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We propose a theoretical approach to manipulate the counter-rotating (CR) interactions in the
quantum Rabi model by introducing a sinusoidal modulation to the transition frequency of the quan-
tum two-level system. By choosing appropriate modulation frequency and amplitude, enhancement
and suppression of the CR interactions can be achieved in the Jaynes-Cummings regime (including
both weak- and strong-coupling cases) as well as the ultrastrong-coupling regime. In particular, we
calculate the output excitation emission of the bosonic vacuum state under enhanced CR terms.
Our results show that continuous and steady bosonic excitation emission from the bosonic vacuum
can be observed in the Jaynes-Cummings regime as a consequence of the enhancement. Our ap-
proach is general and system-independent, and hence it works for various physical systems described
by the quantum Rabi model. As an example, we discuss the implementation of this scheme with
superconducting quantum circuits.

PACS numbers: 42.50.Pq, 42.50.Dv

I. INTRODUCTION

The quantum Rabi model [1, 2], one of the fundamen-
tal models in quantum optics, describes the interaction
between a quantum two-level system (natural or artifi-
cial atom, qubit) and a bosonic mode (optical mode,
microwave mode). Based on the coupling strength be-
tween the two-level system and the bosonic mode, the
quantum Rabi model possesses two important parameter
regimes. For an interaction strength much smaller than
the frequencies of the two-level system and the bosonic
mode (which are near resonance), the quantum Rabi
Hamiltonian can be reduced to the Jaynes-Cummings
(JC) Hamiltonian [3, 4] under the rotating-wave approx-
imation (RWA), i.e., the counter-rotating (CR) terms in
the interaction can be omitted, and the model can be
solved analytically with simple functions. This is the
so-called JC regime, which can be further divided into
weak- and strong-coupling regimes [5]. Cavity-QED sys-
tems formed by natural atoms coupled to optical cavities
are well within this regime, which makes the JC model
one of the most significant models in quantum optics.
The other interesting regime is the ultrastrong-coupling
regime, where the light-matter coupling strength reaches
a considerable fraction of the frequencies of the two-level
system and the bosonic mode. In this regime, the RWA is
no longer valid, and the CR interactions strongly mod-
ify the eigenenergies of the JC model [6–8]. To date,
the ultrastrong-coupling regime has been demonstrated
in superconducting circuits [9–13] and semiconductor mi-
crocavities [14–16], with coupling strengths exceeding
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10% of the resonance frequencies of the two-level system
or the bosonic mode. Moreover, the ultrastrong-coupling
regime can be simulated with various cavity-QED [17]
and circuit-QED [18] systems. Recently, even the deep-
strong-coupling regime has been reported, with a cou-
pling strength comparable or larger than the two-level
system or the resonator frequency [12].

In the past few years, enormous effort has been de-
voted to the study of the ultrastrong-coupling regime
in the quantum Rabi model, and great advances have
been achieved in both experimental and theoretical as-
pects. For example, it was found that the CR terms
can induce novel quantum phenomena: such as asym-
metry of the vacuum Rabi-splitting [19], virtual-photon-
induced vacuum Rabi oscillation [20], superradiance
transition [21], non-classical photon statistics [22, 23],
spontaneous release of virtual photons [24, 25], parity-
dependent state engineering [26], and multi-photon side-
band transitions [27]. Moreover, interesting quantum
dynamical phenomena have been reported, such as col-
lapse and revival of quantum states [28], quantum Zeno
and anti-Zeno effects [29, 30], single-photon scatter-
ing [31, 32], collective spontaneous emission in multi-
atom systems [33–35], and multiphoton quantum Rabi
oscillations [36].

It should be mentioned that, though the coupled Rabi
system exhibits some interesting quantum phenomena in
the ultrastrong-coupling regime, it also brings some un-
desired quantum effects for some particular tasks. For ex-
ample, in some quantum information processing tasks de-
manding excitation conservation such as quantum state
transfer, it is desired to suppress the CR interaction
terms because these terms will lead to undesired transi-
tions changing the excitations of the system two by two.
On the other hand, the CR interaction terms are very

mailto:jfhuang@hunnu.edu.cn
mailto:jqliao@hunnu.edu.cn


2

useful in some tasks because these terms can be used
to create quantum entanglement involving photons and
atoms in some cavity-QED systems in a manner of simul-
taneously exciting atom and photon. Therefore, the ma-
nipulation of the CR terms and the rotating terms is a key
technique in coupled atom-cavity field systems. In this
way, the quantum effects associated with the CR terms
can be enhanced or suppressed on demand [37]. In the
weak- or strong-coupling regime, manipulating the CR
interactions can help us observe some quantum effects in-
duced by CR terms; whereas in the ultrastrong-coupling
regime, these techniques can help us to suppress the ef-
fects caused by CR terms, and then the system recovers
the JC dynamics. Recently, Liberato et al. proposed
a method to enhance the processes by CR interactions,
which requires the coupling strength to oscillate at twice
the frequency of the cavity mode [38]. Huang and Law
proposed a scheme to control the CR interactions using
a sequence of phase kicks [37].
In this paper, we propose a theoretical approach to

manipulate the interactions between the quantum two-
level system and the bosonic mode in the quantum Rabi
model by introducing a monochromatic modulation of
the transition frequency of the two-level system. This
frequency modulation induces a series of sidebands in
the spectrum of the quantum two-level system, and af-
fects the detunings between the two-level system and the
bosonic mode. By engineering appropriate modulation
frequency and amplitude, the detunings and the effective
coupling strengths between the two-level system and the
bosonic mode can be controlled to make desired tran-
sitions on resonance and undesired transitions far off-
resonance. With this approach, we can enhance the CR
interactions in the JC regime, and suppress the CR inter-
actions in the ultrastrong-coupling regime. We also show
that in the JC regime, the enhanced CR interactions can
induce stronger bosonic excitation emission from bosonic
vacuum than that in previous studies [24, 25].
The paper is organized as follows. In Sec. II, we de-

scribe the quantum Rabi model in the presence of a fre-
quency modulation of the quantum two-level system. In
Secs. III and IV, we present approaches to enhance and
suppress the CR interactions in the JC regime and the
ultrastrong-coupling regime, respectively. We also study
the bosonic excitation emission from bosonic vacuum in
the enhancement case by calculating the output bosonic
excitation flux rate. We present some analyses on the im-
plementation of this scheme with circuit-QED systems in
Sec. V. Discussions and conclusions are given in Sec. VI.

