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Topological Aharonov-Bohm Suppression of Optical Tunneling in Twisted Nonlinear

Multicore Fibers
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Rodrigo Amezcua-Correa, and Demetrios N. Christodoulides
CREOL/College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA

We show that the Aharonov-Bohm-like suppression of optical tunneling in twisted multicore fibers
can persist even under highly nonlinear conditions. Our analysis indicates that the topological
phase is robust and remains intact in the presence of nonlinearity. The energy exchange dynamics
are theoretically analyzed via closed-form solutions in four-core ring systems. Effects arising from
asymmetry are also investigated. A possible arrangement to experimentally observe this effect is
suggested.

I. INTRODUCTION

Electrons interacting with a magnetic field can dis-
play an array of interesting and counterintuitive effects.
These include for example the emergence of Landau lev-
els [1], quantum Hall [2] and topological insulator effects
[3], as well as quantization of magnetic flux through a
superconductor [4], to mention a few. In recent years,
the possibility of observing processes akin to those ex-
pected from magnetic fields has also been intensely ex-
plored in bosonic settings. These include for example
photon and cold atom dynamics under the influence of
synthetic magnetic fields [5–12], photonic topological in-
sulators [13–16] and nonreciprocal optical elements [17].
In such arrangements, an artificial magnetic field can
be effectively introduced by exploiting the intimate con-
nection between Berry’s phase in parameter space and
the Aharonov-Bohm phase [18–21]. An intriguing phe-
nomenon arising from the presence of a magnetic field is
a possible inhibition of electron tunneling in degenerate
quantum channels-a process never been observed before
in any physical system [22]. This latter effect is a di-
rect byproduct of an Aharonov-Bohm (AB) phase [23, 24]
that in turn leads to a complete elimination of tunneling,
a process resulting from the destructive interference of
the eigenfunctions involved. A possible optical realiza-
tion of this effect has also been suggested in a twisted
annular or multicore fiber configuration in [6]. In addi-
tion, similar systems have also been studied in parity-
time-symmetric configurations, where it was found that
the exact PT phase can be broken in a quantized fashion
[25, 26]. Apart from being fundamental in nature, this
effect can be potentially utilized for applications, such
as torsion sensors [27], mode management [28], and dis-
persion and polarization control [29]. At this point we
emphasize that this topological phenomenon has so far
been considered only in the linear regime. In this re-
spect, one may ask whether this Aharonov-Bohm tun-
neling suppression will still persist even under nonlinear
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conditions. In other words, is this process robust enough
to withstand nonlinear effects?

In this work, we show that the topological suppres-
sion of light tunneling in a twisted ring waveguide
array can be maintained completely intact in spite of
the presence of optical nonlinearity. This holds true
in any ring multicore system irrespective of dimen-
sionality. Analytical results pertaining to four-core
twisted nonlinear fiber structures indicate that the
Aharonov-Bohm phase remains invariant and has no
dependence whatsoever on the power levels. At higher
intensities, a discrete spatial soliton is formed that
further suppresses the energy exchange or tunneling
process. The effect of the twist rate on the onset of
these mechanisms is also investigated. Moreover, the
aforementioned effect can manifest itself even when
the waveguide channels are asymmetrically detuned.
Beam propagation simulations further corroborate our
results - as obtained from nonlinear coupled mode theory.

II. LIGHT PROPAGATION IN TWISTED

MULTICORE RING-FIBER SYSTEMS

A. Linear regime

In order to elucidate the mechanism behind the
Aharonov-Bohm suppression of optical tunneling, per-
haps it is best to explore this effect under linear condi-
tions. In this respect, consider a circular 2N -core waveg-
uide arrangement as shown in Fig. 1 (a). Each waveg-
uide channel is supposed to be single-moded, while it is
evanescently coupled to its nearest neighbors. In addi-
tion, the structure is twisted along the propagation axis
with a spatial period Λ. Under these conditions, one
can show that in the rotating frame, the evolution of the
modal field amplitudes En obey the following set of dif-
ferential equations [11]:

i
dEn

dz
+ βnEn + κ(En+1e

−iφ + En−1e
iφ) = 0, (1)
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FIG. 1. (a) Schematic of a 2N-core twisted optical fiber, and
(b) its equivalent one-dimensional lattice. (c) Light coupling
dynamics in the twisted structure, illustrating the formation
of periodic echoes circulating inside the array.

