the fidelity of the process, the agreement obtained with
the theory was satisfactory.
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FIG. 5. (Color online) Dark state tomography. (a) Plot
of rz versus Ωp. The data (black circles) is in good agreement
with the theory (solid red curve). (b) Plot of |r⊥| versus Ωp.
The data from the x-variation (blue circles) and y-variation
(green triangles) are compared with the theoretical prediction
(solid red curve). Insets show the state of the system as points
on the Bloch sphere for three values of Ωp.

V. DISCUSSION AND CONCLUSIONS

In this experiment, we examined a cQED Λ-system
created by coupling a transmon to a cavity with the re-
laxation rates engineered so that κ ≫ Γ1. Simultane-
ously driving the two-photon process |g0〉 ↔ |e1〉 and the
|e0〉 ↔ |e1〉 transition allowed formation of a coherently

trapped dark state. The system parameters were ex-
tracted by performing two-photon spectroscopy and the
dark state analyzed using quantum state tomography. By
varying the phase and amplitude of the probe tone, coher-
ent control of the dark state was demonstrated. A max-
imum population inversion of Pe = 94% was obtained,
while the fidelity for the generated maximal superposi-
tion state was F = 96%. The maximal root-mean-square
error for phase control of superpositions was found to be
6◦.

A small oscillation was observed in rz when φp was
varied, possibly due to an effective tilt in the axes dur-
ing tomography. As the tomographic measurements were
performed immediately following halting of the coupler
and probe tones, the induced Stark shifts in the system
may have affected the results. An interesting compari-
son would be to observe rz after turning off the coupler
and probe tones adiabatically, on a timescale much longer
relative to the expected Stark shift.

In principle, further improvements in the fidelity of the
dark state can be achieved by increasing the anharmonic-
ity of the transmon which can be obtained by increasing
the ratio EC/~ωq. This would reduce leakage to the |f〉
state at high Ωc. Further improvements could be ob-
tained by increasing the ratio κ/Γ1. Although this could
be accomplished by increasing the lifetime of the qubit,
we are currently limited by the Purcell effect [34]. Finally,
pumping the system using two different coupler tones,
rather than a single coupler drive, may further increase
the process fidelity. With two tones it will be possible to
decrease the detuning between the drives and the inter-
mediate state, and this would allow stronger two-photon
drives for the coupler transition [24, 30, 35].
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