II. THE SYSTEM AND HAMILTONIAN

We consider the quantum Rabi model, which contains
a quantum two-level system interacting with a bosonic
field mode (Fig. 1). The Hamiltonian of the Rabi model
can be written as (~ = 1) [1, 2]

HR = HJC +HCR, (1)
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FIG. 1. (Color online) Schematic of the modulated quantum
Rabi model. A quantum two-level system with an energy sep-
aration ω0 between its excited state |e〉 and ground state |g〉 is
coupled to a bosonic field mode with resonance frequency ωc.
The coupling between the two-level system and the bosonic
mode has the form gσx(a+ a†). The energy separation of the
two-level system is modulated with a term (1/2)ξν cos(νt)σz.

where

HJC = ωca
†a+

ω0

2
σz + g(σ+a+ a†σ−), (2)

is the usual JC Hamiltonian, and

HCR = g(σ−a+ a†σ+), (3)

includes the CR terms. Here, a (a†) is the annihilation
(creation) operator of the bosonic mode with frequency
ωc. The quantum two-level system is described by the
Pauli operator σz = |e〉〈e| − |g〉〈g| and the transition

operators σ+ = σ†
− = |e〉〈g|, where |e〉 and |g〉 are the

excited state and the ground state, respectively, with an
energy separation ω0. The g terms in HR describe the in-
teractions between the two-level system and the bosonic
mode. It should be pointed out that our model is gen-
eral and system-independent, and it can be implemented
with various experimental setups.
To manipulate the CR terms in the Rabi interactions,

we introduce a sinusoidal modulation to the energy sep-
aration of the two-level system. The modulation Hamil-
tonian is given by

HM (t) =
1

2
ξν cos(νt)σz , (4)

where ν and ξ are the modulation frequency and normal-
ized modulation amplitude, respectively. We note that
frequency modulation has been recently studied in var-
ious tasks in quantum optics [39–46]. The total Hamil-
tonian of this system under the frequency modulation is
then H(t) = HR + HM (t), which can be divided as the
following:

H(t) = H0(t) +HI , (5)

with

H0(t) = ωca
†a+

1

2
[ω0 + ξν cos(νt)]σz , (6a)

HI = gσx(a+ a†). (6b)
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Here H0(t) is the time-dependent non-interacting Hamil-
tonian of the two-level system and the bosonic mode, and
HI describes the coupling between the two subsystems.
It should be noted that the z-direction modulation in
H0(t) will lead to some interesting physics in this system.
When the interaction between the two-level system and
the bosonic mode is absence, the modulation sinusoidally
changes the eigen-energy of the two-level system. In this
case, the change of the internal energy in the two-level
system is caused by the work done on the system by the
driving source, and there is no heat exchange between the
system and the driving source because the population of
the two states does not change [47]. Differently, in the
presence of the coupling term HI , the time modulation of
the Hamiltonian H0(t) produces sidebands in the spec-
trum of the two-level system, e.g., the two-level system
spectrum now includes ω0 ±nν, with n being an integer.
Such sidebands correspond to injection and extraction of
the n bosonic excitations at frequency ν to the coupled
system.
To study the impact of the frequency modulation on

the dynamics of this system, we perform the following
transformation on the system

V (t) = T exp

[

−i
∫ t

0

H0(τ)dτ

]

= exp

{

−iωcta
†a− i

1

2
[ω0t+ ξ sin(νt)]σz

}

, (7)

where T denotes the time-ordering operator. In the ro-
tating frame defined by V (t), the transformed Hamilto-
nian becomes

H̃(t) = V †(t)H(t)V (t)− iV †(t)V̇ (t)

= g
(

σ+e
i[ω0t+ξ sin(νt)] + σ−e

−i[ω0t+ξ sin(νt)]
)

×(ae−iωct + a†eiωct)

=

∞
∑

n=−∞

gJn(ξ)[σ+ae
i(δ+nν)t +H.c.]

+

∞
∑

m=−∞

gJm(ξ)[σ+a
†ei∆mt +H.c.], (8)

where δ = ω0 − ωc is the detuning between the unmod-
ulated two-level system and the bosonic mode, Jn(ξ) is
the nth Bessel function of the first kind, and

∆m = ω0 + ωc +mν (9)

are the oscillating frequencies of the CR terms. In the
derivation of H̃(t), we have used the Jacobi-Anger ex-
pansion,

eiξ sin(νt) =
∞
∑

n=−∞

Jn(ξ)e
inνt. (10)

The rotating and CR terms in Hamiltonian H̃(t) can
be tailored by choosing appropriate modulation param-
eters ξ and ν. For the rotating terms (the fourth line)
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FIG. 2. (Color online) Plots of the absolute value of the Bessel
function of the first kind |Jm(ξ)|, and the ratios |gc/∆m0

| and
|∆m0

/ω0| versus the normalized modulation amplitude ξ and
the scaled modulation frequency ν/ω0. (a) Plot of |Jm(ξ)|
as a function of ξ at m = 0, −1, and −2. (b) Dependence
of |gc/∆m0

| on ξ at ν = 1.01ω0 and 1.99ω0. (c) The ratio
|∆m0

/ω0| as a function of ν/ω0. (d) The ratio |gc/∆m0
| versus

ν/ω0 at ξ = 2, 4, and 5. The insets in panels (c) and (d) show
the detail of the curves for smaller values of ν/ω0. Other
parameters are given by g = 0.5ω0 and ωc = ω0.
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in Eq. (8), the detunings of the sidebands (δ + nν) are
separated from each other by (n− n′)ν with n, n′ being
integers. Under the condition ν ≫ g > g|Jn(ξ)|, all the
rotating terms other than the 0th-order sideband with
the effective coupling strength gJ0(ξ) can be discarded
using the RWA. For the CR terms, there exists a CR
sideband m = m0 that satisfies

|∆m0
| = min{|∆m| = |ω0 + ωc +mν|,m ∈ Z}, (11)

where “Z” denotes the set of all integers. The detunings
of all other CR sidebands are ∆m0+s = ∆m0