where the index n = 0, 1, ..., 2N − 1 indicates the site
number (modulo 2N), βn represents the propagation con-
stant of each core, and κ is the coupling coefficient among
nearest neighbors. In Eq. (1), φ = k0n0ǫR

2 sin(π/N) is
the tunneling phase introduced by the twist, k0 = 2π/λ0,
R is the radius of the circle around which the waveguide
elements are located, and ǫ = 2π/Λ is the angular twist
rate. Equation (1) clearly shows that in such a setting,
the coupling coefficients are in fact complex, having equal
and opposite phases depending on whether the tunneling
direction is clockwise or counter-clockwise. In what fol-
lows we show that for specific twist rates satisfying the
phase condition

Nφ = π/2 + pπ, (2)

where p is any integer number, the energy exchange be-
tween sites #0 and #N is totally eliminated - in other
words, these two channels become effectively decoupled.
To analytically prove this assertion, let us consider an in-
finite version (unfolded) of this same lattice, as shown in
Fig. 1 (b). In this system the field dynamics are governed
by the same equation, only this time n ∈ (−∞,+∞). If
the central site is the only one initially excited, the field
distribution in this infinite array is given by [30, 31]:

En(z) = inJn(2κz)e
inφ. (3)

In the 2N circular array, the field amplitude at site n can
then be obtained by summing up all the echoes resulting
from the periodicity of the circular array (Fig. 1 (c)),
and hence one now finds that:

En(z) =

∞
∑

m=−∞

in+2mNJn+2mN (2κz)ei(n+2mN)φ, (4)

where n = 0, 1, ..., 2N − 1. From here, it is straightfor-
ward to see that the optical field in waveguide #N is
always zero:

EN (z) =

∞
∑

m=0

[

i(2m+1)NJ(2m+1)N(2κz)ei(2m+1)Nφ

+i−(2m+1)NJ−(2m+1)N (2κz)e−i(2m+1)Nφ
]

= 0.

(5)

This completes the proof.
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FIG. 2. (a) An eight-core twisted optical fiber where destruc-
tive interference between the two possible tunneling paths is
manifested. (b) Linear light intensity evolution within the
individual cores of the structure.

To demonstrate these dynamics, let us consider linear
light evolution in an eight-core twisted fiber as depicted
in Fig. 2 (a). In order to achieve topological Aharonov-
Bohm suppression, we set 4φ = π/2. Hence, in this case

the twist pitch is given by Λ = 8
√
2k0n0R

2. The results
obtained after solving the coupled mode Eqs. (1) for this
structure are shown in Fig. 2 (b). It is clear that core
#5 remains dark, confirming the results predicted by the
above general linear analysis. Because of this topological
effect, any cross-talk between sites #1 and #5 is totally
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prohibited. This effect can be intuitively explained by
noticing the fact that the two phase paths from core #1
to #5 (upper and lower) in Fig. 2 (a) differ from each
other by a phase factor of ±π. Subsequently, light trans-
port along these two paths results in destructive interfer-
ence, thus leaving core #5 completely dark.

B. Nonlinear regime

From the previous discussion it is clear that the topo-
logical phenomenon under consideration is by nature lin-
ear. In this respect, one may ask whether this AB sup-
pression can still persist under nonlinear conditions. In
this section we address this question by numerically and
analytically solving the underlying equations of motion.
In the case of a four-core structure, the dynamical sys-
tem is fully integrable in terms of Jacobi-elliptic func-
tions. Beam propagation methods are also employed to
corroborate these results.