+ sν, with
s being a nonzero integer. Under the conditions

ν ≫ |∆m0
|, ν ≫ g > g|Jm(ξ)|, (12)

all the other CR terms can be discarded with the RWA.
The Hamiltonian H̃(t) can hence be approximated as

H̃1(t) ≈ (grσ+ae
iδt + gcσ+a

†ei∆m0
t) + H.c., (13)

where we introduce the normalized coupling strengths

gr = gJ0(ξ), gc = gJm0
(ξ) (14)

for the near resonant rotating and CR terms, respectively.
The Hamiltonian (13) describes an effective isotropic
Rabi model with gr = gc or an effective anisotropic
Rabi model with gr 6= gc [49] with an effective bosonic
mode frequency ω̃c = (∆m0

− δ)/2 and an effective fre-
quency ω̃0 = (∆m0

+ δ)/2 for the quantum two-level sys-
tem. On one side, we can choose appropriate ∆m0

and

δ such that the effective Rabi Hamiltonian H̃1(t) enters
the ultrastrong-coupling regime with |gc| reaches 0.1 of
the frequencies ω̃c and ω̃0. Here, the detuning ∆m0

can
be controlled by adjusting the modulation frequency ν.
On the other side, the normalized coupling strengths gr
and gc can be varied in a large range by tuning ξ.
To show how to control the interactions between the

two-level system and the bosonic field, in Fig. 2 we plot
the absolute value of the Bessel function of the first
kind |Jm(ξ)|, |∆m0

|, and the ratio |gc/∆m0
| versus the

normalized modulation amplitude ξ and the modula-
tion frequency ν, respectively. In panel 2(a), we show
|Jm=0,−1,−2(ξ)| as a function of ξ. We can see that the in-
teraction strengths gr and gc can be controlled by choos-
ing a proper work value of ξ, as expected by Eq. (14).
One can choose a value of ξ satisfying J0(ξ) = 0 (the
zero points of the Bessel function) such that the gr term
in Eq. (13) disappears and then a pure CR interaction
term is achieved. The effect of the CR interaction is de-
termined by the ratio |gc/∆m0

|, as shown in panel 2(b)
for a given ν and in panel 2(d) for a given ξ. We observe
that the value of |gc/∆m0

| ranges from 0 to ∞. The
zero points of |gc/∆m0

| correspond to the zero points of
Jm0

(ξ), as shown in panels. 2(a) and 2(b). The values
ν/ω0 = 1.99 and 1.01 used in panel 2(b) correspond to
the Bessel function m0 = −1 and −2 in panel 2(a), re-
spectively. The divergence of |gc/∆m0

| corresponds to
the resonance condition ∆m0

= 0, which located at

ν = −ω0 + ωc

m0
, (15)

as shown in panel 2(c). Panel 2(c) shows the dependence
of |∆m0

| on ν. We can tune the modulation frequency ν
such that a desired sideband characterized by m0 domi-
nates the CR interactions. The v-shaped valley contain-
ing a given zero point shares the same m0, and these
peaks (i.e., the boundary point of the m0 and m0 − 1
valleys) are located at 2(ω0 + ωc)/(2|m0| + 1). We can
choose proper value of ξ and ν, such that the effect of CR
interaction terms can be manipulated. To suppress the
CR interaction terms, a large ν should be chosen such
that the ratio |gc/∆m| is very small and thus the rotat-
ing terms dominate the interactions, as shown in the right
part of panel 2(d). To enhance the CR interaction terms,
the ratio |gc/∆m| should be increased, which is accessible
around resonance ∆m0

= 0, indicated by Eq. (15).

III. ENHANCEMENT OF THE CR TERMS

In this section, we study the enhancement of the
CR terms in the JC regime, where, roughly speaking,
g < 0.1ω0, 0.1ωc. In this regime and under the near-
resonance condition |δ| ≪ ω0, ωc, the CR interactions
HCR in the Rabi Hamiltonian HR can be safely omitted
by applying the RWA, and HR is then reduced to the JC
Hamiltonian HJC. However, by virtues of the modula-
tion, when the detuning |∆m0

| is comparable to or much
smaller than |gc|, i.e., |∆m0

| ≪ |gc|, the CR terms can be
strongly enhanced. Then the system is governed by the
effective Rabi Hamiltonian (13). Moreover, the condition
|∆m0

| ≪ |gc| is achievable as shown in Fig. 2. An inter-
esting case is the resonant CR interaction at ∆m0

= 0
at selected value of m0 with m0 being a negative inte-
ger. This indicates that the modulated CR interactions
can be enhanced even though they are negligibly weak
in the original representation. In this section, we will
restrict ourself in the condition |∆m0

| ≪ |gc| to show
how to enhance the CR interactions by introducing fre-
quency modulation to the two-level system and evaluate
the validity by calculating the fidelity.

A. Fidelity and dynamics

We first evaluate the validity of the RWA in deriv-
ing the effective Rabi Hamiltonian (13), which can be
checked by studying the fidelity

F (t) = |〈φ(t)|ψ(t)〉|2 (16)

between the state |φ(t)〉 obtained by solving the
Schrödinger equations with the exact Hamiltonian (8)
and the state |ψ(t)〉, obtained by the effective Hamil-
tonian (13). Here, we choose an initial state |φ(0)〉 =

|ψ(0)〉 = (1/
√
2)(|g〉 + |e〉)|α〉, where |α〉 is a coherent

state of the bosonic mode, to calculate the fidelity.
In Fig. 3(a), we plot the fidelity F (t) as a function

of time for several values of the modulation frequency
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FIG. 3. (Color online) (a) Fidelity F (t) defined in Eq. (16)
versus the time for various values of the modulation frequency:
ν = 0.2ω0 = 4g (black solid curve), ν = 0.6ω0 = 12g (red solid
curve), and ν = ω0 = 20g (blue solid curve). (b) Fidelity
F (ts) at time ts = 2π/g as a function of ν. Other parameters
are ξ = 2.40483, ωc = ω0, and g = 0.05ω0. The initial state
of the system is (1/

√
2)(|g〉+ |e〉)|α〉, where |α〉 is a coherent

state with α = 0.1.

ν starting from the initial state |φ(0)〉. Here, for a
given ν, the sideband integer m0 is chosen such that the
corresponding CR term is the most resonant term, i.e.,
m0 = Round[−(ω0 +ωc)/ν], where Round[x] is a function
for getting the nearest integer of x. Figure 3(a) shows
that the fidelity experiences oscillations with time. When
ν is much smaller than ω0, such as ν = 0.2ω0 = 4g, the
envelope of the fidelity decreases with time accompanied
by periodic revival in a long range of time. For larger
ν, better fidelity can be obtained, which is in accordance
with conditions (12). To find out how the fidelity depends
on the frequency ν, in Fig. 3(b), we plot the fidelity F (ts)
at time ts = 2π/g as a function of ν. We see that the
fidelity at ts experiences a fast oscillation for ν/ω0 < 0.8.
However, the envelope of the fidelity increases gradually
with the modulation frequency ν. For ν > ω0 = 20g, a
high fidelity [F (ts) ≈ 1] can be obtained.

The above technique can be used to produce pure CR
interactions. By choosing proper values of ξ, the rotating
terms in Eq. (13) disappear. For example, at ξ = 2.40483,

0

0.5

1.0

0 5 10 15 20 25 30
0

0.5

1.0

P g (t)

Pr
ob

ab
ili

tie
s 
P

g
(t)

 a
nd

 P
e

(t)
 

P g (t)

P e (t)

(a)

P e (t)

(b) 

t /(2 )

FIG. 4. (Color online) Time dependence of the probabilities
P|g,0〉(t) (blue solid curves) and P|e,1〉(t) (red solid curves)

obtained by the exact Hamiltonian H̃(t) when the modu-
lation frequency ν satisfies sideband resonance condition at
two different values: (a) ν = ω0 (m0 = −2), (b) ν = 2ω0

(m0 = −1). The black short-dashed curves are the analyti-
cal results in Eq. (18) obtained by the effective Hamiltonian

H̃aJC(t). Other parameters are J0(ξ) = 0 (ξ = 2.40483),
g = 0.05ω0, and ωc = ω0. The initial state of the system is
|g, 0〉.

J0(ξ) = 0, and the Hamiltonian (13) becomes

H̃aJC(t) ≡ gc(σ+a
†ei∆m0

t + aσ−e
−i∆m0

t), (17)

which only contains the CR terms. An essential feature
associated with this Hamiltonian is the Rabi oscillation
between the states |g, 0〉 and |e, 1〉, where |n = 0, 1〉 are
number states of the bosonic mode. Note that multi-
photon Rabi oscillations in ultrastrongly-coupled cavity-
QED systems have recently been considered [36]. With

H̃aJC(t) and the initial state |g, 0〉, the probabilities of
the system in states |g, 0〉 and |e, 1〉 can be obtained as

P|g,0〉(t) =
4g2c

4g2c +∆2
m0

cos2
(

1

2

√

4g2c +∆2
m0
t

)

, (18a)

P|e,1〉(t) =
4g2c

4g2c +∆2
m0

sin2
(

1

2

√

4g2c +∆2
m0
t

)

. (18b)

This Rabi oscillation can be utilized to evaluate the valid-
ity of the RWA performed in this modulation scheme. To
this end, we compare the exact dynamics of the system
governed by the exact Hamiltonian (8) with the analyti-
cal solution in Eq. (18).
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FIG. 5. (Color online) Maximum probability Pmax

|e,1〉 of state
|e, 1〉 versus the modulation frequency ν. Other parameters
are the same as those in Fig. 4.

In Fig. 4, we show the exact and approximate results at
two different resonance sidebands, i.e., different values of
m0 under ∆m0

= 0. Figures 4(a) and 4(b) correspond to
m0 = −2 and −1, respectively. Figure 4 shows that the
approximate result agrees well with the exact dynam-
ics when the conditions (12) are satisfied. The system
demonstrates a clear Rabi oscillation (with period π/|gc|)
between the states |g, 0〉 and |e, 1〉, and the leakage of the
system out of this subspace (spanned by |g, 0〉 and |e, 1〉)
is negligible. These features are evidences of the validity
of the RWA, and clearly show the enhancement of CR in-
teractions under well-designed frequency modulation. In
the absence of modulation (when HM = 0), the system
will stay in the state |g, 0〉, which is the ground state of
the Hamiltonian HR under the RWA.

The above sideband-resonance effect can be illustrated
more clearly by studying the dependence of the maximum
probability Pmax

|e,1〉 on the modulation frequency ν. As we

sweep the modulation frequency ν, there exist a sequence
of resonance windows which correspond to different val-
ues of m0 when the resonance condition (15) (∆m0

= 0)
is satisfied. At resonance, the effective Hamiltonian be-
comes (17) by applying the RWA with the conditions (12)
and J0(ξ) = 0. In this case, the maximum probability of
state |e, 1〉 in the Rabi oscillation can be obtained. In
Fig. 5, we plot the exact maximum probability Pmax

|e,1〉 as

a function of ν with the same parameters as those used
in Fig. 4. We see from Fig. 5 that there are resonance
peaks at locations predicted by Eq. (15).