In the presence of an optical Kerr nonlinearity, the
modal fields in a twisted 2N circular array are now de-
scribed by:

i
dEn

dz
+ βnEn + κ(En+1e

−iφ + En−1e
iφ)

+γ|En|2En = 0, (6)

where γ is proportional to the nonlinear Kerr coefficient.
As an example, we numerically investigate the wave dy-
namics in a nonlinear eight-core system, similar to that
of Fig. 2 (a), when E1(0) = E0 =

√

κ/γ. These re-
sults, depicted in Fig. 3, clearly indicate a complete AB
suppression of coupling between cores #1 and #5. This
suppression still persists even at higher power levels.
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FIG. 3. Modal intensity evolution in a nonlinear twisted eight-
core fiber.

To gain further insight into the nonlinear AB dynam-
ics, we analytically solve the case of a four-core twisted
fiber (N = 2), as shown in Fig. 4 (a). To do so, Eqs. (6)
are scaled based on the following normalizations, Z = κz

and En = E0an exp(iβ1z):

i
da1
dZ

+ a2e
−iφ + a4e

iφ + |a1|2a1 = 0

i
da2
dZ

+ a1e
iφ + a3e

−iφ + δa2 + |a2|2a2 = 0

i
da3
dZ

+ a2e
iφ + a4e

−iφ + |a3|2a3 = 0

i
da4
dZ

+ a1e
−iφ + a3e

iφ + δa4 + |a4|2a4 = 0, (7)

where δ = ∆/κ. For purposes of generality, we allow
the two auxiliary cores 2,4 to have a wavenumber de-
tuning ∆ with respect to sites 1,3. In this scenario Eq.
(2) demands that φ = π/4. Numerical simulations car-
ried out on Eqs. (7) reveal that site #3 remains com-
pletely dark even under highly nonlinear conditions. In
other words, the manifestation of AB suppression is not
affected by the presence of Kerr nonlinearity. In this
particular case a3(Z) = 0 and a2, a4 are phase related
via a4 = exp(−iπ/2)a2 (because of symmetry). In view
of this, Eqs. (7) can now be effectively described by a
reduced coupled system:

i
da1
dZ

+ 2e−iπ/4a2 + |a1|2a1 = 0

i
da2
dZ

+ eiπ/4a1 + δa2 + |a2|2a2 = 0. (8)

These equations can be further simplified using the new
variables u = a1 exp(iπ/4) and v =

√
2a2:

i
du

dZ
+
√
2v + |u|2u = 0

i
dv

dZ
+
√
2u+ δv +

1

2
|v|2v = 0. (9)

In turn, equations (9) are equivalent to a system of
four real differential equations:

U̇0 = 0, (10a)

U̇1 = 2
√
2U3, (10b)

U̇2 =

(

−1

4
U0 −

3

4
U1 + δ

)

U3, (10c)

U̇3 = −2
√
2U1 +

(

1

4
U0 +

3

4
U1 − δ

)

U2, (10d)

where for convenience we have used the Stokes parame-
ters,

U0 = |u|2 + |v|2, (11a)

U1 = |u|2 − |v|2, (11b)

U2 = uv∗ + u∗v, (11c)

U3 = i(u∗v − uv∗). (11d)

From Eqs. (10) one can directly obtain the following two
conservation laws:

U0 = C1, (12a)

U2 =
1

2
√
2

(

−C1

4
U1 −

3

8
U2
1 + δU1

)

+ C2, (12b)
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FIG. 4. (a)A nonlinear four-core twisted fiber. (b) Intensity
evolution within the four cores as obtained from Eq. (15),
when a1(0) = 1.

where C1 and C2 are constants determined by the initial
conditions, given by a1(0) = a0 while ai(0) = 0 for i =
2, 3, 4. Hence,

C1 = |a0|2, (13a)

C2 =
1

2
√
2

(

5

8
|a0|4 − δ|a0|2

)

. (13b)

Substituting these latter results into Eqs. (10), we then
obtain the following differential equation for U1:

U̇2
1 = − 9

64
U4
1 − 2

3
B1U

3
1 +B2U

2
1 + 2B3U1 + 2B4, (14)

where the constants Bi are defined as follows: B1 =
(9/32)C1−(9/8)δ, B2 = −C2

1/16+(C1/2)δ+(3
√
2/2)C2−

δ2−8, B3 = (
√
2/2)C1C2− (2

√
2)δC2, B4 = (9/128)C4

1 +
(B1/3)C

3
1 − (B2/2)C

2
1 −B3C1. From here, one can show

that Eq. (14) can be solved analytically in terms of
Jacobi-elliptic functions [32–34]:

U1(Z) =
r1B + r2A− (r1B − r2A)cn(x, k)

A+B + (A−B)cn(x, k)
, (15)

where r1 and r2 are the two real roots corresponding to
the fourth order polynomial on the right hand side of Eq.
(14). Meanwhile, r3 and r∗3 are the complex conjugate
roots of this same polynomial. The two constants A, B
in Eq. (15) can be obtained from:

A2 =

(

r1 −
r3 + r∗3

2

)2

− (r3 − r∗3)
2

4
,

B2 =

(

r2 −
r3 + r∗3

2

)2

− (r3 − r∗3)
2

4
. (16)

The argument x in the Jacobi-elliptic functions is related
to the elliptic integral of the first kind F (ϕ, k) and the
normalized propagation distance Z via x = F (π, k) −
3Z/8g. Moreover, k2 = ((r1 − r2)

2 − (A − B)2)/(4AB)
provides the elliptic modulus, and g = (AB)−1/2. These
analytical results are corroborated by numerical simula-
tions of Eqs. (7), as illustrated in Fig. 4 (b). The actual
intensities in the four cores can then be directly obtained
from |u|2 = (C1 + U1)/2 and |v|2 = (C1 − U1)/2.
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FIG. 5. Beam propagation analysis of a nonlinear twisted
four-core fiber structure: (a) and (b) depict intensity evolu-
tion at low and high input powers, respectively.

A possible silica-based four-core arrangement where
one can observe the aforementioned Aharonov-Bohm
tunneling suppression can be designed based on the fol-
lowing parameters. We assume that the core radii are
r = 4.5 µm while their center-to-center distance is
D = 24 µm. The operating wavelength is taken here
to be λ0 = 1550 nm and the numerical aperture of each
waveguide element is NA = 0.1. The structure is twisted
around its central axis with a pitch of Λ = 1.4 cm, cor-
responding to φ = π/4. In order to validate the coupled
mode results obtained before, we use beam propagation
methods to monitor the intensity evolution in each core
along the propagation axis when core #1 is excited at dif-
ferent power levels. The results are summarized in Fig.
5. These dynamics clearly indicate that the differential
phase between the two light channels is left unchanged
even under highly nonlinear conditions. Consequently,
the quenching of the coupling can be preserved. At con-
siderable higher power levels (∼ 10 kW ), the nonlinearity
starts to dominate the coupling effects (Fig. 5 (b)). As
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a result, a discrete soliton is established on site #1 [35–
37], which further reduces energy transfer to the nearest
cores (#2, #4). It is observed that even in this highly
localized regime, the topological phases are left intact.
Finally, we examined the robustness of this AB effect in
the presence of an asymmetric detuning δ′ between cores
#2 and #4. Figure 6 shows the intensity dynamics in
the four channels when δ′ = 0.05. Although a deviation
from the ideal case of Fig. 5(a) is observed, it is evident
that the nonlinear AB effect can in principle withstand
such a perturbation. This is attributed to the topological
nature of the Aharonov-Bohm phase.
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FIG. 6. Robustness of the nonlinear AB effect against asym-
metric detuning perturbations, when core #2 is detuned from
the rest of the structure by δ

′ = 0.05.

III. CONCLUSION

In conclusion, we studied the Aharonov-Bohm topolog-
ical suppression of light tunneling in a nonlinear multi-
core fiber structure. Our analytical and numerical results
indicate that the Aharonov-Bohm phase remains invari-
ant and has no dependence whatsoever on the power lev-
els. Our results present a promising platform to observe
this effect in the context of photonics, especially consid-
ering the topological robustness of this process against
nonuniformities.
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