The linewidths of the resonance peaks in Fig. 5 can
be obtained by analyzing the resonance condition. At
exact resonance with ∆m0

= 0, the maximum value of
the probability is almost one: Pmax

|e,1〉 ≈ 1. According to

Eq. (18), with the increase of the detuning |∆m0
|, the

value of Pmax
|e,1〉 decreases approximately by the relation

4g2c/(4g
2
c+∆2

m0
), which is a Lorentzian function of |∆m0

|.
Therefore, the line widths of these peaks are determined
by the full width at half maximum, i.e., |∆m0

/(2gc)| ≈ 1.
A rough estimation gives the line width for the peak as-
sociated withm0 as |2gJm0

(ξ)/m0| at ξ = 2.40483, which
decreases with the increase of |m0|, in accordance with
Fig. 5. In addition, Fig. 5 shows that the height of the two
peaks (m0 = −5, −4) from the left is smaller than one.
This is because there exist some rotating terms which will
affect the population significantly. For example, when
m0 = −4, the rotating and CR terms at m = −2 have a
considerable effect on the dynamics. It is worth noting
that the present mechanism of enhancing the CR inter-
actions works well for other values of detuning δ. This is
because the resonance condition ∆m0

= 0 is independent
of the detuning δ.

B. Output bosonic excitation flux

The above discussions are valid for a closed system
without dissipation. In this section, we study the impact
of the frequency modulation in the presence of environ-
mental noise, namely, how the modulation affects the sys-
tem transitions induced by the environment. We assume
that the two-level system and the bosonic mode are each
connected to a (different) zero-temperature bath. In the
absence of the modulation, the system is well described
by the JC model. When the system is initially prepared
in its ground state |g, 0〉, the system will always stay
in this state under a zero-temperature bath and there
is no output excitation flux emitted from the bosonic
mode. When an appropriate modulation is applied, the
system is described by the quantum Rabi model. In this
case, though the system is initially prepared in the state
|g, 0〉, the dissipation induced by the zero-temperature
baths will lead to a finite excitation flux to the continu-
ous modes coupled to bosonic mode (the output excita-
tions will be emitted photons for cavity-QED systems).
This is because the state |g, 0〉 is not a ground state of
the Rabi model; instead, it is a superposition of many
eigenstates of this model. The dissipation will induce
transitions from upper eigenstates to lower eigenstates,
and the bosonic mode will then emit excitations.
To verify the above analyses, we simulate the bosonic

excitation emission in the open-system case under the
frequency modulation. In this case, the evolution of the
system is governed by the quantum master equation [22,
24, 25]

dρ(t)

dt
= i[ρ(t), H(t)]

+
∑

s=a,c

∑

k>j

∞
∑

j=1

Γ
(s)
kj {D[|εj〉〈εk|]ρ(t)}, (19)

where ρ(t) is the density matrix of the system in the
Schrödinger picture, H(t) is the Hamiltonian of the sys-
tem given by Eq. (5), and D[|εj〉〈εk|] is a standard Lind-
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FIG. 6. (Color online) Time dependence of the output bosonic
excitation flux rate Φout(t) in various cases with resonant CR
interactions (∆m0

= 0) but different coupling strengths gr
and gc. Corresponding to ν = ω0 (2ω0), the sideband param-
eter of the resonant term is m0 = −2 (−1). (a) The parameter
ξ is chosen such that the coupling strength |gc| = g|Jm0

(ξ)|
corresponding to the resonant m0 term is maximized. (b)
The parameter ξ = 2.40483 is chosen such that the rotating
terms in Eq. (13) disappears [J0(ξ) = 0] and the Hamiltonian
is given by Eq. (17). In these two panels, the unmodulated
case ν = 0 is presented for comparison. Other parameters are
δ = 0, g = 0.05ω0, and γa = γc = 0.02ω0. The initial state of
the system is |g, 0〉.

blad superoperator defined by

D[O]ρ = OρO† − 1

2
O†Oρ− 1

2
ρO†O, (20)

with |εj〉〈εk| being state transition operators among the
eigenstates of the Rabi Hamiltonian: HR|εn〉 = εn|εn〉
for n = 1, 2, 3, · · · . The relaxation coefficients in Eq. (19)
are given by

Γ
(s=a,c)
kj = γs|C(s)

jk |2, (21)

where γa and γc are the decay rates of the two-level sys-

tem and the bosonic mode, respectively, and C
(s=a,c)
jk are

the matrix elements of the operators σx and (a + a†) in
the eigen-representation of the Rabi model. These ma-
trix elements are given by

C
(a)
jk = 〈εj |σx|εk〉, (22a)

C
(c)
jk = 〈εj |(a+ a†)|εk〉. (22b)

In the open-system case, the system will transit from
upper eigenstates to lower eigenstates and excitations will
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FIG. 7. (Color online) Steady-state output excitation flux
rate Φss

out versus the modulation frequency ν for ξ = 1.84118
and ξ = 2.40483. Other parameters are δ = 0, g = 0.05ω0,
and γa = γc = 0.02ω0. The initial state of the system is |g, 0〉.

be released from the bosonic mode. The output excita-
tion flux can be calculated in terms of the input-output
relation. In the ultrastrong-coupling regime, the input-
output relation is defined by [22, 24, 25]

Bout(t) = Bin(t)− i
√
γcXc(t), (23)

where Bin(t) and Bout(t) are, respectively, the input and
output operators, and Xc(t) is the lowering operator in
the Heisenberg picture.
In the absence of external bosonic driving, the output

excitation flux rate can be obtained as [24, 25]

Φout(t) = 〈B†
out(t)Bout(t)〉 = γcTr[ρ(t)X

†
cXc], (24)

where

Xc =
∑

k>j

∞
∑

j=1

C
(c)
jk |εj〉〈εk| (25)

is the lowering operator in the Schrödinger picture.
In Fig. 6, we plot the time dependence of the out-

put bosonic excitation flux rate Φout(t) when the CR
interaction in Eq. (13) is at resonance. For ν = ω0

(2ω0), the sideband parameter of the resonant term is
m0 = −2 (−1). We also present the result of the un-
modulated case ν = 0 for comparison. In Fig. 6(a), the
parameter ξ is chosen such that the coupling strength gc
in the corresponding resonant CR terms can be maxi-
mized. Namely, a maximum value of Jm0

(ξ) is reached.
When ν = 2ω0, the m0 = −1 term becomes resonant by
∆m0

= 0, and we choose ξ = 1.84118 to obtain a maxi-
mum value of |J−1(1.84118)| = 0.581865. Similarly, when
ν = ω0, the m0 = −2 term becomes resonant, and we
let ξ = 3.05424 to maximize |J−2(3.05424)| = 0.486499.
From Fig. 6(a) we see that the output bosonic excitation
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flux rate increases gradually with the increase of time.
When t ≫ π/γc, the value of Φout(t) approaches a sta-
tionary value with a small oscillation, which is caused
by the discarded terms under the RWA. A nonzero sta-
tionary value of Φout(t) implies a continuous emission of
real excitation from the bosonic vacuum in the station-
ary state. However, no real excitation is emitted for the
unmodulated case. These results indicate that the en-
hancement of the CR interactions by the frequency mod-
ulation is a key factor in creating real bosonic excitation
emission in the JC model.
For the two cases of nonzero ν in Fig. 6(a), the resonant

CR terms are maximized by choosing a proper ξ. How-
ever, the rotating terms also exist in Hamiltonian (13).
To eliminate the rotating terms and obtain pure CR in-
teractions, in Fig. 6(b) we choose the same ξ as used
in Fig. 3, ξ = 2.40483 [J0(ξ) = 0], such that the rotat-
ing terms in Hamiltonian (13) can be neglected. In this
case, we can observe similar features as that in Fig. 6(a)
in short- and long-time limits. For intermediate time,
Φout(t) exhibits an oscillatory behavior.
In order to illustrate the dependence of the real bosonic

excitation emission on the modulation frequency ν, in
Fig. 7, we plot the steady-state output excitation flux
rate Φss

out as a function of the modulation frequency ν
with the same parameters as used in Fig. 6. Our calcula-
tion gives resonance peaks that correspond to sidebands
at different m0. The locations of these peaks are deter-
mined by the resonance condition ∆m0

= 0, similar to the
probability dynamics given in Fig. 5. It is interesting to
note that the magnitude of the stationary output bosonic
excitation flux rate depends on the coupling strength of
the CR interactions. For the m0 = −1 peak (ν = 2ω0),
the magnitude of the output bosonic excitation flux rate
at ξ = 1.84118 is larger than the value at ξ = 2.40483,
because |J−1(ξ)| reaches its maximum at ξ = 1.84118.

IV. SUPPRESSION OF THE CR TERMS

In this section, we study how to suppress the CR inter-
actions in the ultrastrong-coupling regime by introducing
frequency modulation HM (t) on the quantum two-level
system. In the ultrastrong-coupling regime, g/ω0 ≥ 0.1
or g/ωc ≥ 0.1, the CR interactions in HCR become sig-
nificant. According to our previous analysis, this can be
achieved by setting |δ| ≪ |∆m0

| and driving the two-
level system to reach |gc/∆m0

| < 0.1 for m0 = 0. In this
scheme, we can adjust the modulation amplitude ξ to
reduce |gc| to well below the ultrastrong coupling limit.
At the same time, we choose ν to satisfy the condition
ν > 2(ω0 + ωc), which guarantees that |∆m0

| ≫ |gc| for
m0 = 0 and the contribution from all the m 6= m0 terms
is negligible. Note that the reduction of gc is companied
by a reduction of the magnitude of the rotating terms gr.
Hence, under the parameter condition

ν ≫ ω0 + ωc ≫ δ, gc = gJm0
(ξ), (26)
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FIG. 8. (Color online) (a) Time dependence of the fidelity
F (t) at various values of modulation frequency: ν = 0 (black
solid curve), ν = 5ω0 (red solid curve), and ν = 30ω0 (blue
solid curve). (b) Fidelity F (ts) at time ts = 2π/g as a func-
tion of ν. Other parameters are ξ = 2.21868 [J0(ξ) = 0.1],
ωc = ω0, and g = 0.5ω0. The initial state of the system
is (1/

√
2)(|g〉 + |e〉)|α〉, where |α〉 is a coherent state with

α = 0.1.

the effective Rabi Hamiltonian (13) can be simplified to
a JC Hamiltonian in the interaction-picture

H̃JC(t) ≈ gr(σ+ae
iδt + a†σ−e

−iδt) (27)

with detuning δ and effective Rabi frequency gr.
To evaluate the validity of the effective Hamilto-

nian (27), we simulate the dynamics of a quantum state
governed by this Hamiltonian. The fidelity of this state
in comparison to the exact state generated by Hamilto-
nian (8), as defined in Eq. (16), is calculated. We choose

the initial state as (1/
√
2)(|g〉 + |e〉)|α〉 (α = 0.1), with

|α〉 being a coherent state. In Fig. 8(a), we plot the dy-
namics of the fidelity F (t) at several values of the modu-
lation frequency ν. We can see that a better fidelity can
be obtained for a larger ν, which is in accordance with
Eq. (26). In particular, since the coupling strengths of
the rotating and the CR terms in Eq. (8) are normalized
to gJm(ξ) (much smaller than g), the RWA performed in
obtaining Hamiltonian (27) is valid even under a mod-
erate value of ν/ω0 [for example ν/ω0 = 5 in Fig. 8(a)].
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FIG. 9. (Color online) Time dependence of the probability
P|g,0〉(t) of the system in state |g, 0〉 at various values of ν: ν =
0 (black dashed curve), ν = 5ω0 (blue short-dashed curve),
and ν = 30ω0 (red solid curve). Other parameters are ξ =
2.21868 [J0(ξ) = 0.1], g = 0.5ω0, and ωc = ω0. The initial
state of the system is |g, 0〉.

This is because, for a given discarded term, its contribu-
tion is determined by the ratio of the oscillating frequen-
cies over the coupling strength. The larger this ratio, the
better the approximation. To investigate how the fidelity
depends on the frequency ν more clearly, in Fig. 8(b), we
plot the fidelity F (ts) at time ts = 2π/g as a function of
ν. Figure 8(b) shows that the curve exhibits oscillations
followed by a fast increase when ν > 2ω0 until reach-
ing a steady value. A high fidelity of F (ts) ≈ 1 can be
obtained for ν > 5ω0.
To illustrate the suppression of the CR terms, in Fig. 9,

we plot the probability P|g,0〉(t) at various values of the
modulation frequency ν for ξ = 2.21868 [J0(ξ) = 0.1
namely gr/g = 0.1] with the system initially prepared in
state |g, 0〉. We see that the probability P|g,0〉(t) expe-
riences fast oscillations and deviates from 1 significantly
in the absence of the modulation. When the modulation
is applied, the magnitude of the oscillations decreases
gradually with the increase of ν. For sufficiently large
ν, the system almost remains in the state |g, 0〉. These
features can be understood by analyzing the interactions
in the Hamiltonian H̃(t). When ν = 0, i.e., without the
modulation, the system will transit from the state |g, 0〉
to other states with higher number of excitations due to
the CR interactions. When the CR interactions are com-
pletely suppressed by the modulation, the system is well
described by the JC Hamiltonian H̃JC(t). As a result, the
system will stay in the ground state |g, 0〉, which does not

evolve under H̃JC(t).
We also consider the dynamics of this system start-

ing from another initial state |e, 0〉. In Fig. 10, we plot
the probabilities P|e,0〉(t) and P|g,1〉(t) of the states |e, 0〉
and |g, 1〉, respectively, when the modulation frequency

0

0.5

1.0

0

0.5

1.0

0 5 10 15
0

0.5

1.0

P|g,1 (t)P|e,0 (t)(a) = 0

Pr
ob

ab
ili

tie
s 
P |e

,0
(t)

 a
nd

 P
|g

,1
(t)

P|e,0 (t) 

P|g,1 (t)

(b) = 10  

(c)  = 30  

0t /(2 )

P|e,0 (t) 

P|g,1 (t)

FIG. 10. (Color online) Time dependance of the probabilities
P|e,0〉(t) (blue solid curves) and P|g,1〉(t) (red solid curves)
obtained by the exact Hamiltonian (8) at several values of ν:
(a) ν = 0, (b) ν = 10ω0, and (c) ν = 30ω0. The black short-
dashed curves in panels (b) and (c) are the Rabi oscillations
between the states |e, 0〉 and |g, 1〉 governed by the effective
JC Hamiltonian (27). Other parameters are: g = 0.5ω0, ξ =
2.21868 [J0(ξ) = 0.1], and ωc = ω0. The initial state of the
system is |e, 0〉.

ν takes several values. The solid and short-dashed curves
are obtained by using the exact Hamiltonian (8) and
the effective Hamiltonian (27), respectively. Figure 10(a)
gives the state probabilities of the system in the absence
of the modulation. In this case, Hamiltonian (8) re-
duces to a standard Rabi model in the interaction picture,
and the probabilities of states |e, 0〉 and |g, 1〉 experience
fast oscillations. More importantly, the total probability
(P|e,0〉+P|g,1〉) of the system in the single-excitation sub-
space spanned by the basis states |e, 0〉 and |g, 1〉 is not
normalized to unity due to the transitions induced by the
CR terms. However, by introducing a properly-designed
modulation under the condition (26), the system can be
well characterized by the effective JC Hamiltonian (27).
The probabilities (P|e,0〉 and P|g,1〉) then become a Rabi
oscillation (independent of ν) between the states |e, 0〉
and |g, 1〉, as shown by the black short-dashed curves
(approximate probabilities) in Figs. 10(b) and 10(c). In
Fig. 10(b), the small deviation of the approximate proba-
bilities from the exact probabilities (solid curves) reflects
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the validity of the RWA. However, when the frequency ν
is large enough, for example ν/ω0 = 30 [Fig. 10(c)], the
exact and approximate probabilities highly overlap with
each other. In addition, the periods of the oscillations in
Figs. 10(b) and 10(c) are longer than that in Fig. 10(a)
due to the modification of the effective Rabi frequency
by J0(ξ).

V. IMPLEMENTATION WITH A CIRCUIT-QED

SETUP

In this section, we present some discussions on the im-
plementation of this scheme with circuit-QED systems.
In principle, our modulation approach is general and
system-independent, and hence it could be implemented
in various Rabi systems possessing both the ultrastrong
coupling between the quantum two-level system and the
bosonic mode and the longitudinal driving (namely the
frequency modulation) on the two-level system, which are
two features of the system under consideration. Here, the
ultrastrong coupling is needed only for implementation of
the suppression case in Sec. IV. For implementation of the
enhancement case given in Sec. III, the Rabi interaction
should be in the weak or strong-coupling regime. Cur-
rently, the ultrastrong-coupling regime has been demon-
strated in superconducting circuits [9–13] and semicon-
ductor microcavities [14–16]. Moreover, great advances
have been achieved in the manipulation of superconduct-
ing qubits (for example, the longitudinal and transverse
drivings). Therefore, the mentioned two features of this
scheme are accessible in circuit-QED systems. For cavity-
QED systems with natural atoms and optical cavities,
the weak and strong coupling regimes of the Rabi model
have been realized in experiments, and the atomic fre-
quency modulation can also be implemented by introduc-
ing proper Stark-shift fields. However, the realization of
the ultrastrong coupling in cavity-QED systems is a big
challenge. Consequently, to unify discuss the enhance-
ment and suppression schemes in a common system, be-
low we discuss the implementation of this scheme with a
circuit-QED system.
The circuit-QED system is formed by a superconduct-

ing flux qubit and a lumped-element LC oscillator [12].
The ultrastrong coupling in this system is caused by the
mutual inductance between the qubit and the oscillator.
In this system, the Hamiltonian of the flux qubit can be
written as Hq = −ε(t)τz − ∆(t)τx in the basis of two
states with persistent currents around the qubit loop,
where τz and τx are the Pauli operators in this repre-
sentation, ε is the energy separation between the two
persistent current states. By choosing a proper magnetic
flux threading the qubit loop such that the qubit works
at the optimal point, then the parameter ε disappears.
In a four-junction flux qubit, the tunneling splitting ∆(t)
can be tuned independently through the biasing magnetic
flux threading the so-called α loop [11, 48]. Furthermore,
a driving on the qubit can be introduced by designing

proper magnetic fluxes. The coupling induced by the mu-
tual inductance between the qubit and the oscillator can
be described by the Hamiltonian HI = gτz(a+a

†), where
a (a†) is the annihilation (creation) operator of the os-
cillator with frequency ωc, which is described by the free
Hamiltonian Ho = ωca

†a. The coupling strength g is
proportional to the mutual inductance and the currents
in the qubit loop and the LC oscillator. By performing a
basis transformation {τx → −σz, τz → σx}, the Hamilto-
nian can be written as H = ∆(t)σz+ωca

†a+gσx(a
†+a).

The qubit frequency modulation can be introduced via
threading a time-dependent magnetic flux through the α
loop. We note that the introduction of qubit modulation
with biasing magnetic flux threading the α loop has been
proposed to implement quantum information processing
in flux qubits [50].

To evaluate the parameter conditions in circuit-QED
systems, below we analyze the parameters involved in
our scheme. It can be seen from Eqs. (5) and (6) that
there are five parameters involved in this model: reso-
nance frequency ωc of the bosonic mode, transition fre-
quency ω0 of the two-level system, Rabi coupling strength
g, scaled modulation amplitude ξ, and modulation fre-
quency ν. In our scheme, ωc = ω0 is considered for
the resonant coupling case, and some particular values
of the parameter ξ are taken for obtaining desired para-
metric couplings (ξ = 2.40483 and ξ = 2.21868 are taken
in the enhancement and suppression cases, respectively).
As a result, we only need to analyze the values of the
two ratios g/ω0 and ν/ω0. In the enhancement case,
we choose g/ω0 = 0.05, and our approach works well
when ν/ω0 ≥ 0.5. In the suppression case, we choose
g/ω0 = 0.5, and the scheme works well (with a fidelity
larger than 0.8) when ν/ω0 ≥ 3.5. Based on the re-
ported experiments [10–12], we know that the resonance
frequencies of the qubit and the oscillator can be in the
several GHz frequency range, and the coupling strength
between the qubit and resonator can be in either the
strong- or the ultrastrong-coupling regime (from hun-
dreds of megahertz to some exceed one gigahertz). For
example, the ratio g/ωc can reach 0.05 - 1.34 in circuit-
QED systems [10–12], in accordance with the parame-
ters used in our scheme. The frequency modulation in
the qubit Hamiltonian can be implemented by applying
proper biasing magnetic fluxes [51–53]. By tuning the
driving amplitude and frequency, the modulation param-
eters ξ and ν can be chosen on demand. To implement
the present scheme, for a suitable modulation frequency
ν, the modulation amplitude is determined by ξν/2 un-
der a desired value of ξ. In circuit-QED systems, the
modulation frequency should be in the range from hun-
dreds of megahertz to several gigahertz. As a result, the
modulation amplitude should also be approximately in
the same range because of ξν/2 ≈ ν for ξ = 2.40483
and ξ = 2.21868. In realistic experiments, the modula-
tion amplitude was bounded to intermediate values (usu-
ally smaller or around one gigahertz) due to the heat
effect. Therefore, the enhancement case can be imple-
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mented with current experimental condition by choos-
ing the qubit and oscillator frequencies around 2 GHz.
To implement the suppression case, however, smaller fre-
quencies of the qubit and the oscillator should be taken
for obtaining larger values of ν/ω0.

VI. DISCUSSIONS AND CONCLUSIONS

It deserves to be mentioned that, the physical mecha-
nism of the interaction manipulation in our scheme is the
active control of the resonance of involved physical pro-
cesses. Namely, we choose proper modulation frequency
such that the desired physical transitions to be reso-
nant and the undesired transitions to be far-off-resonant.
Though we only discussed the quantum regime of the
Rabi system, our approach also works in principle for
the semiclassical regime, in which a two-level system is
coupled to a classical monochromatic field. However, the
function of the modulation cannot be recognized from
the population of the two-level system in the semiclas-
sical regime. This is because the transitions induced by
the rotating and CR terms in the semiclassical regime
are the same, i.e. |g〉 ↔ |e〉, hence we do not know how
many population is caused by either the rotating terms
or the CR terms. This point is different from that in the
quantum regime, in which the CR and rotating terms
cause different transitions (the system stays in |g, 0〉 or
transits from |g, 0〉 to |e, 1〉, corresponding to the rotat-
ing and CR interaction terms), hence we can identify the
physical process from the transition population of the
system. We checked the calculations in the semiclassical
regime, and found that the modulation can enhance the
CR terms in the non-ultrastrong coupling regime. Mean-
while, in the ultrastrong coupling regime, the modulation
can suppress the CR terms and the system experiences
a Rabi oscillation at a reduced frequency due to the re-

duction of the magnitude of the rotating terms.

In conclusion, we have proposed a method to control
the CR interactions in the quantum Rabi model by in-
troducing a sinusoidal modulation to the transition fre-
quency of the two-level system. This control scheme in-
cludes the enhancement of the CR interactions in the
JC regime and the suppression of these terms in the
ultrastrong-coupling regime. By designing proper mod-
ulation frequency and amplitude, the rotating and CR
interactions in the Rabi model can be tailored to be ei-
ther resonant or far off-resonant. In these cases, we have
derived effective Hamiltonians to describe the dynamics
of this system and verified detailed parameter conditions
under which the approximations are valid. We have also
studied the evolution of the state population in this sys-
tem, which shows clear evidence of the manipulation of
the interaction terms. In addition, we have investigated
bosonic excitation emission in the enhancement case by
calculating the output excitation flux rate. A continuous
excitation emission from the bosonic vacuum in the JC
regime is obtained.
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